Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Antioxidants (Basel) ; 13(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38929129

RESUMO

Sargassum horneri (SH) is widely consumed as a healthy seaweed food in the Asia-Pacific region. However, the bioactive components contributing to its biological activity remain unknown. Herein, we optimized multifrequency ultrasonic-assisted extraction conditions to achieve higher antioxidant activity using a response surface methodology and an artificial neural network. High-resolution mass spectrometry (HRMS; negative mode) was used to tentatively identify the secondary metabolites in the optimized SH extract, which were further tested against oxidative stress in RAW264.7 cells. Additionally, the identified compounds were analyzed in silico to determine their binding energies with the Keap1 protein (4L7B). We identified 89 compounds using HRMS, among which 19 metabolites (8 polyphenolics, 2 flavonoids, 2 lignans, 2 terpenes, 2 tannins, 2 sulfolipids, and 1 phospholipid) were putatively reported for the first time in SH. The in vitro results revealed that optimized SH extract inhibited oxidative stress via the Nrf2/MAPKs/HO-1 pathway in a dose-dependent manner. This result was validated by performing in silico simulation, indicating that sargaquinoic acid and glycitein-7-O-glucuronide had the highest binding energies (-9.20 and -9.52 Kcal/mol, respectively) toward Keap1 (4L7B). This study offers a unique approach for the scientific community to identify potential bioactive compounds by optimizing the multivariant extraction processing conditions, which could be used to develop functional and nutraceutical foods.

2.
Antioxidants (Basel) ; 13(2)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38397836

RESUMO

This study sought to optimize the ultrasonic-assisted extraction of polyphenolic compounds from unmature Ajwa date seeds (UMS), conduct untargeted metabolite identification and assess antioxidant and depigmenting activities. Response surface methodology (RSM) utilizing the Box-Behnken design (BBD) and artificial neural network (ANN) modeling was applied to optimize extraction conditions, including the ethanol concentration, extraction temperature and time. The determined optimal conditions comprised the ethanol concentration (62.00%), extraction time (29.00 min), and extraction temperature (50 °C). Under these conditions, UMS exhibited total phenolic content (TPC) and total flavonoid content (TFC) values of 77.52 ± 1.55 mgGAE/g and 58.85 ± 1.12 mgCE/g, respectively, with low relative standard deviation (RSD%) and relative standard error (RSE%). High-resolution mass spectrometry analysis unveiled the presence of 104 secondary metabolites in UMS, encompassing phenols, flavonoids, sesquiterpenoids, lignans and fatty acids. Furthermore, UMS demonstrated robust antioxidant activities in various cell-free antioxidant assays, implicating engagement in both hydrogen atom transfer and single electron transfer mechanisms. Additionally, UMS effectively mitigated tert-butyl hydroperoxide (t-BHP)-induced cellular reactive oxygen species (ROS) generation in a concentration-dependent manner. Crucially, UMS showcased the ability to activate mitogen-activated protein kinases (MAPKs) and suppress key proteins including tyrosinase (Tyr), tyrosinase-related protein-1 and -2 (Trp-1 and -2) and microphthalmia-associated transcription factor (MITF), which associated melanin production in MNT-1 cell. In summary, this study not only optimized the extraction process for polyphenolic compounds from UMS but also elucidated its diverse secondary metabolite profile. The observed antioxidant and depigmenting activities underscore the promising applications of UMS in skincare formulations and pharmaceutical developments.

3.
Phytochem Anal ; 35(4): 799-816, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38297293

RESUMO

INTRODUCTION: Nymphaea rubra belongs to the Nymphaea family and is regarded as a vegetable used in traditional medicine to cure several ailments. These species are rich in phenolic acid, flavonoids, and hydrolysable tannin. OBJECTIVE: This study aimed to assess the biological activities of Nymphaea rubra flowers (NRF) and leaves (NRL) by identifying and quantifying their polyphenolic compounds using ultra-performance liquid chromatography coupled to quadrupole cyclic ion mobility time-of-flight mass spectrometry (UHPLC-Q-cIM-TOF-MS) and triple quadrupole mass spectrometry (UHPLC-TQ-MS). METHODOLOGY: NRF and NRL powder was extracted with methanol and fractionated using hexane, ethylacetate, and water. Antioxidant and α-glucosidase, and tyrosinase enzyme inhibitory activities were evaluated. The polyphenolic components of NRF and NRL were identified and quantified using UHPLC-Q-cIM-TOF-MS and UHPLC-TQ-MS. The method was validated using linearity, precision, accuracy, limit of detection (LOD), and lower limit of quantification (LLOQ). RESULTS: Bioactive substances and antioxidants were highest in the ethylacetate fraction of flowers and leaves. Principal component analysis showed how solvent and plant components affect N. rubra's bioactivity and bioactive compound extraction. A total of 67 compounds were identified, and among them 21 significant polyphenols were quantified. Each calibration curve had R2 > 0.998. The LOD and LLOQ varied from 0.007 to 0.09 µg/mL and from 0.01 to 0.1 µg/mL, respectively. NRF contained a significant amount of gallic acid (10.1 mg/g), while NRL contained abundant pentagalloylglucose (2.8 mg/g). CONCLUSION: The developed method is simple, rapid, and selective for the identification and quantification of bioactive molecules. These findings provide a scientific basis for N. rubra's well-documented biological effects.


Assuntos
Antioxidantes , Flores , Nymphaea , Folhas de Planta , Polifenóis , Cromatografia Líquida de Alta Pressão/métodos , Folhas de Planta/química , Polifenóis/análise , Flores/química , Antioxidantes/análise , Antioxidantes/farmacologia , Nymphaea/química , Espectrometria de Massas/métodos , Monofenol Mono-Oxigenase/antagonistas & inibidores , Reprodutibilidade dos Testes , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/análise , alfa-Glucosidases/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/análise
4.
Ann Dermatol ; 35(6): 439-450, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38086358

RESUMO

BACKGROUND: Melanoma is one of the most aggressive and metastatic skin cancers. Although overexpression of Dock180 and Elmo1 has been identified in various cancers, including glioma, ovarian cancer, and breast cancer, their expression and functions in melanoma remain unknown. OBJECTIVE: This study aims to confirm the expression of Dock180 and Elmo1, their underlying mechanisms, and roles in melanoma. METHODS: Both immunohistochemical staining and Western blotting were used to confirm expression of Dock180 and Elmo1 in human melanoma. To identify roles of Dock180 and Elmo1 in cell survival, apoptosis and migration, downregulation of Dock180 or Elmo1 in melanoma cells with small interfering RNA (siRNA) was performed. RESULTS: We identified overexpression of Dock180 and Elmo1 in human melanoma compared to normal skin ex vivo. Inhibition of Dock180 or Elmo1 following siRNA in melanoma cells reduced cell viability and increased apoptosis as supported by increased proportion of cells with Annexin V-PE (+) staining and sub-G0/G1 peak in cell cycle analysis. Moreover, inhibition of Dock180 or Elmo1 regulated apoptosis-related proteins, showing downregulation of Bcl-2, caspase-3, and PARP and upregulation of Bax, PUMA, cleaved caspase-3, and cleaved PARP. Furthermore, knockdown of Dock180 and Elmo1 in melanoma cells reduced cell migration and changed cellular signaling pathways including ERK and AKT. Vemurafenib decreased cell viability in concentration-dependent manner, while transfection with Dock180- or Elmo1-specific siRNA in melanoma cells significantly reduced cell viability. CONCLUSION: Our results suggest that both Dock180 and Elmo1 may be associated with cancer progression, and can be potential targets for treatment of melanoma.

5.
Ann Dermatol ; 35(3): 217-228, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37290955

RESUMO

BACKGROUND: Recent studies suggest that MEK1/2 inhibitors, including binimetinib, significantly improve malignant melanoma (MM) patient survival. Growing evidence suggests that phytochemicals, especially curcumin, can overcome drug resistance in cancer cells through a variety of mechanisms. OBJECTIVE: This study aims to examine curcumin's efficacy in vitro combined with binimetinib in human MM cells. METHODS: We used 2D monolayer and 3D spheroid human epidermal melanocyte culture models, HEMn-MP (human epidermal melanocytes, neonatal, moderately pigmented), and two human MM cell lines, G361 and SK-MEL-2, to evaluate cell viability, proliferation, migration, death, and reactive oxygen species (ROS) production following single therapy treatment, with either curcumin or binimetinib, or a combination of both. RESULTS: Compared to MM cells treated with single therapy, those with combination therapy showed significantly decreased cell viability and increased ROS production. We observed apoptosis following both single and combination therapies. However only those who had had combination therapy had necroptosis. CONCLUSION: Collectively, our data demonstrates that curcumin exerts significant synergistic anticancer effects on MM cells by inducing ROS and necroptosis when combined with binimetinib. Therefore, a strategy of adding curcumin to conventional anticancer agents holds promise for treating MM.

6.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-37259461

RESUMO

The date palm (Phoenix dactylifera L.) is a popular edible fruit consumed all over the world and thought to cure several chronic diseases and afflictions. The profiling of the secondary metabolites of optimized ripe Ajwa date pulp (RADP) extracts is scarce. The aim of this study was to optimize the heat extraction (HE) of ripe Ajwa date pulp using response surface methodology (RSM) and artificial neural network (ANN) modeling to increase its polyphenolic content and antioxidant activity. A central composite design was used to optimize HE to achieve the maximum polyphenolic compounds and antioxidant activity of target responses as a function of ethanol concentration, extraction time, and extraction temperature. From RSM estimates, 75.00% ethanol and 3.7 h (extraction time), and 67 °C (extraction temperature) were the optimum conditions for generating total phenolic content (4.49 ± 1.02 mgGAE/g), total flavonoid content (3.31 ± 0.65 mgCAE/g), 2,2-diphenyl-1-picrylhydrazyl (11.10 ± 0.78 % of inhibition), and cupric-reducing antioxidant capacity (1.43 µM ascorbic acid equivalent). The good performance of the ANN was validated using statistical metrics. Seventy-one secondary metabolites, including thirteen new bioactive chemicals (hebitol II, 1,2-di-(syringoyl)-hexoside, naringin dihydrochalcone, erythron-guaiacylglycerol-ß-syringaresinol ether hexoside, erythron-1-(4'-O-hexoside-3,5-dimethoxyphenyl)-2-syrngaresinoxyl-propane-1,3-diol, 2-deoxy-2,3-dehydro-N-acetyl-neuraminic acid, linustatin and 1-deoxynojirimycin galactoside), were detected using high-resolution mass spectroscopy. The results revealed a significant concentration of phytoconstituents, making it an excellent contender for the pharmaceutical and food industries.

7.
Oncol Rep ; 49(6)2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37083070

RESUMO

A high dependence on aerobic glycolysis, known as the Warburg effect, is one of the metabolic features exhibited by tumor cells. Therefore, targeting glycolysis is becoming a very promising strategy for the development of anticancer drugs. In the present study, it was investigated whether pre­adaptation of malignant mesothelioma (MM) cells to an acidic environment was associated with a metabolic shift to the Warburg phenotype in energy production, and whether apigenin targets acidosis­driven metabolic reprogramming. Cell viability, glycolytic activity, Annexin V­PE binding activity, reactive oxygen species (ROS) levels, mitochondrial membrane potential, ATP content, western blot analysis and spheroid viability were assessed in the present study. MM cells pre­adapted to lactic acid were resistant to the anticancer drug gemcitabine, increased Akt activation, downregulated p53 expression, and upregulated rate­limiting enzymes in glucose metabolism compared with their parental cells. Apigenin treatment increased cytotoxicity, Akt inactivation and p53 upregulation. Apigenin also reduced glucose uptake along with downregulation of key regulatory enzymes in glycolysis, increased ROS levels with loss of mitochondrial membrane potential, and downregulated the levels of complexes I, III and IV in the mitochondrial electron transport chain with intracellular ATP depletion, resulting in upregulation of molecules mediating apoptosis and necroptosis. Apigenin­induced alterations of cellular responses were similar to those of Akt inactivation by Ly294002. Overall, the present results provide mechanistic evidence supporting the anti­glycolytic and cytotoxic role of apigenin via inhibition of the PI3K/Akt signaling pathway and p53 upregulation.


Assuntos
Mesotelioma Maligno , Mesotelioma , Humanos , Regulação para Cima , Proteínas Proto-Oncogênicas c-akt/metabolismo , Apigenina/farmacologia , Apigenina/uso terapêutico , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Necroptose , Mesotelioma/tratamento farmacológico , Mesotelioma/genética , Mesotelioma/patologia , Apoptose , Glicólise , Trifosfato de Adenosina/metabolismo
8.
Environ Res ; 227: 115652, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36894114

RESUMO

BACKGROUND: Prenatal exposure to active or passive maternal smoking -also referred to as second hand smoke (SHS) exposure - are associated with externalizing behaviors, hyperactivity and attention deficit hyperactivity disorder, problems which derive in part from altered self-regulation. OBJECTIVES: Determine the influence of prenatal SHS on infant self-regulation using direct measures of infant behavior in 99 mothers from the Fair Start birth cohort followed at the Columbia Center for Children's Environmental Health. METHODS: Self-regulation was operationalized with self-contingency, the likelihood of maintaining/changing behavior from second-to-second, measured via split-screen video recordings of mothers playing with their 4-month infants. Mother and infant facial and vocal affect, gaze-on/-off partner, and mother touch were coded on a 1 s time-base. Third trimester prenatal SHS was assessed via self-report of a smoker in the home. Weighted-lag time-series models tested conditional effects of SHS-exposure (vs. non-exposure) on infant self-contingency for eight modality-pairings (e.g., mother gaze-infant gaze). Individual-seconds time-series models and analysis of predicted values at t0 interrogated significant weighted-lag findings. Because prior findings link developmental risk factors with lowered self-contingency, we hypothesized that prenatal SHSSHS would predict lowered infant self-contingency. RESULTS: Relative to non-exposed infants, those who were prenatally exposed to SHS had lower self-contingency (more variable behavior) in all eight models. Follow-up analyses showed that, given infants were likely to be in the most negative facial or vocal affect, those with prenatal SHS were more likely to make larger behavioral changes, moving into less negative or more positive affect and to alternate between gaze-on and off mother. Mothers who were exposed to SHS during pregnancy (vs. non-exposed) showed a similar, albeit less prevalent, pattern of larger changes out of negative facial affect. CONCLUSION: These findings extend prior work linking prenatal SHS with youth dysregulated behavior, showing similar effects in infancy, a critically important period that sthe stage for future child development.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Autocontrole , Poluição por Fumaça de Tabaco , Criança , Gravidez , Feminino , Adolescente , Humanos , Lactente , Poluição por Fumaça de Tabaco/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Coorte de Nascimento , Estudos Prospectivos , Cidade de Nova Iorque
9.
Antioxidants (Basel) ; 12(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36829933

RESUMO

Each individual has a unique skin tone based on the types and quantities of melanin pigment, and oxidative stress is a key element in melanogenesis regulation. This research sought to understand the in vitro and in vivo antioxidant and depigmenting properties of betel leaves (Piper betle L.) extract (PBL) and the underlying mechanism. Ethyl acetate fractions of PBL (PBLA) demonstrated excellent phenolic content (342 ± 4.02 mgGAE/g) and strong DPPH, ABTS radicals, and nitric oxide (NO) scavenging activity with an IC50 value of 41.52 ± 1.02 µg/mL, 45.60 ± 0.56 µg/mL, and 51.42 ± 1.25 µg/mL, respectively. Contrarily, ethanolic extract of PBL (PBLE) showed potent mushroom, mice, and human tyrosinase inhibition activity (IC50 = 7.72 ± 0.98 µg/mL, 20.59 ± 0.83 µg/mL and 24.78 ± 0.56 µg/mL, respectively). According to gas chromatography-mass spectrometry, PBL is abundant in caryophyllene, eugenol, O-eugenol, 3-Allyl-6-methoxyphenyl acetate, and chavicol. An in vitro and in vivo investigation showed that PBLE suppressed tyrosinase (Tyr), tyrosinase-related protein-1 and -2 (Trp-1 and Trp-2), and microphthalmia-associated transcription factors (MITF), decreasing the formation of melanin in contrast to the untreated control. PBLE reduced the cyclic adenosine monophosphate (cAMP) response to an element-binding protein (CREB) phosphorylation by preventing the synthesis of cAMP. Additionally, it activates c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinases (p38), destroying Tyr and MITF and avoiding melanin production. Higher levels of microtubule-associated protein-light chain 3 (LC3-II), autophagy-related protein 5 (Atg5), Beclin 1, and lower levels of p62 demonstrate that PBLE exhibits significant anti-melanogenic effects via an autophagy-induction mechanism, both in vitro and in vivo. Additionally, PBLE significantly reduced the amount of lipid peroxidation while increasing the activity of several antioxidant enzymes in vivo, such as catalase, glutathione, superoxide dismutase, and thioredoxin. PBLE can therefore be employed in topical formulations as a potent skin-whitening agent.

10.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36834805

RESUMO

The Ajwa date (Phoenix dactylifera L., Arecaceae family) is a popular edible fruit consumed all over the world. The profiling of the polyphenolic compounds of optimized unripe Ajwa date pulp (URADP) extracts is scarce. The aim of this study was to extract polyphenols from URADP as effectively as possible by using response surface methodology (RSM). A central composite design (CCD) was used to optimize the extraction conditions with respect to ethanol concentration, extraction time, and temperature and to achieve the maximum amount of polyphenolic compounds. High-resolution mass spectrometry was used to identify the URADP's polyphenolic compounds. The DPPH-, ABTS-radical scavenging, α-glucosidase, elastase and tyrosinase enzyme inhibition of optimized extracts of URADP was also evaluated. According to RSM, the highest amounts of TPC (24.25 ± 1.02 mgGAE/g) and TFC (23.98 ± 0.65 mgCAE/g) were obtained at 52% ethanol, 81 min time, and 63 °C. Seventy (70) secondary metabolites, including phenolic, flavonoids, fatty acids, and sugar, were discovered using high-resolution mass spectrometry. In addition, twelve (12) new phytoconstituents were identified for the first time in this plant. Optimized URADP extract showed inhibition of DPPH-radical (IC50 = 87.56 mg/mL), ABTS-radical (IC50 = 172.36 mg/mL), α-glucosidase (IC50 = 221.59 mg/mL), elastase (IC50 = 372.25 mg/mL) and tyrosinase (IC50 = 59.53 mg/mL) enzymes. The results revealed a significant amount of phytoconstituents, making it an excellent contender for the pharmaceutical and food industries.


Assuntos
Antioxidantes , Phoeniceae , Antioxidantes/farmacologia , Monofenol Mono-Oxigenase/metabolismo , alfa-Glucosidases/metabolismo , Phoeniceae/química , Elastase Pancreática/metabolismo , Extratos Vegetais/farmacologia
11.
Biomed Res Int ; 2022: 7626405, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060138

RESUMO

Methods: Cell viability, glycolytic activity, Annexin V-PE binding activity, reactive oxygen species levels, mitochondrial membrane potential, ATP content, Western blot analysis, and spheroid viability were measured for this study. Results: Acidic pH-tolerant prostate cancer cells, PC-3AcT and DU145AcT, increased cytotoxicity with ERK1/2 inhibition in a curcumin concentration-dependent manner at concentrations that resulted in >90% cell viability in normal prostate epithelial HPrEC cells. ERK1/2 inhibition by curcumin and/or PD98059 suppressed cell growth, reduced glucose consumption, and downregulated the expression of key regulatory enzymes in glucose metabolism including hexokinases, phosphofructokinase, and pyruvate dehydrogenase. In addition, these compounds caused loss of mitochondrial membrane potential with increased intracellular ROS levels, decreased levels of complexes I, III, and IV in the mitochondrial electron transport chain, and cellular ATP depletion, leading to upregulation of marker proteins in apoptosis (cleaved caspase-3 and cleaved PARP) and necroptosis (p-MLKL and p-RIP3). The results of curcumin and/or PD98059 treatment in 3D cultures showed similar trends to those in 2D cultures. Conclusion: Taken together, the results provide mechanistic evidence for the antiglycolytic and cytotoxic roles of curcumin through inhibition of the MEK/ERK signaling pathway in prostate carcinoma cells preadapted to acidic conditions.


Assuntos
Carcinoma , Curcumina , Neoplasias da Próstata , Trifosfato de Adenosina/metabolismo , Carcinoma/metabolismo , Linhagem Celular Tumoral , Curcumina/metabolismo , Curcumina/farmacologia , Glicólise , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Próstata/patologia , Neoplasias da Próstata/patologia
12.
Plant Dis ; 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35133183

RESUMO

Polygonatum odoratum var. pluriflorum, called "Dunggulle", is cultivated in East Asia to obtain rhizomes. In Korea and China, these rhizomes are used in traditional teas, health beverages, and herbal medicines (Zhao and Li, 2015). In 2019, Dunggulle was cultivated in 47 hectares, with an annual output of 120M/T in Korea. In November 2020, Dunggulle rhizomes with symptoms of blue mold rot were observed at a Dunggulle farm storage (36°06'01''N, 127°29'20''E) in Geuman, Korea, where the temperature ranged from 9 to 13°C, with an average humidity of 70%. The disease incidence was 2 to 3% out of 200 rhizomes across all markets surveyed. The disease begins with a greenish blue mold covering the rhizome surface (30 to 60%), followed by rhizome rot with a dark brown color as the disease progresses. Leading edges of the rotten rhizome pieces were sterilized with 1% NaOCl and 70% ethanol and placed on MEA (Malt Extract Agar) with penicillin G and streptomycin (both 50 µg/mL). After 7 days of incubation at 25°C, greenish-blue colonies appeared, from which a monospore was isolated. A representative isolated strain was deposited in the Korean Agricultural Culture Collection (KACC, Wanju, Korea) with Acc. No. KACC 49832. The strain grew slowly on MEA at 25°C (8 to 18 mm diam. after 7 days), producing greenish blue conidia. The conidiophores were hyaline and mostly terverticillate; the branches were appressed against the main axis; the stipes were smooth-walled; and the metulae were cylindrical, 10 to 13 × 2.7 to 3.2 µm, with 6 to 10 flask-shaped phialides, measured 9 to 12 × 2.7 to 3.1 µm. The conidia were globose or subglobose and 2.8 to 4.1 µm diam. These morphological characteristics fit well with the description of Penicillium expansum (Frisvad & Samson, 2004). Genomic DNA was extracted from the mycelia of the KACC 49832 MEA plate. ITS rDNA, beta-tubulin (BenA), and calmodulin (CaM) gene regions were sequenced for identification (Houbraken et al., 2020), and the rsulting sequences were deposited in GenBank (Acc. Nos. MZ189258, MZ226688, and MZ226689, respectively). Comparison with the GenBank sequences revealed that the Korean isolate was highly similar to P. expansum (ITS rDNA 99.8%, BenA 98.6%, and CaM 97.8%). Phylogenetic results based on the maximum-likelihood analysis revealed that KACC 49832 was grouped with P. expansum. To demonstrate pathogenicity, 10 µL of conidial suspension (1.3 × 105 conidia/mL) was dropped on the surface of three Dunggulle rhizomes scratched with a syringe needle. For the control, sterile water was applied on three control rhizomes. All rhizomes were surface-sterilized as referred above before being sprayed and dried. All inoculated and control rhizomes were kept in incubator at 25°C and 90-95% relative humidity. After a week, the inoculated points showed symptoms similar to those of the initial infection, whereas controls remained symptomless. The re-isolated fungus matched KACC 49832 based on morphological and sequence analyses, thereby fulfilling Koch's postulates. The experiment was performed three times. To our knowledge, this is the first report of P. expansum as a Dunggulle rhizome pathogen in Korea. As this pathogen is known to produce patulin, a carcinogenic fungal metabolite, further studies on the mycotoxicity of the infected rhizomes are required. This report might help manage the storage conditions of Dunggulle rhizomes to prevent the blue mold rot.

13.
Biomed Res Int ; 2021: 8859181, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34095313

RESUMO

OBJECTIVE: Curcumin, a major bioactive curcuminoid derived from the rhizome of Curcuma longa, is known to have anticancer potential and is still under investigation. In this study, we investigated the cytotoxic mechanism(s) of curcumin against acidity-tolerant prostate cancer PC-3AcT cells in lactic acid-containing medium. METHODS: Using 2D-monolyer and 3D spheroid culture models, MTT assay, annexin V-PE binding assay, flow cytometric analysis, measurement of ATP content, and Western blot analysis were used for this study. RESULTS: At nontoxic concentrations in normal prostate epithelial RWPE-1 and HPrEC cells, curcumin led to strong cytotoxicity in PC-3AcT cells, including increases in sub-G0/G1 peak, annexin V-PE-positive cells, and ROS levels; loss of mitochondrial membrane potential; reduction of cellular ATP content; DNA damage; and concurrent induction of apoptosis and necroptosis. A series of changes induced by curcumin were effectively reversed by reducing ROS levels or replenishing ATP. Pretreatment with apoptosis inhibitor Q-VD-Oph-1 or necroptosis inhibitor necrostatin-1 restored cell viability inhibited by curcumin. Treatment of 3D spheroids with curcumin decreased cell viability, accompanied by an increase in mediators of apoptosis and necroptosis, including cleaved caspase-3 and cleaved PARP, phospho (p)-RIP3, and p-MLKL proteins. CONCLUSION: This study shows that curcumin simultaneously induces apoptosis and necroptosis by oxidative mitochondrial dysfunction and subsequent ATP depletion, providing a mechanistic basis for understanding the novel role of curcumin for prostate carcinoma cells.


Assuntos
Curcumina/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Curcuma/química , Curcumina/metabolismo , Humanos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Necroptose/efeitos dos fármacos , Células PC-3 , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Espécies Reativas de Oxigênio/metabolismo
14.
Nutr Res Pract ; 15(1): 12-25, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33542789

RESUMO

BACKGROUND/OBJECTIVES: The study was conducted to investigate the efficacy of the combination treatment of phytochemical resveratrol and the anticancer drug docetaxel (DTX) on prostate carcinoma LNCaP cells, including factors related to detailed cell death mechanisms. MATERIALS/METHODS: Using 2-dimensional monolayer and 3-dimensional spheroid culture systems, we examined the effects of resveratrol and DTX on cell viability, reactive oxygen species (ROS) levels, mitochondrial membrane potential, apoptosis, and necroptosis by MTT, flow cytometry, and Western blotting. RESULTS: At concentrations not toxic to normal human prostate epithelial cells, resveratrol effectively decreased the viability of LNCaP cells depending on concentration and time. The combination treatment of resveratrol and DTX exhibited synergistic inhibitory effects on cell growth, demonstrated by an increase in the sub-G0/G1 peak, Annexin V-phycoerythrin positive cell fraction, ROS, mitochondrial dysfunction, and DNA damage response as well as concurrent activation of apoptosis and necroptosis. Apoptosis and necroptosis were rescued by pretreatment with ROS scavenger N-acetylcysteine. CONCLUSIONS: We report resveratrol as an adjuvant drug candidate for improving the outcome of treatment in DTX therapy. Although the underlying mechanisms of necroptosis should be investigated comprehensively, targeting apoptosis and necroptosis simultaneously in the treatment of cancer can be a useful strategy for the development of promising drug candidates.

15.
Int J Stem Cells ; 14(2): 150-167, 2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-33377459

RESUMO

The therapeutic effects of mesenchymal stem cells (MSCs) in musculoskeletal diseases (MSDs) have been verified in many human and animal studies. Although some tissues contain MSCs, the number of cells harvested from those tissues and rate of proliferation in vitro are not enough for continuous transplantation. In order to produce and maintain stable MSCs, many attempts are made to induce differentiation from pluripotent stem cells (iPSCs) into MSCs. In particular, it is also known that the paracrine action of stem cell-secreted factors could promote the regeneration and differentiation of target cells in damaged tissue. MicroRNAs (miRNAs), one of the secreted factors, are small non-coding RNAs that regulate the translation of a gene. It is known that miRNAs help communication between stem cells and their surrounding niches through exosomes to regulate the proliferation and differentiation of stem cells. While studies have so far been underway targeting therapeutic miRNAs of MSDs, studies on specific miRNAs secreted from MSCs are still minimal. Hence, our ultimate goal is to obtain sufficient amounts of exosomes from iPSC-MSCs and develop them into therapeutic agents, furthermore to select specific miRNAs and provide safe cell-free clinical setting as a cell-free status with purpose of delivering them to target cells. This review article focuses on stem cell therapy on MSDs, specific microRNAs regulating MSDs and updates on novel approaches.

16.
Arch Dermatol Res ; 313(7): 583-591, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32959108

RESUMO

Cutaneous melanoma is known to be one of the most dangerous skin cancers because of its metastatic functions. Today, it is essential to investigate specific biomarkers for the target treatment in many diseases including cancers. DJ-1 protein, also known as Parkinson disease 7, has various functions associated with cancer progression including cell survival and migration. Phosphatase and tensin homolog (PTEN) is a tumor suppressor that regulates the PI3K/AKT signaling pathway and its mutations have been reported to frequently occur in many cancers such as thyroid, breast and skin. Recently, DJ-1 has been identified as a negative regulator of PTEN in many human cancer cells. However, the impacts and relationship of DJ-1 and PTEN have not been studied yet in melanoma. To confirm the expression of DJ-1 and PTEN in melanoma compared to normal skin tissues and find out functions of DJ-1 in melanoma cells, Western blot analysis and immunohistochemical staining were used. Transfection of G361 cells with DJ-1-specific small interfering RNA was performed to figure out the roles of DJ-1 and the relationship between DJ-1 and PTEN in melanoma cells. In our study, the DJ-1 protein was significantly increased with loss of PTEN protein in melanoma compared to that in normal skin. Inhibition of DJ-1 in G361 cells induced apoptosis, and suppressed cell survival and migration. Furthermore, suppression of DJ-1 in G361 cells increased the expression of cleaved caspase-3, cleaved PARP, Bax, p53, and Daxx as well as PTEN, while it decreased expression of survivin, caspase-3, and PARP. Also, downregulated DJ-1 inhibited phosphorylation of AKT in G361 cells. Collectively, DJ-1 overexpression could affect the proliferative and invasive capabilities of melanoma cells via regulating the PTEN/AKT pathway and apoptosis-related proteins. This study suggests that DJ-1 may be a potential target for the treatment of melanoma.


Assuntos
Melanoma/genética , PTEN Fosfo-Hidrolase/metabolismo , Proteína Desglicase DJ-1/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Cutâneas/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Sobrevivência Celular/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Melanoma/patologia , Melanoma/cirurgia , Fosforilação/genética , Proteína Desglicase DJ-1/metabolismo , Transdução de Sinais/genética , Pele/patologia , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/cirurgia , Regulação para Cima
17.
J Hazard Mater ; 405: 124176, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33131941

RESUMO

Biodegradation and metabolic pathways of three anthraquinone dyes, Reactive Blue 4 (RB4), Remazol Brilliant Blue - R (RBBR), and Acid Blue 129 (AB129) by Trametes hirsuta D7 fungus immobilized in light expanded clay aggregate (LECA) were investigated. Morphological characteristics observed with scanning electron microscope (SEM) showed successful immobilization of the fungus in LECA. Based on UV absorbance measurement, immobilized T. hirsuta D7 effectively degraded 90%, 95%, and 96% of RB4, RBBR and AB129, respectively. Metabolites were identified with high-resolution mass spectrometry (HRMS) and degradation pathway of the dyes by T. hirsuta D7 was proposed. Toxicity assay on human dermal fibroblast (HDF) showed that anthraquinone dyes exhibits significant toxicity of 35%, 40%, and 34% reduction of cell viability by RB4, RBBR, and AB129, respectively. Fungal treatment resulted in an abatement of the toxicity and cell viability was increased up to 94%. The data clearly showed the effectiveness of immobilized T. hirsuta D7 in LECA on detoxification of anthraquinone dyes. This study provides potential and fundamental understanding of wastewater treatment using the newly isolated fungus T. hirsuta D7.


Assuntos
Antraquinonas , Trametes , Antraquinonas/toxicidade , Biodegradação Ambiental , Argila , Corantes/toxicidade , Humanos , Lacase , Redes e Vias Metabólicas , Polyporaceae
18.
J Korean Med Sci ; 35(50): e420, 2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33372422

RESUMO

BACKGROUND: Studies have reported that epithelial cell proliferation may be involved in the pathogenesis of nasal polyps (NPs). Estrogen receptor (ER)-α, one type of ER, is related to anti-inflammatory action and cell survival in certain tissues. In this study, we examined the presence or absence of ER-α in NPs and healthy inferior turbinate mucosae. We also investigated the effect of dexamethasone on ER-α expression, cell viability, and apoptosis in RPMI 2650 cells. METHODS: Immunohistochemical staining and Western blot analysis were conducted to determine the expression of ER-α in 15 NPs and 15 healthy inferior turbinate mucosae. After treating RPMI 2650 cells with dexamethasone, ER-α expression was analyzed using Western blot analysis and cell viability was determined using the MTT assay. Western blot analysis and annexin V-phycoerythrin (PE) staining were used to examine apoptotic cell death. RESULTS: Western blot analysis showed that ER-α expression was upregulated in 13 of the 15 NP tissues. Immunohistochemical staining for ER-α confirmed the results of the Western blot analysis. When RPMI 2650 cells were treated with dexamethasone, both ER-α expression and cell viability were decreased. Furthermore, the treatment of RPMI 2650 cells with dexamethasone increased apoptotic cell death, as shown by increased levels of BAX and cleaved caspase-3, decreased levels of Bcl-2, and an increased percentage of positive annexin V-PE stained cells. CONCLUSION: ER-α expression was higher in NPs than in healthy inferior turbinate mucosae. When RPMI 2650 cells were treated with dexamethasone, ER-α expression was downregulated, cell viability decreased, and apoptosis increased. The decreased cell viability may be related, at least in part, to the decreased ER-α protein levels, which likely contributed to the induction of apoptotic cell death in RPMI 2650 cells.


Assuntos
Dexametasona/farmacologia , Receptor alfa de Estrogênio/biossíntese , Pólipos Nasais/metabolismo , Anti-Inflamatórios/farmacologia , Apoptose , Caspase 3/metabolismo , Linhagem Celular , Sobrevivência Celular , Dexametasona/química , Endoscopia , Fulvestranto , Humanos , Imuno-Histoquímica , Queratinas/biossíntese , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sais de Tetrazólio , Tiazóis , Conchas Nasais/metabolismo , Proteína X Associada a bcl-2/metabolismo
19.
Int J Mol Sci ; 22(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374464

RESUMO

High-resolution mass spectrometry equipped with electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) sources was used to enhance the characterization of phytochemicals of ethanol extracts of Manilkara zapota L. leaves (ZLE). Sugar compounds, dicarboxylic acids, compounds of phenolic acids and flavonoids groups, and other phytochemicals were detected from the leaves. Antioxidant activity and inhibition potentiality of ZLE against α-glucosidase enzyme, and elastase enzyme activities were evaluated in in vitro analysis. ZLE significantly inhibited activities of α-glucosidase enzyme at a lower concentration (IC50 2.51 ± 0.15 µg/mL). Glucose uptake in C2C12 cells was significantly enhanced by 42.13 ± 0.15% following the treatment with ZLE at 30 µg/mL. It also exhibited potential antioxidant activities and elastase enzyme inhibition activity (IC50 27.51 ± 1.70 µg/mL). Atmospheric pressure chemical ionization mass spectrometry (APCI-MS) detected more m/z peaks than electrospray ionization mass spectrometry (ESI-MS), and both ionization techniques illustrated the biological activities of the detected compounds more thoroughly compared to single-mode analysis. Our findings suggest that APCI along with ESI is a potential ionization technique for metabolite profiling, and ZLE has the potential in managing diabetes by inhibiting α-glucosidase activity and enhancing glucose uptake.


Assuntos
Antioxidantes/análise , Manilkara/metabolismo , Folhas de Planta/metabolismo , alfa-Glucosidases/metabolismo , Animais , Pressão Atmosférica , Linhagem Celular Tumoral , Flavonoides/análise , Glucose/metabolismo , Inibidores de Glicosídeo Hidrolases/análise , Concentração Inibidora 50 , Camundongos , Elastase Pancreática/antagonistas & inibidores , Elastase Pancreática/metabolismo , Compostos Fitoquímicos/análise , Inibidores de Serina Proteinase/análise , Espectrometria de Massas por Ionização por Electrospray/métodos
20.
Korean J Physiol Pharmacol ; 24(6): 493-502, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33093271

RESUMO

Apigenin, a naturally occurring flavonoid, is known to exhibit significant anticancer activity. This study was designed to determine the effects of apigenin on two malignant mesothelioma cell lines, MSTO-211H and H2452, and to explore the underlying mechanism(s). Apigenin significantly inhibited cell viability with a concomitant increase in intracellular reactive oxygen species (ROS) and caused the loss of mitochondrial membrane potential (Δ𝚿m), and ATP depletion, resulting in apoptosis and necroptosis in monolayer cell culture. Apigenin upregulated DNA damage response proteins, including the DNA double strand break marker phospho (p)- histone H2A.X. and caused a transition delay at the G2/M phase of cell cycle. Western blot analysis showed that apigenin treatment upregulated protein levels of cleaved caspase-3, cleaved PARP, p-MLKL, and p-RIP3 along with an increased Bax/Bcl-2 ratio. ATP supplementation restored cell viability and levels of DNA damage-, apoptosisand necroptosis-related proteins that apigenin caused. In addition, N-acetylcysteine reduced ROS production and improved Δ𝚿m loss and cell death that were caused by apigenin. In a 3D spheroid culture model, ROS-dependent necroptosis was found to be a mechanism involved in the anti-cancer activity of apigenin against malignant mesothelioma cells. Taken together, our findings suggest that apigenin can induce ROS-dependent necroptotic cell death due to ATP depletion through mitochondrial dysfunction. This study provides us a possible mechanism underlying why apigenin could be used as a therapeutic candidate for treating malignant mesothelioma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA