Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 10200, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353503

RESUMO

The osteochondral interface is a thin layer that connects hyaline cartilage to subchondral bone. Subcellular elemental distribution can be visualised using synchrotron X-ray fluorescence microscopy (SR-XFM) (1 µm). This study aims to determine the relationship between elemental distribution and osteoarthritis (OA) progression based on disease severity. Using modified Mankin scores, we collected tibia plates from 9 knee OA patients who underwent knee replacement surgery and graded them as intact cartilage (non-OA) or degraded cartilage (OA). We used a tape-assisted system with a silicon nitride sandwich structure to collect fresh-frozen osteochondral sections, and changes in the osteochondral unit were defined using quantified SR-XFM elemental mapping at the Australian synchrotron's XFM beamline. Non-OA osteochondral samples were found to have significantly different zinc (Zn) and calcium (Ca) compositions than OA samples. The tidemark separating noncalcified and calcified cartilage was rich in zinc. Zn levels in OA samples were lower than in non-OA samples (P = 0.0072). In OA samples, the tidemark had less Ca than the calcified cartilage zone and subchondral bone plate (P < 0.0001). The Zn-strontium (Sr) colocalisation index was higher in OA samples than in non-OA samples. The lead, potassium, phosphate, sulphur, and chloride distributions were not significantly different (P > 0.05). In conclusion, SR-XFM analysis revealed spatial elemental distribution at the subcellular level during OA development.


Assuntos
Cartilagem Articular , Osteoartrite do Joelho , Humanos , Cartilagem Articular/diagnóstico por imagem , Síncrotrons , Raios X , Austrália , Osteoartrite do Joelho/diagnóstico por imagem , Progressão da Doença , Zinco , Microscopia de Fluorescência
2.
J Neuroinflammation ; 16(1): 5, 2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30621715

RESUMO

BACKGROUND: The fetal brain is particularly vulnerable to intrauterine growth restriction (IUGR) conditions evidenced by neuronal and white matter abnormalities and altered neurodevelopment in the IUGR infant. To further our understanding of neurodevelopment in the newborn IUGR brain, clinically relevant models of IUGR are required. This information is critical for the design and implementation of successful therapeutic interventions to reduce aberrant brain development in the IUGR newborn. We utilise the piglet as a model of IUGR as growth restriction occurs spontaneously in the pig as a result of placental insufficiency, making it a highly relevant model of human IUGR. The purpose of this study was to characterise neuropathology and neuroinflammation in the neonatal IUGR piglet brain. METHODS: Newborn IUGR (< 5th centile) and normally grown (NG) piglets were euthanased on postnatal day 1 (P1; < 18 h) or P4. Immunohistochemistry was utilised to examine neuronal, white matter and inflammatory responses, and PCR for cytokine analysis in parietal cortex of IUGR and NG piglets. RESULTS: The IUGR piglet brain displayed less NeuN-positive cells and reduced myelination at both P1 and P4 in the parietal cortex, indicating neuronal and white matter disruption. A concurrent decrease in Ki67-positive proliferative cells and increase in cell death (caspase-3) in the IUGR piglet brain was also apparent on P4. We observed significant increases in the number of both Iba-1-positive microglia and GFAP-positive astrocytes in the white matter in IUGR piglet brain on both P1 and P4 compared with NG piglets. These increases were associated with a change in activation state, as noted by altered glial morphology. This inflammatory state was further evident with increased expression levels of proinflammatory cytokines (interleukin-1ß, tumour necrosis factor-α) and decreased levels of anti-inflammatory cytokines (interleukin-4 and -10) observed in the IUGR piglet brains. CONCLUSIONS: These findings suggest that the piglet model of IUGR displays the characteristic neuropathological outcomes of neuronal and white matter impairment similar to those reported in the IUGR human brain. The activated glial morphology and elevated proinflammatory cytokines is indicative of an inflammatory response that may be associated with neuronal damage and white matter disruption. These findings support the use of the piglet as a pre-clinical model for studying mechanisms of altered neurodevelopment in the IUGR newborn.


Assuntos
Citocinas/metabolismo , Encefalite/etiologia , Retardo do Crescimento Fetal/patologia , Retardo do Crescimento Fetal/fisiopatologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Neuroglia/patologia , Animais , Animais Recém-Nascidos , Proteínas de Ligação ao Cálcio , Caspase 3/metabolismo , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Antígeno Ki-67/metabolismo , Masculino , Proteínas dos Microfilamentos , Neuroglia/metabolismo , Gravidez , RNA Mensageiro/metabolismo , Suínos , Substância Branca/patologia
3.
Skelet Muscle ; 7(1): 10, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28571586

RESUMO

BACKGROUND: The terminal pathway of the innate immune complement system is implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS). Terminal complement activation leads to generation of C5a, which through its receptor, C5aR1, drives immune cell recruitment and activation. Importantly, genetic or pharmacological blockage of C5aR1 improves motor performance and reduces disease pathology in hSOD1G93A rodent models of ALS. In this study, we aimed to explore the potential mechanisms of C5aR1-mediated pathology in hSOD1G93A mice by examining their skeletal muscles. RESULTS: We found elevated levels of C1qB, C4, fB, C3, C5a, and C5aR1 in tibialis anterior muscles of hSOD1G93A mice, which increased with disease progression. Macrophage cell numbers also progressively increased in hSOD1G93A muscles in line with disease progression. Immuno-localisation demonstrated that C5aR1 was expressed predominantly on macrophages within hSOD1G93A skeletal muscles. Notably, hSOD1G93A × C5aR1-/- mice showed markedly decreased numbers of infiltrating macrophages, along with reduced neuromuscular denervation and improved grip strength in hind limb skeletal muscles, when compared to hSOD1G93A mice. CONCLUSION: These results indicate that terminal complement activation and C5a production occur in skeletal muscle tissue of hSOD1G93A mice, and that C5a-C5aR1 signalling contributes to the recruitment of macrophages that may accelerate muscle denervation in these ALS mice.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Movimento Celular , Complemento C5a/metabolismo , Macrófagos/metabolismo , Músculo Esquelético/metabolismo , Receptor da Anafilatoxina C5a/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Força da Mão , Humanos , Macrófagos/fisiologia , Camundongos , Força Muscular , Músculo Esquelético/fisiopatologia , Superóxido Dismutase-1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA