Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Proteome Res ; 23(3): 929-938, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38225219

RESUMO

Mass spectrometry (MS) is a valuable tool for plasma proteome profiling and disease biomarker discovery. However, wide-ranging plasma protein concentrations, along with technical and biological variabilities, present significant challenges for deep and reproducible protein quantitation. Here, we evaluated the qualitative and quantitative performance of timsTOF HT and timsTOF Pro 2 mass spectrometers for analysis of neat plasma samples (unfractionated) and plasma samples processed using the Proteograph Product Suite (Proteograph) that enables robust deep proteomics sampling prior to mass spectrometry. Samples were evaluated across a wide range of peptide loading masses and liquid chromatography (LC) gradients. We observed up to a 76% increase in total plasma peptide precursors identified and a >2-fold boost in quantifiable plasma peptide precursors (CV < 20%) with timsTOF HT compared to Pro 2. Additionally, approximately 4.5 fold more plasma peptide precursors were detected by both timsTOF HT and timsTOF Pro 2 in the Proteograph analyzed plasma vs neat plasma. In an exploratory analysis of 20 late-stage lung cancer and 20 control plasma samples with the Proteograph, which were expected to exhibit distinct proteomes, an approximate 50% increase in total and statistically significant plasma peptide precursors (q < 0.05) was observed with timsTOF HT compared to Pro 2. Our data demonstrate the superior performance of timsTOF HT for identifying and quantifying differences between biologically diverse samples, allowing for improved disease biomarker discovery in large cohort studies. Moreover, researchers can leverage data sets from this study to optimize their liquid chromatography-mass spectrometry (LC-MS) workflows for plasma protein profiling and biomarker discovery. (ProteomeXchange identifier: PXD047854 and PXD047839).


Assuntos
Proteínas Sanguíneas , Proteoma , Humanos , Reprodutibilidade dos Testes , Peptídeos , Biomarcadores
2.
Am J Physiol Gastrointest Liver Physiol ; 324(1): G38-G50, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36283963

RESUMO

Pregnancy induces reprogramming of maternal physiology to support fetal development and growth. Maternal hepatocytes undergo hypertrophy and hyperplasia to drive maternal liver growth and alter their gene expression profiles simultaneously. This study aimed to further understand maternal hepatocyte adaptation to pregnancy. Timed pregnancies were generated in mice. In a nonpregnant state, most hepatocytes expressed Cd133, α-fetal protein (Afp) and epithelial cell adhesion molecule (Epcam) mRNAs, whereas overall, at the protein level, they exhibited a CD133-/AFP- phenotype; however, pericentral hepatocytes were EpCAM+. As pregnancy advanced, although most maternal hepatocytes retained Cd133, Afp, and Epcam mRNA expression, they generally displayed a phenotype of CD133+/AFP+, and EpCAM protein expression was switched from pericentral to periportal maternal hepatocytes. In addition, we found that the Hippo/yes-associated protein (YAP) pathway does not respond to pregnancy. Yap1 gene deletion specifically in maternal hepatocytes did not affect maternal liver growth or metabolic zonation. However, the absence of Yap1 gene eliminated CD133 protein expression without interfering with Cd133 transcript expression in maternal livers. We demonstrated that maternal hepatocytes acquire heterogeneous and dynamic developmental phenotypes, resembling fetal hepatocytes, partially via YAP1 through a posttranscriptional mechanism. Moreover, maternal liver is a new source of AFP. In addition, maternal liver grows and maintains its metabolic zonation independent of the Hippo/YAP1 pathway. Our findings revealed a novel and gestation-dependent phenotypic plasticity in adult hepatocytes.NEW & NOTEWORTHY We found that maternal hepatocytes exhibit developmental phenotypes in a temporal and spatial manner, similarly to fetal hepatocytes. They acquire this new property partially via yes-associated protein 1.


Assuntos
Proteínas de Sinalização YAP , alfa-Fetoproteínas , Gravidez , Feminino , Camundongos , Animais , Molécula de Adesão da Célula Epitelial/genética , alfa-Fetoproteínas/genética , Hepatócitos/metabolismo , Fígado/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fatores de Transcrição/metabolismo , Fenótipo
3.
J Proteome Res ; 21(8): 2023-2035, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35793793

RESUMO

Metaproteomics has been increasingly utilized for high-throughput characterization of proteins in complex environments and has been demonstrated to provide insights into microbial composition and functional roles. However, significant challenges remain in metaproteomic data analysis, including creation of a sample-specific protein sequence database. A well-matched database is a requirement for successful metaproteomics analysis, and the accuracy and sensitivity of PSM identification algorithms suffer when the database is incomplete or contains extraneous sequences. When matched DNA sequencing data of the sample is unavailable or incomplete, creating the proteome database that accurately represents the organisms in the sample is a challenge. Here, we leverage a de novo peptide sequencing approach to identify the sample composition directly from metaproteomic data. First, we created a deep learning model, Kaiko, to predict the peptide sequences from mass spectrometry data and trained it on 5 million peptide-spectrum matches from 55 phylogenetically diverse bacteria. After training, Kaiko successfully identified organisms from soil isolates and synthetic communities directly from proteomics data. Finally, we created a pipeline for metaproteome database generation using Kaiko. We tested the pipeline on native soils collected in Kansas, showing that the de novo sequencing model can be employed as an alternative and complementary method to construct the sample-specific protein database instead of relying on (un)matched metagenomes. Our pipeline identified all highly abundant taxa from 16S rRNA sequencing of the soil samples and uncovered several additional species which were strongly represented only in proteomic data.


Assuntos
Microbiota , Proteômica , Microbiota/genética , Peptídeos/análise , Peptídeos/genética , Proteoma/genética , Proteômica/métodos , RNA Ribossômico 16S/genética , Solo
4.
Hepatol Commun ; 6(10): 2812-2826, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35866567

RESUMO

The role of activin B, a transforming growth factor ß (TGFß) superfamily cytokine, in liver health and disease is largely unknown. We aimed to investigate whether activin B modulates liver fibrogenesis. Liver and serum activin B, along with its analog activin A, were analyzed in patients with liver fibrosis from different etiologies and in mouse acute and chronic liver injury models. Activin B, activin A, or both was immunologically neutralized in mice with progressive or established carbon tetrachloride (CCl4 )-induced liver fibrosis. Hepatic and circulating activin B was increased in human patients with liver fibrosis caused by several liver diseases. In mice, hepatic and circulating activin B exhibited persistent elevation following the onset of several types of liver injury, whereas activin A displayed transient increases. The results revealed a close correlation of activin B with liver injury regardless of etiology and species. Injured hepatocytes produced excessive activin B. Neutralizing activin B largely prevented, as well as improved, CCl4 -induced liver fibrosis, which was augmented by co-neutralizing activin A. Mechanistically, activin B mediated the activation of c-Jun-N-terminal kinase (JNK), the induction of inducible nitric oxide synthase (iNOS) expression, and the maintenance of poly (ADP-ribose) polymerase 1 (PARP1) expression in injured livers. Moreover, activin B directly induced a profibrotic expression profile in hepatic stellate cells (HSCs) and stimulated these cells to form a septa structure. Conclusions: We demonstrate that activin B, cooperating with activin A, mediates the activation or expression of JNK, iNOS, and PARP1 and the activation of HSCs, driving the initiation and progression of liver fibrosis.


Assuntos
Tetracloreto de Carbono , Ribose , Ativinas , Difosfato de Adenosina/efeitos adversos , Animais , Tetracloreto de Carbono/toxicidade , Humanos , Cirrose Hepática/induzido quimicamente , Camundongos , Óxido Nítrico Sintase Tipo II/metabolismo , Ribose/efeitos adversos , Fator de Crescimento Transformador beta/efeitos adversos
5.
PLoS One ; 17(6): e0269383, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35696363

RESUMO

The transcription factor Nrf2 modulates the initiation and progression of a number of diseases including liver disorders. We evaluated whether Nrf2 mediates hepatic adaptive responses to cholestasis. Wild-type and Nrf2-null mice were subjected to bile duct ligation (BDL) or a sham operation. As cholestasis progressed to day 15 post-BDL, hepatocytes in the wild-type mice exhibited a tendency to dedifferentiate, indicated by the very weak expression of hepatic progenitor markers: CD133 and tumor necrosis factor-like weak induced apoptosis receptor (Fn14). During the same period, Nrf2 deficiency augmented this tendency, manifested by higher CD133 expression, earlier, stronger, and continuous induction of Fn14 expression, and markedly reduced albumin production. Remarkably, as cholestasis advanced to the late stage (40 days after BDL), hepatocytes in the wild-type mice exhibited a Fn14+ phenotype and strikingly upregulated the expression of deleted in malignant brain tumor 1 (DMBT1), a protein essential for epithelial differentiation during development. In contrast, at this stage, hepatocytes in the Nrf2-null mice entirely inhibited the upregulation of DMBT1 expression, displayed a strong CD133+/Fn14+ phenotype indicative of severe dedifferentiation, and persistently reduced albumin production. We revealed that Nrf2 maintains hepatocytes in the differentiated state potentially via the increased activity of the Nrf2/DMBT1 pathway during cholestasis.


Assuntos
Colestase Extra-Hepática , Colestase , Fator 2 Relacionado a NF-E2/metabolismo , Albuminas/metabolismo , Animais , Ductos Biliares/patologia , Diferenciação Celular , Colestase/metabolismo , Colestase Extra-Hepática/patologia , Hepatócitos/metabolismo , Ligadura , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
6.
Am J Physiol Gastrointest Liver Physiol ; 321(4): G389-G399, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34431407

RESUMO

After partial hepatectomy (PH), the majority of remnant hepatocytes synchronously enter and rhythmically progress through the cell cycle for three major rounds to regain lost liver mass. Whether and how the circadian clock core component Bmal1 modulates this process remains elusive. We performed PH on Bmal1+/+ and hepatocyte-specific Bmal1 knockout (Bmal1hep-/-) mice and compared the initiation and progression of the hepatocyte cell cycle. After PH, Bmal1+/+ hepatocytes exhibited three major waves of nuclear DNA synthesis. In contrast, in Bmal1hep-/- hepatocytes, the first wave of nuclear DNA synthesis was delayed by 12 h, and the third such wave was lost. Following PH, Bmal1+/+ hepatocytes underwent three major waves of mitosis, whereas Bmal1hep-/- hepatocytes fully abolished mitotic oscillation. These Bmal1-dependent disruptions in the rhythmicity of hepatocyte cell cycle after PH were accompanied by suppressed expression peaks of a group of cell cycle components and regulators and dysregulated activation patterns of mitogenic signaling molecules c-Met and epidermal growth factor receptor. Moreover, Bmal1+/+ hepatocytes rhythmically accumulated fat as they expanded following PH, whereas this phenomenon was largely inhibited in Bmal1hep-/- hepatocytes. In addition, during late stages of liver regrowth, Bmal1 absence in hepatocytes caused the activation of redox sensor Nrf2, suggesting an oxidative stress state in regenerated liver tissue. Collectively, we demonstrated that during liver regeneration, Bmal1 partially modulates the oscillation of S-phase progression, fully controls the rhythmicity of M-phase advancement, and largely governs fluctuations in fat metabolism in replicating hepatocytes, as well as eventually determines the redox state of regenerated livers.NEW & NOTEWORTHY We demonstrated that Bmal1 centrally controls the synchronicity and rhythmicity of the cell cycle and lipid accumulation in replicating hepatocytes during liver regeneration. Bmal1 plays these roles, at least in part, by ensuring formation of the expression peaks of cell cycle components and regulators, as well as the timing and levels of activation of mitogenic signaling molecules.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Ciclo Celular , Proliferação de Células , Ritmo Circadiano , Hepatócitos/metabolismo , Regeneração Hepática , Fatores de Transcrição ARNTL/genética , Animais , Receptores ErbB/metabolismo , Hepatócitos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Mitose , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Transdução de Sinais
7.
Nat Commun ; 11(1): 3652, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32694525

RESUMO

Zika virus (ZIKV), an arbovirus of global concern, remodels intracellular membranes to form replication sites. How ZIKV dysregulates lipid networks to allow this, and consequences for disease, is poorly understood. Here, we perform comprehensive lipidomics to create a lipid network map during ZIKV infection. We find that ZIKV significantly alters host lipid composition, with the most striking changes seen within subclasses of sphingolipids. Ectopic expression of ZIKV NS4B protein results in similar changes, demonstrating a role for NS4B in modulating sphingolipid pathways. Disruption of sphingolipid biosynthesis in various cell types, including human neural progenitor cells, blocks ZIKV infection. Additionally, the sphingolipid ceramide redistributes to ZIKV replication sites, and increasing ceramide levels by multiple pathways sensitizes cells to ZIKV infection. Thus, we identify a sphingolipid metabolic network with a critical role in ZIKV replication and show that ceramide flux is a key mediator of ZIKV infection.


Assuntos
Interações Hospedeiro-Patógeno , Esfingolipídeos/metabolismo , Proteínas não Estruturais Virais/metabolismo , Infecção por Zika virus/patologia , Zika virus/patogenicidade , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Células HEK293 , Humanos , Lipidômica , Camundongos , Esfingolipídeos/análise , Células Vero , Replicação Viral , Zika virus/metabolismo , Infecção por Zika virus/virologia
8.
J Proteome Res ; 17(11): 3914-3922, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30300549

RESUMO

Human tissues are known to exhibit interindividual variability, but a deeper understanding of the different factors affecting protein expression is necessary to further apply this knowledge. Our goal was to explore the proteomic variability between individuals as well as between healthy and diseased samples, and to test the efficacy of machine learning classifiers. In order to investigate whether disparate proteomics data sets may be combined, we performed a retrospective analysis of proteomics data from 9 different human tissues. These data sets represent several different sample prep methods, mass spectrometry instruments, and tissue health. Using these data, we examined interindividual and intertissue variability in peptide expression, and analyzed the methods required to build accurate tissue classifiers. We also evaluated the limits of tissue classification by downsampling the peptide data to simulate situations where less data is available, such as clinical biopsies, laser capture microdissection or potentially single-cell proteomics. Our findings reveal the strong potential for utilizing proteomics data to build robust tissue classifiers, which has many prospective clinical applications for evaluating the applicability of model clinical systems.


Assuntos
Variação Biológica Individual , Mineração de Dados/estatística & dados numéricos , Regulação da Expressão Gênica , Peptídeos/química , Proteínas/genética , Proteômica/métodos , Sequência de Aminoácidos , Biópsia , Linhagem Celular , Feminino , Perfilação da Expressão Gênica , Humanos , Microdissecção e Captura a Laser , Fígado/química , Aprendizado de Máquina , Masculino , Monócitos/química , Especificidade de Órgãos , Ovário/química , Pâncreas/química , Peptídeos/isolamento & purificação , Peptídeos/metabolismo , Proteínas/metabolismo , Estudos Retrospectivos , Análise de Célula Única , Substância Negra/química , Lobo Temporal/química
9.
J Pharmacol Exp Ther ; 358(1): 14-21, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27189962

RESUMO

Transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) regulates multiple biologic processes, including hepatic lipid metabolism. Estrogen exerts actions affecting energy homeostasis, including a liver fat-lowering effect. Increasing evidence indicates the crosstalk between these two molecules. The aim of this study was to evaluate whether Nrf2 modulates estrogen signaling in hepatic lipid metabolism. Nonalcoholic fatty liver disease (NAFLD) was induced in wild-type and Nrf2-null mice fed a high-fat diet and the liver fat-lowering effect of exogenous estrogen was subsequently assessed. We found that exogenous estrogen eliminated 49% and 90% of hepatic triglycerides in wild-type and Nrf2-null mice with NAFLD, respectively. This observation demonstrates that Nrf2 signaling is antagonistic to estrogen signaling in hepatic fat metabolism; thus, Nrf2 absence results in striking amplification of the liver fat-lowering effect of estrogen. In addition, we found the association of trefoil factor 3 and fatty acid binding protein 5 with the liver fat-lowering effect of estrogen. In summary, we identified Nrf2 as a novel and potent inhibitor of estrogen signaling in hepatic lipid metabolism. Our finding may provide a potential strategy to treat NAFLD by dually targeting Nrf2 and estrogen signaling.


Assuntos
Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/deficiência , Proteínas de Neoplasias/metabolismo , Animais , Western Blotting , Dieta Hiperlipídica , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA