Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 617(7961): 540-547, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37165195

RESUMO

Throughout an individual's lifetime, genomic alterations accumulate in somatic cells1-11. However, the mutational landscape induced by retrotransposition of long interspersed nuclear element-1 (L1), a widespread mobile element in the human genome12-14, is poorly understood in normal cells. Here we explored the whole-genome sequences of 899 single-cell clones established from three different cell types collected from 28 individuals. We identified 1,708 somatic L1 retrotransposition events that were enriched in colorectal epithelium and showed a positive relationship with age. Fingerprinting of source elements showed 34 retrotransposition-competent L1s. Multidimensional analysis demonstrated that (1) somatic L1 retrotranspositions occur from early embryogenesis at a substantial rate, (2) epigenetic on/off of a source element is preferentially determined in the early organogenesis stage, (3) retrotransposition-competent L1s with a lower population allele frequency have higher retrotransposition activity and (4) only a small fraction of L1 transcripts in the cytoplasm are finally retrotransposed in somatic cells. Analysis of matched cancers further suggested that somatic L1 retrotransposition rate is substantially increased during colorectal tumourigenesis. In summary, this study illustrates L1 retrotransposition-induced somatic mosaicism in normal cells and provides insights into the genomic and epigenomic regulation of transposable elements over the human lifetime.


Assuntos
Colo , Elementos de DNA Transponíveis , Mucosa Intestinal , Retroelementos , Humanos , Carcinogênese/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Elementos de DNA Transponíveis/genética , Genômica , Elementos Nucleotídeos Longos e Dispersos/genética , Retroelementos/genética , Envelhecimento/genética , Frequência do Gene , Mosaicismo , Epigenômica , Genoma Humano/genética , Colo/metabolismo , Mucosa Intestinal/metabolismo , Desenvolvimento Embrionário/genética
2.
Ann Neurol ; 93(6): 1082-1093, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36700525

RESUMO

OBJECTIVE: Brain somatic mutations in mTOR pathway genes are a major genetic etiology of focal cortical dysplasia type II (FCDII). Despite a greater ability to detect low-level somatic mutations in the brain by deep sequencing and analytics, about 40% of cases remain genetically unexplained. METHODS: We included 2 independent cohorts consisting of 21 patients with mutation-negative FCDII without apparent mutations on conventional deep sequencing of bulk brain. To find ultra-low level somatic variants or structural variants, we isolated cells exhibiting phosphorylation of the S6 ribosomal protein (p-S6) in frozen brain tissues using fluorescence-activated cell sorting (FACS). We then performed deep whole-genome sequencing (WGS; >90×) in p-S6+ cells in a cohort of 11 patients with mutation-negative. Then, we simplified the method to whole-genome amplification and target gene sequencing of p-S6+ cells in independent cohort of 10 patients with mutation-negative followed by low-read depth WGS (10×). RESULTS: We found that 28.6% (6 of 21) of mutation-negative FCDII carries ultra-low level somatic mutations (less than 0.2% of variant allele frequency [VAF]) in mTOR pathway genes. Our method showed ~34 times increase of the average mutational burden in FACS mediated enrichment of p-S6+ cells (average VAF = 5.84%) than in bulky brain tissues (average VAF = 0.17%). We found that 19% (4 of 21) carried germline structural variations in GATOR1 complex undetectable in whole exome or targeted gene sequencing. CONCLUSIONS: Our method facilitates the detection of ultra-low level somatic mutations, in specifically p-S6+ cells, and germline structural variations and increases the genetic diagnostic rate up to ~80% for the entire FCDII cohort. ANN NEUROL 2023;93:1082-1093.


Assuntos
Epilepsia , Displasia Cortical Focal , Humanos , Serina-Treonina Quinases TOR/genética , Epilepsia/genética , Mutação/genética
3.
Nat Biomed Eng ; 7(7): 853-866, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36536253

RESUMO

Variant callers typically produce massive numbers of false positives for structural variations, such as cancer-relevant copy-number alterations and fusion genes resulting from genome rearrangements. Here we describe an ultrafast and accurate detector of somatic structural variations that reduces read-mapping costs by filtering out reads matched to pan-genome k-mer sets. The detector, which we named ETCHING (for efficient detection of chromosomal rearrangements and fusion genes), reduces the number of false positives by leveraging machine-learning classifiers trained with six breakend-related features (clipped-read count, split-reads count, supporting paired-end read count, average mapping quality, depth difference and total length of clipped bases). When benchmarked against six callers on reference cell-free DNA, validated biomarkers of structural variants, matched tumour and normal whole genomes, and tumour-only targeted sequencing datasets, ETCHING was 11-fold faster than the second-fastest structural-variant caller at comparable performance and memory use. The speed and accuracy of ETCHING may aid large-scale genome projects and facilitate practical implementations in precision medicine.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Genoma , Análise de Sequência de DNA/métodos
4.
PLoS Genet ; 18(9): e1010404, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36121845

RESUMO

Most somatic mutations that arise during normal development are present at low levels in single or multiple tissues depending on the developmental stage and affected organs. However, the effect of human developmental stages or mutations of different organs on the features of somatic mutations is still unclear. Here, we performed a systemic and comprehensive analysis of low-level somatic mutations using deep whole-exome sequencing (average read depth ~500×) of 498 multiple organ tissues with matched controls from 190 individuals. Our results showed that early clone-forming mutations shared between multiple organs were lower in number but showed higher allele frequencies than late clone-forming mutations [0.54 vs. 5.83 variants per individual; 6.17% vs. 1.5% variant allele frequency (VAF)] along with less nonsynonymous mutations and lower functional impacts. Additionally, early and late clone-forming mutations had unique mutational signatures that were distinct from mutations that originated from tumors. Compared with early clone-forming mutations that showed a clock-like signature across all organs or tissues studied, late clone-forming mutations showed organ, tissue, and cell-type specificity in the mutation counts, VAFs, and mutational signatures. In particular, analysis of brain somatic mutations showed a bimodal occurrence and temporal-lobe-specific signature. These findings provide new insights into the features of somatic mosaicism that are dependent on developmental stage and brain regions.


Assuntos
Mosaicismo , Neoplasias , Frequência do Gene , Humanos , Mutação , Neoplasias/genética , Sequenciamento do Exoma
5.
Nat Commun ; 10(1): 3090, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31300647

RESUMO

The role of brain somatic mutations in Alzheimer's disease (AD) is not well understood. Here, we perform deep whole-exome sequencing (average read depth 584×) in 111 postmortem hippocampal formation and matched blood samples from 52 patients with AD and 11 individuals not affected by AD. The number of somatic single nucleotide variations (SNVs) in AD brain specimens increases significantly with aging, and the rate of mutation accumulation in the brain is 4.8-fold slower than that in AD blood. The putatively pathogenic brain somatic mutations identified in 26.9% (14 of 52) of AD individuals are enriched in PI3K-AKT, MAPK, and AMPK pathway genes known to contribute to hyperphosphorylation of tau. We show that a pathogenic brain somatic mutation in PIN1 leads to a loss-of-function mutation. In vitro mimicking of haploinsufficiency of PIN1 aberrantly increases tau phosphorylation and aggregation. This study provides new insights into the genetic architecture underlying the pathogenesis of AD.


Assuntos
Doença de Alzheimer/genética , Peptidilprolil Isomerase de Interação com NIMA/genética , Agregação Patológica de Proteínas/genética , Proteínas tau/metabolismo , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Doença de Alzheimer/patologia , Animais , Linhagem Celular Tumoral , Feminino , Técnicas de Silenciamento de Genes , Haploinsuficiência , Hipocampo/citologia , Hipocampo/patologia , Humanos , Mutação com Perda de Função , Masculino , Camundongos , Pessoa de Meia-Idade , Taxa de Mutação , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Neurônios , Fosforilação/genética , Polimorfismo de Nucleotídeo Único , Agregação Patológica de Proteínas/patologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sequenciamento do Exoma
6.
Cell ; 177(7): 1842-1857.e21, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31155235

RESUMO

Mutational processes giving rise to lung adenocarcinomas (LADCs) in non-smokers remain elusive. We analyzed 138 LADC whole genomes, including 83 cases with minimal contribution of smoking-associated mutational signature. Genomic rearrangements were not correlated with smoking-associated mutations and frequently served as driver events of smoking-signature-low LADCs. Complex genomic rearrangements, including chromothripsis and chromoplexy, generated 74% of known fusion oncogenes, including EML4-ALK, CD74-ROS1, and KIF5B-RET. Unlike other collateral rearrangements, these fusion-oncogene-associated rearrangements were frequently copy-number-balanced, representing a genomic signature of early oncogenesis. Analysis of mutation timing revealed that fusions and point mutations of canonical oncogenes were often acquired in the early decades of life. During a long latency, cancer-related genes were disrupted or amplified by complex rearrangements. The genomic landscape was different between subgroups-EGFR-mutant LADCs had frequent whole-genome duplications with p53 mutations, whereas fusion-oncogene-driven LADCs had frequent SETD2 mutations. Our study highlights LADC oncogenesis driven by endogenous mutational processes.


Assuntos
Adenocarcinoma de Pulmão , Rearranjo Gênico , Neoplasias Pulmonares , Mutação , Proteínas de Fusão Oncogênica , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo
7.
Neuron ; 99(1): 83-97.e7, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29937275

RESUMO

Focal malformations of cortical development (FMCDs), including focal cortical dysplasia (FCD) and hemimegalencephaly (HME), are major etiologies of pediatric intractable epilepsies exhibiting cortical dyslamination. Brain somatic mutations in MTOR have recently been identified as a major genetic cause of FMCDs. However, the molecular mechanism by which these mutations lead to cortical dyslamination remains poorly understood. Here, using patient tissue, genome-edited cells, and mouse models with brain somatic mutations in MTOR, we discovered that disruption of neuronal ciliogenesis by the mutations underlies cortical dyslamination in FMCDs. We found that abnormal accumulation of OFD1 at centriolar satellites due to perturbed autophagy was responsible for the defective neuronal ciliogenesis. Additionally, we found that disrupted neuronal ciliogenesis accounted for cortical dyslamination in FMCDs by compromising Wnt signals essential for neuronal polarization. Altogether, this study describes a molecular mechanism by which brain somatic mutations in MTOR contribute to the pathogenesis of cortical dyslamination in FMCDs.


Assuntos
Autofagia/genética , Córtex Cerebral/metabolismo , Cílios , Malformações do Desenvolvimento Cortical/genética , Neurônios/metabolismo , Serina-Treonina Quinases TOR/genética , Adolescente , Animais , Polaridade Celular/genética , Centríolos/metabolismo , Córtex Cerebral/embriologia , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/patologia , Criança , Pré-Escolar , Feminino , Edição de Genes , Células HEK293 , Hemimegalencefalia/embriologia , Hemimegalencefalia/genética , Hemimegalencefalia/patologia , Humanos , Lactente , Masculino , Malformações do Desenvolvimento Cortical/embriologia , Malformações do Desenvolvimento Cortical/patologia , Camundongos , Mutação , Proteínas/metabolismo , Esclerose Tuberosa/embriologia , Esclerose Tuberosa/genética , Esclerose Tuberosa/patologia , Via de Sinalização Wnt
8.
J Clin Oncol ; 35(26): 3065-3074, 2017 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-28498782

RESUMO

Purpose Histologic transformation of EGFR mutant lung adenocarcinoma (LADC) into small-cell lung cancer (SCLC) has been described as one of the major resistant mechanisms for epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs). However, the molecular pathogenesis is still unclear. Methods We investigated 21 patients with advanced EGFR-mutant LADCs that were transformed into EGFR TKI-resistant SCLCs. Among them, whole genome sequencing was applied for nine tumors acquired at various time points from four patients to reconstruct their clonal evolutionary history and to detect genetic predictors for small-cell transformation. The findings were validated by immunohistochemistry in 210 lung cancer tissues. Results We identified that EGFR TKI-resistant LADCs and SCLCs share a common clonal origin and undergo branched evolutionary trajectories. The clonal divergence of SCLC ancestors from the LADC cells occurred before the first EGFR TKI treatments, and the complete inactivation of both RB1 and TP53 were observed from the early LADC stages in sequenced tumors. We extended the findings by immunohistochemistry in the early-stage LADC tissues of 75 patients treated with EGFR TKIs; inactivation of both Rb and p53 was strikingly more frequent in the small-cell-transformed group than in the nontransformed group (82% v 3%; odds ratio, 131; 95% CI, 19.9 to 859). Among patients registered in a predefined cohort (n = 65), an EGFR mutant LADC that harbored completely inactivated Rb and p53 had a 43× greater risk of small-cell transformation (relative risk, 42.8; 95% CI, 5.88 to 311). Branch-specific mutational signature analysis revealed that apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC)-induced hypermutation was frequent in the branches toward small-cell transformation. Conclusion EGFR TKI-resistant SCLCs are branched out early from the LADC clones that harbor completely inactivated RB1 and TP53. The evaluation of RB1 and TP53 status in EGFR TKI-treated LADCs is informative in predicting small-cell transformation.


Assuntos
Adenocarcinoma/genética , Carcinoma de Células Pequenas/genética , Transformação Celular Neoplásica/genética , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/enzimologia , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Adulto , Carcinoma de Células Pequenas/tratamento farmacológico , Carcinoma de Células Pequenas/enzimologia , Carcinoma de Células Pequenas/patologia , Transformação Celular Neoplásica/patologia , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/antagonistas & inibidores , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/farmacologia
9.
Am J Hum Genet ; 100(3): 454-472, 2017 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28215400

RESUMO

Focal cortical dysplasia (FCD) is a major cause of the sporadic form of intractable focal epilepsies that require surgical treatment. It has recently been reported that brain somatic mutations in MTOR account for 15%-25% of FCD type II (FCDII), characterized by cortical dyslamination and dysmorphic neurons. However, the genetic etiologies of FCDII-affected individuals who lack the MTOR mutation remain unclear. Here, we performed deep hybrid capture and amplicon sequencing (read depth of 100×-20,012×) of five important mTOR pathway genes-PIK3CA, PIK3R2, AKT3, TSC1, and TSC2-by using paired brain and saliva samples from 40 FCDII individuals negative for MTOR mutations. We found that 5 of 40 individuals (12.5%) had brain somatic mutations in TSC1 (c.64C>T [p.Arg22Trp] and c.610C>T [p.Arg204Cys]) and TSC2 (c.4639G>A [p.Val1547Ile]), and these results were reproducible on two different sequencing platforms. All identified mutations induced hyperactivation of the mTOR pathway by disrupting the formation or function of the TSC1-TSC2 complex. Furthermore, in utero CRISPR-Cas9-mediated genome editing of Tsc1 or Tsc2 induced the development of spontaneous behavioral seizures, as well as cytomegalic neurons and cortical dyslamination. These results show that brain somatic mutations in TSC1 and TSC2 cause FCD and that in utero application of the CRISPR-Cas9 system is useful for generating neurodevelopmental disease models of somatic mutations in the brain.


Assuntos
Epilepsia/genética , Malformações do Desenvolvimento Cortical do Grupo I/genética , Proteínas Supressoras de Tumor/genética , Adolescente , Animais , Encéfalo/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Criança , Classe I de Fosfatidilinositol 3-Quinases , Clonagem Molecular , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Mutação , Neurônios , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Saliva/química , Análise de Sequência de DNA , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/genética , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa
10.
Cell Rep ; 14(10): 2476-89, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26947078

RESUMO

On the basis of multidimensional and comprehensive molecular characterization (including DNA methalylation and copy number, RNA, and protein expression), we classified 894 renal cell carcinomas (RCCs) of various histologic types into nine major genomic subtypes. Site of origin within the nephron was one major determinant in the classification, reflecting differences among clear cell, chromophobe, and papillary RCC. Widespread molecular changes associated with TFE3 gene fusion or chromatin modifier genes were present within a specific subtype and spanned multiple subtypes. Differences in patient survival and in alteration of specific pathways (including hypoxia, metabolism, MAP kinase, NRF2-ARE, Hippo, immune checkpoint, and PI3K/AKT/mTOR) could further distinguish the subtypes. Immune checkpoint markers and molecular signatures of T cell infiltrates were both highest in the subtype associated with aggressive clear cell RCC. Differences between the genomic subtypes suggest that therapeutic strategies could be tailored to each RCC disease subset.


Assuntos
Carcinoma de Células Renais/patologia , Genômica , Neoplasias Renais/patologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/mortalidade , Cromatina/metabolismo , Perfilação da Expressão Gênica , Humanos , Neoplasias Renais/genética , Neoplasias Renais/mortalidade , MicroRNAs/metabolismo , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais/genética , Taxa de Sobrevida , Serina-Treonina Quinases TOR/metabolismo
11.
Biochem Biophys Res Commun ; 470(1): 137-143, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26772881

RESUMO

Understanding how different genomic mutational landscapes in patients with cancer lead to different responses to anticancer drugs is an important challenge for realizing precision medicine for cancer. Many studies have analyzed the comprehensive anticancer drug-response profiles and genomic profiles of cancer cell lines to identify the relationship between the anticancer drug response and genomic alternations. However, few studies have focused on interpreting these profiles with a network perspective. In this work, we analyzed genomic alterations in cancer cell lines by considering which interactions in the signaling pathway were perturbed by mutations. With our interaction-centric approach, we identified novel interaction/drug response associations for two drugs (afatinib and ixabepilone) for which no gene-centric association could be found. When we compared the performance of classifiers for predicting the responses to 164 drugs, the classifiers trained with interaction-centric features outperformed the classifiers trained with gene-centric features, despite the smaller number of features (p-value = 2.0 × 10(-3)). By incorporating the interaction information from signaling pathways, we revealed associations between genomic alterations and drug responses that could be missed when using a gene-centric approach.


Assuntos
Modelos Genéticos , Proteínas de Neoplasias/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Medicina de Precisão/métodos , Transdução de Sinais/genética , Simulação por Computador , Estudos de Associação Genética/métodos , Humanos , Mutação/genética , Farmacogenética/métodos , Mapeamento de Interação de Proteínas/métodos , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA