Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 799, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280855

RESUMO

Three-dimensional human intestinal organoids (hIO) are widely used as a platform for biological and biomedical research. However, reproducibility and challenges for large-scale expansion limit their applicability. Here, we establish a human intestinal stem cell (ISC) culture method expanded under feeder-free and fully defined conditions through selective enrichment of ISC populations (ISC3D-hIO) within hIO derived from human pluripotent stem cells. The intrinsic self-organisation property of ISC3D-hIO, combined with air-liquid interface culture in a minimally defined medium, forces ISC3D-hIO to differentiate into the intestinal epithelium with cellular diversity, villus-like structure, and barrier integrity. Notably, ISC3D-hIO is an ideal cell source for gene editing to study ISC biology and transplantation for intestinal diseases. We demonstrate the intestinal epithelium differentiated from ISC3D-hIO as a model system to study severe acute respiratory syndrome coronavirus 2 viral infection. ISC3D-hIO culture technology provides a biological tool for use in regenerative medicine and disease modelling.


Assuntos
Intestinos , Células-Tronco Pluripotentes , Humanos , Reprodutibilidade dos Testes , Mucosa Intestinal , Organoides , Diferenciação Celular
2.
ISME J ; 16(5): 1205-1221, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34972816

RESUMO

The human microbiome plays an essential role in the human immune system, food digestion, and protection from harmful bacteria by colonizing the human intestine. Recently, although the human microbiome affects colorectal cancer (CRC) treatment, the mode of action between the microbiome and CRC remains unclear. This study showed that propionate suppressed CRC growth by promoting the proteasomal degradation of euchromatic histone-lysine N-methyltransferase 2 (EHMT2) through HECT domain E3 ubiquitin protein ligase 2 (HECTD2) upregulation. In addition, EHMT2 downregulation reduced the H3K9me2 level on the promoter region of tumor necrosis factor α-induced protein 1 (TNFAIP1) as a novel direct target of EHMT2. Subsequently, TNFAIP1 upregulation induced the apoptosis of CRC cells. Furthermore, using Bacteroides thetaiotaomicron culture medium, we confirmed EHMT2 downregulation via upregulation of HECTD2 and TNFAIP1 upregulation. Finally, we observed the synergistic effect of propionate and an EHMT2 inhibitor (BIX01294) in 3D spheroid culture models. Thus, we suggest the anticancer effects of propionate and EHMT2 as therapeutic targets for colon cancer treatment and may provide the possibility for the synergistic effects of an EHMT2 inhibitor and microbiome in CRC treatment.


Assuntos
Neoplasias Colorretais , Microbiota , Ubiquitina-Proteína Ligases/metabolismo , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Propionatos , Regulação para Cima
3.
Sci Adv ; 7(23)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34078609

RESUMO

Advanced technologies are required for generating human intestinal epithelial cells (hIECs) harboring cellular diversity and functionalities to predict oral drug absorption in humans and study normal intestinal epithelial physiology. We developed a reproducible two-step protocol to induce human pluripotent stem cells to differentiate into highly expandable hIEC progenitors and a functional hIEC monolayer exhibiting intestinal molecular features, cell type diversity, and high activities of intestinal transporters and metabolic enzymes such as cytochrome P450 3A4 (CYP3A4). Functional hIECs are more suitable for predicting compounds metabolized by CYP3A4 and absorbed in the intestine than Caco-2 cells. This system is a step toward the transition from three-dimensional (3D) intestinal organoids to 2D hIEC monolayers without compromising cellular diversity and function. A physiologically relevant hIEC model offers a novel platform for creating patient-specific assays and support translational applications, thereby bridging the gap between 3D and 2D culture models of the intestine.


Assuntos
Citocromo P-450 CYP3A , Mucosa Intestinal , Células CACO-2 , Citocromo P-450 CYP3A/metabolismo , Células Epiteliais/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Organoides/metabolismo
4.
Cancers (Basel) ; 12(4)2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32276460

RESUMO

The role of Situin 1 (SIRT1) in tumorigenesis is still controversial due to its wide range of substrates, including both oncoproteins and tumor suppressors. A recent study has demonstrated that SIRT1 interferes in the Kirsten rat sarcoma viral oncogene homolog (KRAS)-driven activation of the Raf-mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase (MEK)-ERK pathway, thereby inhibiting tumorigenesis. However, the molecular mechanism of SIRT1 as a tumor suppressor in RAS-driven tumorigenesis has been less clearly determined. This study presents evidence that the ectopic expression of SIRT1 attenuates RAS- or MEK-driven ERK activation and reduces cellular proliferation and transformation in vitro. The attenuation of ERK activation by SIRT1 results from prompt dephosphorylation of ERK, while MEK activity remains unchanged. We identified that MKP1, a dual specific phosphatase for MAPK, was deacetylated by SIRT1. Deacetylation of MKP1 by direct interaction with SIRT1 increased the binding affinity to ERK which in turn facilitated inactivation of ERK. Taken together, these results suggest that SIRT1 would act as a tumor suppressor by modulating RAS-driven ERK activity through MKP1 deacetylation.

5.
Theranostics ; 10(11): 5048-5063, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32308767

RESUMO

Several phase 1/2 clinical trials showed that low-dose interleukin-2 (IL-2) treatment is a safe and effective strategy for the treatment of chronic graft-versus-host disease, hepatitis C virus-induced vasculitis, and type 1 diabetes. Ulcerative colitis (UC) is a chronic inflammatory condition of the colon that lacks satisfactory treatment. In this study, we aimed to determine the effects of low-dose IL-2 as a therapeutic for UC on dextran sulfate sodium (DSS)-induced colitis. Methods: Mice with DSS-induced colitis were intraperitoneally injected with low-dose IL-2. Survival, body weight, disease activity index, colon length, histopathological score, myeloperoxidase activity and inflammatory cytokine levels as well as intestinal barrier integrity were examined. Differential gene expression after low-dose IL-2 treatment was analyzed by RNA-sequencing. Results: Low-dose IL-2 significantly improved the symptoms of DSS-induced colitis in mice and attenuated pro-inflammatory cytokine production and immune cell infiltration. The most effective dose range of IL-2 was 16K-32K IU/day. Importantly, low-dose IL-2 was effective in ameliorating the disruption of epithelial barrier integrity in DSS-induced colitis tissues by restoring tight junction proteins and mucin production and suppressing apoptosis. The colon tissue of DSS-induced mice exposed to low-dose IL-2 mimic gene expression patterns in the colons of control mice. Furthermore, we identified the crucial role of the PI3K-AKT pathway in exerting the therapeutic effect of low-dose IL-2. Conclusions: The results of our study suggest that low-dose IL-2 has therapeutic effects on DSS-induced colitis and potential clinical value in treating UC.


Assuntos
Colite/tratamento farmacológico , Sulfato de Dextrana/toxicidade , Inflamação/prevenção & controle , Interleucina-2/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/química , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
6.
J Spinal Cord Med ; 43(3): 339-346, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-30230978

RESUMO

Objective: To identify that the combined G-CSF and treadmill exercise is more effective in functional recovery after spinal cord injury (SCI).Design: Rats were divided into 4 groups: a SCI group treated with G-CSF (G-CSF group, n = 6), a SCI group treated with treadmill exercise plus G-CSF (G-CSF/exercise group, n = 6), a SCI group with treadmill exercise (exercise group, n = 6), and a SCI group without treatments (control group, n = 6). We performed laminectomy at the T8-10 spinal levels with compression injury of the spinal cord in all rats. G-CSF (20 µg/ml) was administered intraperitoneally for 5 consecutive days after SCI in G-CSF and G-CSF/exercise groups. From one week after surgery, animals in G-CSF/exercise and exercise groups received 30 min of exercise 5 days per week for 4 weeks. Functional recoveries were assessed using the Basso, Beattie, and Bresnahan (BBB) scale and the inclined plane test. Five weeks after SCI, hematoxylin and eosin staining for cavity size and immunohistochemistry for glial scar formation and neuro-regeneration factor expression were conducted.Setting: Inha University School of medicine, Incheon, KoreaResults: Rats in G-CSF/exercise group showed the most effective functional recovery in the BBB scale and the inclined plane test, and spinal cord cavity size by injury were the smallest, and immunohistochemistry revealed expression of higher BDNF (brain-derived neurotrophic factor) and VEGF (vascular endothelial growth factor) and lower GFAP (glial fibrillary acidic protein) than others.Conclusion: Combined treatment provided more effective neuroplasty and functional recovery than individual treatments.


Assuntos
Terapia por Exercício , Fator Estimulador de Colônias de Granulócitos/farmacologia , Condicionamento Físico Animal/fisiologia , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/terapia , Animais , Comportamento Animal/fisiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Terapia Combinada , Modelos Animais de Doenças , Teste de Esforço , Proteína Glial Fibrilar Ácida/metabolismo , Fator Estimulador de Colônias de Granulócitos/administração & dosagem , Infusões Parenterais , Masculino , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
J Clin Med ; 8(7)2019 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-31277507

RESUMO

Human intestinal organoids (hIOs), which resemble the human intestine structurally and physiologically, have emerged as a new modality for the study of the molecular and cellular biology of the intestine in vitro. We recently developed an in vitro maturation technique for generating functional hIOs from human pluripotent stem cells (hPSCs). Here, we investigated the function of STAT3 for inducing in vitro maturation of hIOs. This was accompanied by the tyrosine phosphorylation of STAT3, whereas treatment with pharmacological inhibitors of STAT3 suppressed the phosphorylation of STAT3 and the expression of intestinal maturation markers. We generated and characterized STAT3 knockout (KO) human embryonic stem cell (hESC) lines using CRISPR/Cas9-mediated gene editing. We found that STAT3 KO does not affect the differentiation of hESCs into hIOs but rather affects the in vitro maturation of hIOs. STAT3 KO hIOs displayed immature morphologies with decreased size and reduced budding in hIOs even after in vitro maturation. STAT3 KO hIOs showed markedly different profiles from hIOs matured in vitro and human small intestine. Additionally, STAT3 KO hIOs failed to maintain upon in vivo transplantation. This study reveals a core signaling pathway consisting of STAT3 controlling the in vitro maturation of hIOs derived from hPSCs.

8.
Front Chem ; 7: 298, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31157201

RESUMO

Despite great potential for regenerative medicine, the high tumorigenic potential of human pluripotent stem cells (hPSCs) to form undesirable teratoma is an important technical hurdle preventing safe cell therapy. Various small molecules that induce the complete elimination of undifferentiated hPSCs, referred to as "stemotoxics," have been developed to facilitate tumor-free cell therapy, including the Survivin inhibitor YM155. In the present work, based on the chemical structure of YM155, total 26 analogs were synthesized and tested for stemotoxic activity toward human embryonic stem cells (hESCs) and induced PSCs (iPSCs). We found that a hydrogen bond acceptor in the pyrazine ring of YM155 derivatives is critical for stemotoxic activity, which is completely lost in hESCs lacking SLC35F2, which encodes a solute carrier protein. These results suggest that hydrogen bonding interactions between the nitrogens of the pyrazine ring and the SLC35F2 protein are critical for entry of YM155 into hPSCs, and hence stemotoxic activity.

9.
Stem Cell Reports ; 11(5): 1244-1256, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30293852

RESUMO

The selective survival advantage of culture-adapted human embryonic stem cells (hESCs) is a serious safety concern for their clinical application. With a set of hESCs with various passage numbers, we observed that a subpopulation of hESCs at late passage numbers was highly resistant to various cell death stimuli, such as YM155, a survivin inhibitor. Transcriptome analysis from YM155-sensitive (YM155S) and YM155-resistant (YM155R) hESCs demonstrated that BCL2L1 was highly expressed in YM155R hESCs. By matching the gene signature of YM155R hESCs with the Cancer Therapeutics Response Portal dataset, BH3 mimetics were predicted to selectively ablate these cells. Indeed, short-course treatment with a sub-optimal dose of BH3 mimetics induced the spontaneous death of YM155R, but not YM155S hESCs by disrupting the mitochondrial membrane potential. YM155S hESCs remained pluripotent following BH3 mimetics treatment. Therefore, the use of BH3 mimetics is a promising strategy to specifically eliminate hESCs with a selective survival advantage.


Assuntos
Células-Tronco Embrionárias Humanas/citologia , Fragmentos de Peptídeos/farmacologia , Proteínas Proto-Oncogênicas/farmacologia , Compostos de Anilina/farmacologia , Contagem de Células , Células Cultivadas , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Imidazóis/farmacologia , Naftoquinonas/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Sulfonamidas/farmacologia , Proteína bcl-X/metabolismo
10.
FASEB J ; 32(1): 111-122, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28855280

RESUMO

Human intestinal organoids (hIOs) derived from human pluripotent stem cells (hPSCs) have immense potential as a source of intestines. Therefore, an efficient system is needed for visualizing the stage of intestinal differentiation and further identifying hIOs derived from hPSCs. Here, 2 fluorescent biosensors were developed based on human induced pluripotent stem cell (hiPSC) lines that stably expressed fluorescent reporters driven by intestine-specific gene promoters Krüppel-like factor 5 monomeric Cherry (KLF5mCherry) and intestine-specific homeobox enhanced green fluorescence protein (ISXeGFP). Then hIOs were efficiently induced from those transgenic hiPSC lines in which mCherry- or eGFP-expressing cells, which appeared during differentiation, could be identified in intact living cells in real time. Reporter gene expression had no adverse effects on differentiation into hIOs and proliferation. Using our reporter system to screen for hIO differentiation factors, we identified DMH1 as an efficient substitute for Noggin. Transplanted hIOs under the kidney capsule were tracked with fluorescence imaging (FLI) and confirmed histologically. After orthotopic transplantation, the localization of the hIOs in the small intestine could be accurately visualized using FLI. Our study establishes a selective system for monitoring the in vitro differentiation and for tracking the in vivo localization of hIOs and contributes to further improvement of cell-based therapies and preclinical screenings in the intestinal field.-Jung, K. B., Lee, H., Son, Y. S., Lee, J. H., Cho, H.-S., Lee, M.-O., Oh, J.-H., Lee, J., Kim, S., Jung, C.-R., Kim, J., Son, M.-Y. In vitro and in vivo imaging and tracking of intestinal organoids from human induced pluripotent stem cells.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Intestinos/citologia , Organoides/citologia , Animais , Técnicas Biossensoriais , Diferenciação Celular/genética , Linhagem Celular , Sistemas Computacionais , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Xenoenxertos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Mucosa Intestinal/metabolismo , Intestino Delgado/citologia , Intestino Delgado/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Organoides/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Vermelha Fluorescente
11.
Oncotarget ; 8(39): 64964-64973, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-29029404

RESUMO

Small molecules to selectively induce cell death of undifferentiated human pluripotent stem cells (hPSCs) have been developed with the aim of lowering the risk of teratoma formation during hPSC-based cell therapy. In this context, we have reported that Quercetin (QC) induces cell death selectively in hESCs via p53 mitochondrial localization. However, the detailed molecular mechanism by which hESCs undergo selective cell death induced by QC remains unclear. Herein, we demonstrate that mitochondrial reactive oxygen species (ROS), strongly induced by QC in human embryonic stem cells (hESCs) but not in human dermal fibroblasts (hDFs), were responsible for QC-mediated hESC's cell death. Increased p53 protein stability and subsequent mitochondrial localization by QC treatment triggered mitochondrial cell death only in hESCs. Of interest, peptidylprolyl isomerase D [PPID, also called cyclophilin D (CypD)], which functions in mitochondrial permeability transition and mitochondrial cell death, was highly expressed in hESCs. Inhibition of CypD by cyclosporine A (CsA) clearly inhibited the QC-mediated loss of mitochondrial membrane potential and mitochondrial cell death. These results suggest that p53 and CypD in the mitochondria are critical for the QC-mediated induction of cell death in hESCs.

12.
Stem Cell Res ; 22: 43-53, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28595116

RESUMO

Spliceosomes are the core host of pre-mRNA splicing, allowing multiple protein isoforms to be produced from a single gene. Herein, we reveal that spliceosomes are more abundant in human pluripotent stem cells (hPSs), including human embryonic stem cells (hESs) and human induced pluripotent stem cells (hiPSs), than non-hPSs, and their presence is associated with high transcriptional activity. Supportively, spliceosomal components involved in the catalytically active pre-mRNA splicing step were mainly co-localized with hPS spliceosomes. By profiling the gene expression of 342 selected splicing factors, we found that 71 genes were significantly altered during the reprogramming of human somatic cells into hiPSs. Among them, SNRPA1, SNRPD1, and PNN were significantly up-regulated during the early stage of reprogramming, identified as hub genes by interaction network and cluster analysis. SNRPA1, SNRPD1, or PNN depletion led to a pronounced loss of pluripotency and significantly blocked hiPS generation. SNRPA1, SNRPD1, and PNN co-localized with the hPS spliceosomes, physically interacted with each other, and positively influenced the appearance of hPS spliceosomes. Our data suggest that SNRPA1, SNRPD1, and PNN are key players in the regulation of pluripotency-specific spliceosome assembly and the acquisition and maintenance of pluripotency.


Assuntos
Moléculas de Adesão Celular/genética , Proteínas Nucleares/genética , Células-Tronco Pluripotentes/fisiologia , Splicing de RNA/genética , Ribonucleoproteína Nuclear Pequena U1/genética , Spliceossomos/genética , Proteínas Centrais de snRNP/genética , Linhagem Celular , Humanos , RNA Nuclear Pequeno/genética , Spliceossomos/metabolismo , Transcriptoma
13.
Stem Cells ; 35(9): 2037-2049, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28543863

RESUMO

Basic fibroblast growth factor (bFGF) supplementation is critical to maintain the pluripotency of human pluripotent stem cells (hPSCs) through activation of PI3K/AKT, rather than MEK/ERK pathway. Thus, elaborate molecular mechanisms that preserve PI3K/AKT signaling upon bFGF stimulation may exist in hPSCs. Protein arginine methyltransferase 8 (PRMT8) was expressed and then its level gradually decreased during spontaneous differentiation of human embryonic stem cells (hESCs). PRMT8 loss- or gain-of-function studies demonstrated that PRMT8 contributed to longer maintenance of hESC pluripotency, even under bFGF-deprived conditions. Direct interaction of membrane-localized PRMT8 with p85, a regulatory subunit of PI3K, was associated with accumulation of phosphoinositol 3-phosphate and consequently high AKT activity. Furthermore, the SOX2 induction, which was controlled by the PRMT8/PI3K/AKT axis, was linked to mesodermal lineage differentiation. Thus, we propose that PRMT8 in hESCs plays an important role not only in maintaining pluripotency but also in controlling mesodermal differentiation through bFGF signaling toward the PI3K/AKT/SOX2 axis. Stem Cells 2017;35:2037-2049.


Assuntos
Linhagem da Célula , Células-Tronco Embrionárias Humanas/metabolismo , Proteínas de Membrana/metabolismo , Mesoderma/citologia , Fosfatidilinositol 3-Quinases/metabolismo , Células-Tronco Pluripotentes/citologia , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/farmacologia , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Biológicos , Fenótipo , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
14.
Cell Mol Life Sci ; 74(14): 2601-2611, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28246701

RESUMO

Despite the recent promising results of clinical trials using human pluripotent stem cell (hPSC)-based cell therapies for age-related macular degeneration (AMD), the risk of teratoma formation resulting from residual undifferentiated hPSCs remains a serious and critical hurdle for broader clinical implementation. To mitigate the tumorigenic risk of hPSC-based cell therapy, a variety of approaches have been examined to ablate the undifferentiated hPSCs based on the unique molecular properties of hPSCs. In the present review, we offer a brief overview of recent attempts at selective elimination of undifferentiated hPSCs to decrease the risk of teratoma formation in hPSC-based cell therapy.


Assuntos
Células-Tronco Pluripotentes/citologia , Transplante de Células-Tronco/métodos , Animais , Morte Celular/efeitos dos fármacos , Genes Transgênicos Suicidas , Humanos , MicroRNAs/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia
15.
Stem Cells Dev ; 26(2): 133-145, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27733093

RESUMO

Behçet's disease (BD) is a chronic inflammatory and multisystemic autoimmune disease of unknown etiology. Due to the lack of a specific test for BD, its diagnosis is very difficult and therapeutic options are limited. Induced pluripotent stem cell (iPSC) technology, which provides inaccessible disease-relevant cell types, opens a new era for disease treatment. In this study, we generated BD iPSCs from patient somatic cells and differentiated them into hematopoietic precursor cells (BD iPSC-HPCs) as BD model cells. Based on comparative transcriptome analysis using our BD model cells, we identified eight novel BD-specific genes, AGTR2, CA9, CD44, CXCL1, HTN3, IL-2, PTGER4, and TSLP, which were differentially expressed in BD patients compared with healthy controls or patients with other immune diseases. The use of CXCL1 as a BD biomarker was further validated at the protein level using both a BD iPSC-HPC-based assay system and BD patient serum samples. Furthermore, we show that our BD iPSC-HPC-based drug screening system is highly effective for testing CXCL1 BD biomarkers, as determined by monitoring the efficacy of existing anti-inflammatory drugs. Our results shed new light on the usefulness of patient-specific iPSC technology in the development of a benchmarking platform for disease-specific biomarkers, phenotype- or target-driven drug discovery, and patient-tailored therapies.


Assuntos
Síndrome de Behçet/metabolismo , Biomarcadores/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Adulto , Síndrome de Behçet/genética , Diferenciação Celular , Quimiocina CXCL1/metabolismo , Feminino , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Reprodutibilidade dos Testes , Transcriptoma/genética
16.
Biomaterials ; 107: 61-73, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27614159

RESUMO

Fibrous dysplasia (FD) caused by a mosaic somatic mutation of GNAS is characterized by replacement of the affected bone with abnormal fibrous tissue. Herein, we present novel disease models for FD developed with pairs of isogenic wild-type and GNAS(R201H)-mutated induced pluripotent stem cells (iPSCs) and their derivative mesenchymal stem cells (MSCs). Both 2D and 3D MSC culture models for FD successfully reflect FD's typical molecular characteristics, such as enhanced cAMP level, PKA activity, CREB1 phosphorylation and the pathologic fibrotic phenotype. The fibrotic features of GNAS(R201H) FD model cells were closely linked to augmented glycolysis and depended on glycolytic PFKFB4 and the activation of pro-fibrotic TGFß signalling. Either depletion of PFKFB4 or inhibition of glycolysis or TGFß signalling potentially blocked fibrosis progression in GNAS(R201H) FD model cells. Our FD models could facilitate a better mechanistic understanding of FD and help develop effective therapeutics for FD and other fibrosis diseases.


Assuntos
Osso e Ossos/metabolismo , Osso e Ossos/patologia , Reprogramação Celular , Displasia Fibrosa Óssea/metabolismo , Displasia Fibrosa Óssea/patologia , Glicólise , Fosfofrutoquinase-2/metabolismo , Diferenciação Celular , Células Cultivadas , Feminino , Fibrose , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia
17.
Exp Mol Med ; 48: e232, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-27174201

RESUMO

Autoimmune diseases (AIDs), a heterogeneous group of immune-mediated disorders, are a major and growing health problem. Although AIDs are currently treated primarily with anti-inflammatory and immunosuppressive drugs, the use of stem cell transplantation in patients with AIDs is becoming increasingly common. However, stem cell transplantation therapy has limitations, including a shortage of available stem cells and immune rejection of cells from nonautologous sources. Induced pluripotent stem cell (iPSC) technology, which allows the generation of patient-specific pluripotent stem cells, could offer an alternative source for clinical applications of stem cell therapies in AID patients. We used nonintegrating oriP/EBNA-1-based episomal vectors to reprogram dermal fibroblasts from patients with AIDs such as ankylosing spondylitis (AS), Sjögren's syndrome (SS) and systemic lupus erythematosus (SLE). The pluripotency and multilineage differentiation capacity of each patient-specific iPSC line was validated. The safety of these iPSCs for use in stem cell transplantation is indicated by the fact that all AID-specific iPSCs are integrated transgene free. Finally, all AID-specific iPSCs derived in this study could be differentiated into cells of hematopoietic and mesenchymal lineages in vitro as shown by flow cytometric analysis and induction of terminal differentiation potential. Our results demonstrate the successful generation of integration-free iPSCs from patients with AS, SS and SLE. These findings support the possibility of using iPSC technology in autologous and allogeneic cell replacement therapy for various AIDs, including AS, SS and SLE.


Assuntos
Doenças Autoimunes/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Animais , Doenças Autoimunes/genética , Técnicas de Cultura de Células , Diferenciação Celular , Reprogramação Celular , Técnicas de Reprogramação Celular , Fibroblastos , Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Plasmídeos , Reprodutibilidade dos Testes
18.
Biomaterials ; 75: 250-259, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26513417

RESUMO

Conventional methods for quantification of undifferentiated pluripotent stem cells such as fluorescence-activated cell sorting and real-time PCR analysis have technical limitations in terms of their sensitivity and recyclability. Herein, we designed a real-time in situ label-free monitoring system on the basis of a specific electrochemical signature of human pluripotent stem cells in vitro. The intensity of the signal of hPSCs highly corresponded to the cell number and remained consistent in a mixed population with differentiated cells. The electrical charge used for monitoring did not markedly affect the proliferation rate or molecular characteristics of differentiated human aortic smooth muscle cells. After YM155 treatment to ablate undifferentiated hPSCs, their specific signal was significantly reduced. This suggests that detection of the specific electrochemical signature of hPSCs would be a valid approach to monitor potential contamination of undifferentiated hPSCs, which can assess the risk of teratoma formation efficiently and economically.


Assuntos
Técnicas Eletroquímicas/métodos , Células-Tronco Pluripotentes/citologia , Coloração e Rotulagem , Diferenciação Celular , Humanos , Miócitos de Músculo Liso/citologia , Reprodutibilidade dos Testes
19.
Proc Natl Acad Sci U S A ; 112(52): E7223-9, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26668394

RESUMO

NK-lysin is an antimicrobial peptide and effector protein in the host innate immune system. It is coded by a single gene in humans and most other mammalian species. In this study, we provide evidence for the existence of four NK-lysin genes in a repetitive region on cattle chromosome 11. The NK2A, NK2B, and NK2C genes are tandemly arrayed as three copies in ∼30-35-kb segments, located 41.8 kb upstream of NK1. All four genes are functional, albeit with differential tissue expression. NK1, NK2A, and NK2B exhibited the highest expression in intestine Peyer's patch, whereas NK2C was expressed almost exclusively in lung. The four peptide products were synthesized ex vivo, and their antimicrobial effects against both Gram-positive and Gram-negative bacteria were confirmed with a bacteria-killing assay. Transmission electron microcopy indicated that bovine NK-lysins exhibited their antimicrobial activities by lytic action in the cell membranes. In summary, the single NK-lysin gene in other mammals has expanded to a four-member gene family by tandem duplications in cattle; all four genes are transcribed, and the synthetic peptides corresponding to the core regions are biologically active and likely contribute to innate immunity in ruminants.


Assuntos
Bovinos/genética , Dosagem de Genes , Família Multigênica , Proteolipídeos/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Cromossomos de Mamíferos/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/ultraestrutura , Perfilação da Expressão Gênica , Ordem dos Genes , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Especificidade de Órgãos/genética , Peptídeos/farmacologia , Filogenia , Proteolipídeos/classificação , Proteolipídeos/farmacologia , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
20.
Plant Physiol ; 167(3): 1030-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25604531

RESUMO

Small heat shock proteins (sHSPs) function as ATP-independent molecular chaperones, and although the production and function of sHSPs have often been described under heat stress, the expression and function of sHSPs in fundamental developmental processes, such as pollen and seed development, have also been confirmed. Seed germination involves the breaking of dormancy and the resumption of embryo growth that accompany global changes in transcription, translation, and metabolism. In many plants, germination is triggered simply by imbibition of water; however, different seeds require different conditions in addition to water. For small-seeded plants, like Arabidopsis (Arabidopsis thaliana), lettuce (Lactuca sativa), tomato (Solanum lycopersicum), and tobacco (Nicotiana tabacum), light is an important regulator of seed germination. The facts that sHSPs accumulate during seed development, sHSPs interact with various client proteins, and seed germination accompanies synthesis and/or activation of diverse proteins led us to investigate the role of sHSPs in seed germination, especially in the context of light dependence. In this study, we have built transgenic tobacco plants that ectopically express sHSP, and the effect was germination of the seeds in the dark. Administering heat shock to the seeds also resulted in the alleviation of light dependence during seed germination. Subcellular localization of ectopically expressed sHSP was mainly observed in the cytoplasm, whereas heat shock-induced sHSPs were transported to the nucleus. We hypothesize that ectopically expressed sHSPs in the cytoplasm led the status of cytoplasmic proteins involved in seed germination to function during germination without additional stimulus and that heat shock can be another signal that induces seed germination.


Assuntos
Germinação/efeitos da radiação , Proteínas de Choque Térmico Pequenas/metabolismo , Luz , Nicotiana/crescimento & desenvolvimento , Nicotiana/efeitos da radiação , Sementes/crescimento & desenvolvimento , Sementes/efeitos da radiação , Escuridão , Resposta ao Choque Térmico/efeitos da radiação , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Transporte Proteico , Sementes/ultraestrutura , Frações Subcelulares/metabolismo , Fatores de Tempo , Nicotiana/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA