Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 619(7970): 606-615, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37438521

RESUMO

The specific loss of midbrain dopamine neurons (mDANs) causes major motor dysfunction in Parkinson's disease, which makes cell replacement a promising therapeutic approach1-4. However, poor survival of grafted mDANs remains an obstacle to successful clinical outcomes5-8. Here we show that the surgical procedure itself (referred to here as 'needle trauma') triggers a profound host response that is characterized by acute neuroinflammation, robust infiltration of peripheral immune cells and brain cell death. When midbrain dopamine (mDA) cells derived from human induced pluripotent stem (iPS) cells were transplanted into the rodent striatum, less than 10% of implanted tyrosine hydroxylase (TH)+ mDANs survived at two weeks after transplantation. By contrast, TH- grafted cells mostly survived. Notably, transplantation of autologous regulatory T (Treg) cells greatly modified the response to needle trauma, suppressing acute neuroinflammation and immune cell infiltration. Furthermore, intra-striatal co-transplantation of Treg cells and human-iPS-cell-derived mDA cells significantly protected grafted mDANs from needle-trauma-associated death and improved therapeutic outcomes in rodent models of Parkinson's disease with 6-hydroxydopamine lesions. Co-transplantation with Treg cells also suppressed the undesirable proliferation of TH- grafted cells, resulting in more compact grafts with a higher proportion and higher absolute numbers of TH+ neurons. Together, these data emphasize the importance of the initial inflammatory response to surgical injury in the differential survival of cellular components of the graft, and suggest that co-transplanting autologous Treg cells effectively reduces the needle-trauma-induced death of mDANs, providing a potential strategy to achieve better clinical outcomes for cell therapy in Parkinson's disease.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Neurônios Dopaminérgicos , Sobrevivência de Enxerto , Doenças Neuroinflamatórias , Doença de Parkinson , Linfócitos T Reguladores , Tirosina 3-Mono-Oxigenase , Humanos , Dopamina/análogos & derivados , Dopamina/metabolismo , Neurônios Dopaminérgicos/imunologia , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/transplante , Mesencéfalo/patologia , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/prevenção & controle , Doenças Neuroinflamatórias/terapia , Doença de Parkinson/complicações , Doença de Parkinson/patologia , Doença de Parkinson/cirurgia , Doença de Parkinson/terapia , Tirosina 3-Mono-Oxigenase/deficiência , Tirosina 3-Mono-Oxigenase/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/transplante , Terapia Baseada em Transplante de Células e Tecidos/métodos , Animais , Camundongos , Ratos , Oxidopamina/metabolismo , Sobrevivência de Enxerto/imunologia , Morte Celular , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/imunologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Neostriado/metabolismo , Fatores de Tempo , Proliferação de Células , Resultado do Tratamento
2.
Inflammation ; 44(6): 2291-2301, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34169410

RESUMO

The objective of this study was to find out if suppression of NF-kB complex function by p65-TMD-linked PTD could reduce host inflammation and bone resorption at peri-implantitis sites in rats. Twenty-one male 5-week-old SD rats were divided into three groups: untreated control group (A), silk-induced peri-implantitis group (B), and nt (nucleus transducible)-p65-TMD-treated, silk-induced peri-implantitis group (C). Implant sulcus of a rat in group C were divided into two groups, namely group Cp and Cb. Palatal implant sulcus where nt-p65-TMD solution was applied with an insulin syringe were assigned to group Cp. Buccal implant sulcus without topical nt-p65-TMD application were assigned to group Cb. H&E staining, TRAP staining, and immunohistological staining were done. The crestal bone levels of group A were significantly higher than those of group B at p<0.01. The crestal bone levels of group Cp were significantly higher than those of group Cb at p<0.05. H-E staining showed increased apical migration of junctional epithelium and inflammatory cells in group Cb. TRAP staining revealed more multinucleated osteoclasts in group Cb. As for immunohistological staining, group Cb showed many IL-6-positive cells while group Cp had none. In this study, p65-TMD-linked PTD inhibited NF-kB functions and reduced inflammation and bone resorption at peri-implantitis sites in rats.


Assuntos
Anti-Inflamatórios/farmacologia , Reabsorção Óssea/prevenção & controle , Mediadores da Inflamação/antagonistas & inibidores , Inflamação/prevenção & controle , Arcada Osseodentária/efeitos dos fármacos , NF-kappa B/antagonistas & inibidores , Peri-Implantite/prevenção & controle , Animais , Reabsorção Óssea/imunologia , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Parafusos Ósseos , Interface Osso-Implante/patologia , Modelos Animais de Doenças , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo , Arcada Osseodentária/imunologia , Arcada Osseodentária/metabolismo , Arcada Osseodentária/patologia , Masculino , NF-kappa B/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/imunologia , Osteoclastos/metabolismo , Osteoclastos/patologia , Peri-Implantite/imunologia , Peri-Implantite/metabolismo , Peri-Implantite/patologia , Ratos Sprague-Dawley
3.
Int J Mol Sci ; 22(4)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671455

RESUMO

After avulsion and replantation, teeth are at risk of bone and root resorption. The present study aimed to demonstrate that the intra-nuclear transducible form of transcription modulation domain of p65 (nt-p65-TMD) can suppress osteoclast differentiation in vitro, and reduce bone resorption in a rat model of tooth replantation. Cell viability and nitric oxide release were evaluated in RAW264.7 cells using CCK-8 assay and Griess reaction kit. Osteoclast differentiation was evaluated using quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) and tartrate-resistant acid phosphatase (TRAP) staining. Thirty-two maxillary rat molars were extracted and stored in saline (n = 10) or 10 µM nt-p65-TMD solution (n = 22) before replantation. After 4 weeks, specimens were scored according to the inflammatory pattern using micro-computed tomography (CT) imaging and histological analyses. nt-p65-TMD treatment resulted in significant reduction of nitric oxide release and osteoclast differentiation as studied using PCR and TRAP staining. Further, micro-CT analysis revealed a significant decrease in bone resorption in the nt-p65-TMD treatment group (p < 0.05). Histological analysis of nt-p65-TMD treatment group showed that not only bone and root resorption, but also inflammation of the periodontal ligament and epithelial insertion was significantly reduced. These findings suggest that nt-p65-TMD has the unique capabilities of regulating bone remodeling after tooth replantation.


Assuntos
Núcleo Celular/metabolismo , Reimplante Dentário , Fator de Transcrição RelA/metabolismo , Animais , Diferenciação Celular , Sobrevivência Celular , Camundongos , Modelos Animais , Dente Molar/diagnóstico por imagem , Óxido Nítrico/metabolismo , Osteoclastos/metabolismo , Células RAW 264.7 , Ratos , Transdução Genética , Microtomografia por Raio-X
4.
Immune Netw ; 20(1): e4, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32158592

RESUMO

Tregs have a role in immunological tolerance and immune homeostasis by suppressing immune reactions, and its therapeutic potential is critical in autoimmune diseases and cancers. There have been multiple studies conducted on Tregs because of their roles in immune suppression and therapeutic potential. In tumor immunity, Tregs can promote the development and progression of tumors by preventing effective anti-tumor immune responses in tumor-bearing hosts. High infiltration of Tregs into tumor tissue results in poor survival in various types of cancer patients. Identifying factors specifically expressed in Tregs that affect the maintenance of stability and function of Tregs is important for understanding cancer pathogenesis and identifying therapeutic targets. Thus, manipulation of Tregs is a promising anticancer strategy, but finding markers for Treg-specific depletion and controlling these cells require fine-tuning and further research. Here, we discuss the role of Tregs in cancer and the development of Treg-targeted therapies to promote cancer immunotherapy.

5.
Molecules ; 24(4)2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30791543

RESUMO

Patients with uncontrolled diabetes are susceptible to implant failure due to impaired bone metabolism. Hypoxia-inducible factor 1α (HIF-1α), a transcription factor that is up-regulated in response to reduced oxygen during bone repair, is known to mediate angiogenesis and osteogenesis. However, its function is inhibited under hyperglycemic conditions in diabetic patients. This study thus evaluates the effects of exogenous HIF-1α on bone formation around implants by applying HIF-1α to diabetic mice and normal mice via a protein transduction domain (PTD)-mediated DNA delivery system. Implants were placed in the both femurs of diabetic and normal mice. HIF-1α and placebo gels were injected to implant sites of the right and left femurs, respectively. We found that bone-to-implant contact (BIC) and bone volume (BV) were significantly greater in the HIF-1α treated group than placebo in diabetic mice (p < 0.05). Bioinformatic analysis showed that diabetic mice had 216 differentially expressed genes (DEGs) and 21 target genes. Among the target genes, NOS2, GPNMB, CCL2, CCL5, CXCL16, and TRIM63 were found to be associated with bone formation. Based on these results, we conclude that local administration of HIF-1α via PTD may boost bone formation around the implant and induce gene expression more favorable to bone formation in diabetic mice.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Implantes Dentários , Diabetes Mellitus Experimental , Subunidade alfa do Fator 1 Induzível por Hipóxia/farmacologia , Osteogênese/efeitos dos fármacos , Animais , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Imuno-Histoquímica , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/genética , Osteogênese/genética , Permeabilidade
6.
Biochem Pharmacol ; 158: 141-152, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30096289

RESUMO

Patients undergoing surgery can suffer from various complications, including post-operative bleeding, local or systematic infection, and neurologic disorders. Major surgery can initiate innate immune responses and trigger overproduction of inflammatory mediators, which can contribute to organ dysfunction. Inflammasomes are innate immune complexes, which are connected to the pathogenesis of various diseases, including atherosclerosis, hemorrhagic brain injury, and Alzheimer's disease. In the present study, we hypothesized that nucleotide-binding oligomerization domain-containing-like receptor protein (NLRP) inflammasomes may have a role in the pathological effects of surgery. Therefore, we designed a protein inhibitor of nuclear factor kappa B (NF-κB) p65 transcripts, called nt-p65-TMD (nuclear transducible (nt) transcription modulated domain (TMD) of RelA (p65)), that can penetrate the nucleus, and evaluated its therapeutic efficacy for dampening surgery-induced inflammasome activation. It was found that the nt-p65-TMD significantly reduced the NLRP1 inflammasome complex components (NLRP1, ASC, and Caspase-1) and interleukin (IL)-1ß and IL-18 productions in the spleen after surgery. In the spleen, specific cell population and selective mediators were altered after surgery with/without nt-p65-TMD treatment. Also, we found that treatment of nt-p65-TMD decreased cell death in the spleen after surgery. Therefore, nt-p65-TMD is a potential novel strategy for reducing surgery-induced NLRP1 inflammasome and complications.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Inflamassomos/metabolismo , Espaço Intranuclear/metabolismo , Complicações Pós-Operatórias/tratamento farmacológico , Complicações Pós-Operatórias/metabolismo , Fator de Transcrição RelA/administração & dosagem , Abdome/cirurgia , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/metabolismo , Inflamassomos/antagonistas & inibidores , Intestinos/cirurgia , Espaço Intranuclear/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Complicações Pós-Operatórias/etiologia
7.
Yonsei Med J ; 59(7): 865-871, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30091320

RESUMO

PURPOSE: We investigated whether C-reactive protein (CRP) to serum albumin ratio (CAR) could be an independent predictor of all-cause mortality in patients with antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). MATERIALS AND METHODS: We retrospectively reviewed the medical records of 170 patients with AAV. We collected clinical and laboratory data. We also examined AAV-related and traditional risk factors of all-cause mortality. To assess the hazard ratios of variables, we performed univariable and multivariable Cox hazard model analyses. RESULTS: The mean age was 55.0 years and 53 patients (31.2%) were male among 170 patients with AAV (88 microscopic polyangiitis, 43 granulomatosis with polyangiitis, and 39 eosinophilic granulomatosis with polyangiitis). ANCA was detected in 129 patients (75.9%). The initial mean CRP and serum albumin were 41.1 (mg/L) and 3.6 (g/dL), and the mean CAR at diagnosis was 14.8. The most common risk factor of mortality was hypertension (42.4%), followed by chronic kidney disease ≥stage 3 (25.9%). Fourteen patients (8.2%) died during the mean follow-up of 56.7 months. In both multivariable Cox hazard model analyses, CAR at diagnosis was identified as an independent predictor of all-cause of mortality comparable to diabetes mellitus (DM). Moreover, patients with CAR ≥10.35 and having DM exhibited a higher frequency of all-cause mortality than those without. CONCLUSION: CAR at diagnosis can be an independent predictor of all-cause mortality, comparable to DM, the conventional risk factor of mortality.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/mortalidade , Proteína C-Reativa/metabolismo , Poliangiite Microscópica/mortalidade , Mortalidade , Albumina Sérica/metabolismo , Adulto , Idoso , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/sangue , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/imunologia , Anticorpos Anticitoplasma de Neutrófilos/imunologia , Feminino , Humanos , Hipertensão/complicações , Masculino , Poliangiite Microscópica/imunologia , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , República da Coreia/epidemiologia , Estudos Retrospectivos , Fatores de Risco , Taxa de Sobrevida
8.
Mol Cell Biochem ; 437(1-2): 99-107, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28660411

RESUMO

Hypoxia-inducible factor-1 alpha (HIF1A) is an important transcription factor for angiogenesis. Recent studies have used the protein transduction domain (PTD) to deliver genes, but the PTD has not been used to induce the expression of HIF1A. This study aimed at using a novel PTD (Hph-1-GAL4; ARVRRRGPRR) to overexpress the HIF1A and identify the effects on angiogenesis in vitro and in vivo. Overexpression of HIF1A was induced using Hph-1-GAL4 in human umbilical vein/vascular endothelium cells (HUVEC). The expression levels of genes were analyzed by the quantitative real-time polymerase chain reaction (qPCR) after 2 and 4 days, respectively. An in vitro tube formation was performed using Diff-Quik staining. HIF1A and Hph-1-GAL4 were injected subcutaneously into the ventral area of each 5-week-old mouse. All of the plugs were retrieved after 1 week, and the gene expression levels were evaluated by qPCR. Each Matrigel plug was evaluated using the hemoglobin assay and hematoxylin and eosin (HE) staining. The expression levels of HIF1A and HIF1A target genes were significantly higher in HIF1A-transfected HUVEC than in control HUVEC in vitro. In the in vivo Matrigel plug assay, the amount of hemoglobin was significantly higher in the HIF1A-treatment group than in the PBS-treatment group. Blood vessels were identified in the HIF1A-treatment group. The expression levels of HIF1A, vascular endothelial growth factor (Vegf), and Cd31 were significantly higher in the HIF1A-treatment group than in the PBS-treatment group. These findings suggest that using Hph-1-G4D to overexpress HIF1A might be useful for transferring genes and regenerating tissues.


Assuntos
Peptídeos Penetradores de Células/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Neovascularização Fisiológica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/biossíntese , Fator A de Crescimento do Endotélio Vascular/biossíntese
9.
Biochem Biophys Res Commun ; 464(3): 711-7, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26159927

RESUMO

Suppression of nuclear factor-κB (NF-κB) activation, which is best known as a major regulator of innate and adaptive immune responses, is a potent strategy for the treatment of endotoxic sepsis. To inhibit NF-κB functions, we designed the intra-nuclear transducible form of transcription modulation domain (TMD) of RelA (p65), called nt-p65-TMD, which can be delivered effectively into the nucleus without influencing the cell viability, and work as interactomic inhibitors via disruption of the endogenous p65-mediated transcription complex. nt-p65-TMD effectively inhibited the secretion of pro-inflammatory cytokines, including TNF-α, IL-1ß, or IL-6 from BV2 microglia cells stimulated by lipopolysaccharide (LPS). nt-p65-TMD did not inhibit tyrosine phosphorylation of signaling mediators such as ZAP-70, p38, JNK, or ERK involved in T cell activation, but was capable of suppressing the transcriptional activity of NF-κB without the functional effect on that of NFAT upon T-cell receptor (TCR) stimulation. The transduced nt-p65-TMD in T cell did not affect the expression of CD69, however significantly inhibited the secretion of T cell-specific cytokines such as IL-2, IFN-γ, IL-4, IL-17A, or IL-10. Systemic administration of nt-p65-TMD showed a significant therapeutic effect on LPS-induced sepsis model by inhibiting pro-inflammatory cytokines secretion. Therefore, nt-p65-TMD can be a novel therapeutics for the treatment of various inflammatory diseases, including sepsis, where a transcription factor has a key role in pathogenesis, and further allows us to discover new functions of p65 under normal physiological condition without genetic alteration.


Assuntos
NF-kappa B/antagonistas & inibidores , Sepse/terapia , Animais , Células Cultivadas , Citocinas/antagonistas & inibidores , Citocinas/biossíntese , Feminino , Células HEK293 , Células HeLa , Humanos , Células Jurkat , Lipopolissacarídeos/toxicidade , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , NF-kappa B/genética , NF-kappa B/imunologia , Estrutura Terciária de Proteína/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacologia , Sepse/etiologia , Sepse/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fator de Transcrição RelA/antagonistas & inibidores , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/imunologia , Transcrição Gênica , Transdução Genética
10.
Cancer Lett ; 366(1): 52-60, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26118773

RESUMO

Ubiquinol-cytochrome c reductase binding protein (UQCRB), a component of the mitochondrial complex III, has been recently implicated in angiogenesis. Targeting mitochondria to balance vascular homeostasis has been widely recognized. However, the effect of UQCRB replenishment by direct delivery remains unknown. To explore the biological function of UQCRB in angiogenesis, a novel protein transduction domain (PTD)-conjugated UQCRB fusion protein was generated. PTD-UQCRB localized to mitochondria as does endogenous UQCRB. Treatment with PTD-UQCRB generated mitochondrial reactive oxygen species (mROS) without cytotoxicity, following hypoxia inducible factor-1α (HIF-1α) stabilization and downstream vascular endothelial growth factor (VEGF) expression. Accordingly, PTD-UQCRB induced angiogenesis in vitro and PTD-UQCRB pro-angiogenic activity was further validated in matrigel plug assay and in cutaneous wound-healing mouse models in vivo. Together, these results demonstrate that UQCRB plays a role in angiogenesis and the developed cell-permeable PTD-UQCRB can be utilized as a pro-angiogenic agent.


Assuntos
Proteínas de Transporte/farmacologia , Mitocôndrias/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Animais , Proteínas de Transporte/farmacocinética , Células HeLa , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/farmacologia , Cicatrização/efeitos dos fármacos
11.
Biochem Biophys Res Commun ; 460(3): 603-8, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25800872

RESUMO

Signaling events triggered by T cell receptor (TcR) stimulation are important targets for the development of common therapeutics for various autoimmune diseases. SLAP is a negative regulator of TcR-mediated signaling cascade via targeting TcR zeta chain for degradation through recruiting the ubiquitin ligase c-Cbl. In this study, we generated a transducible form of SH3 and SH2 domains of SLAP (ctSLAPΔC) which can be specifically targeted to the cytoplasm of a cell. ctSLAPΔC inhibited tyrosine phosphorylation of signaling mediators such as ZAP-70 and LAT involved in T cell activation, and effectively suppressed transcriptional activity of NFAT and NFκB upon TcR stimulation. The transduced ctSLAPΔC in T cells blocked the secretion of T cell-specific cytokines such as IL-2, IFNγ, IL-17A, and IL-4 and induced the expression of CD69 and CD25 on effector T cells without influencing the cell viability. Inhibition of TcR-mediated signaling via SLAP blocked the differentiation of naïve T cells into Th1, Th2 or Treg cells with different sensitivity, suggesting that qualitative and quantitative intensity of TcR-mediated signaling in the context of polarizing cytokines environment may be a critical factor to determine the differentiation fate of naïve T cells. These results suggest that cytoplasm-specific transduction of the SH3 and SH2 domains of SLAP has a therapeutic potential of being an immunosuppressive reagent for the treatment of various autoimmune diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Citoplasma/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Receptores de Antígenos de Linfócitos T/fisiologia , Transdução de Sinais/fisiologia , Domínios de Homologia de src , Proteínas Adaptadoras de Transdução de Sinal/química , Animais , Células HeLa , Humanos , Células Jurkat , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas pp60(c-src)/química
12.
Biochem Biophys Res Commun ; 451(1): 1-7, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25044110

RESUMO

Regulatory T cells (Treg cells) are crucial for the maintenance of immunological tolerance, and it has been reported that Treg cells are enriched within the tumor micro-environment for immune evasion due to their immunosuppressive functions. To inhibit Treg cells functions, FoxP3, a lineage-specific transcription factor responsible for the differentiation and functions of Treg cells, was functionally targeted by a nucleus-transducible (nt) form of various FoxP3 functional subdomains. These nt modified domains can be delivered into the nucleus effectively and work as interactomic inhibitors via disruption of the endogenous FoxP3-mediated transcription complex. Among these domains, nt-FoxP3-FKH (Forkhead DNA binding domain) is most effective at restoring NFAT activity suppressed by FoxP3, and inhibiting the binding of endogenous FKH-containing proteins to FKH DNA binding sequences without influencing the viability and activation of T cells. The suppressive functions of TGF-ß-induced iTreg cells and thymus-derived tTreg cells were substantially blocked by nt-FoxP3-FKH, accompanied with down-regulation of CTLA-4 surface expression and IL-10 secretion of Treg cells. In addition, nt-FoxP3-FKH upregulated the expression of IL-2 and IFN-γ in Treg cells. Therefore, nt-FoxP3-FKH has the potential to be a novel therapeutic agent to modulate the immune-evasive tumor environment created by Treg cells without the need for genetic modifications.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Linfócitos T Reguladores/fisiologia , Sequência de Aminoácidos , Animais , Linfócitos T CD4-Positivos , Antígeno CTLA-4 , Núcleo Celular/genética , Núcleo Celular/metabolismo , Regulação para Baixo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/imunologia , Regulação da Expressão Gênica , Células HeLa , Humanos , Interleucina-10/metabolismo , Interleucina-2 , Camundongos , Camundongos Mutantes , Dados de Sequência Molecular , Fatores de Transcrição NFATC/metabolismo , Estrutura Terciária de Proteína , Linfócitos T Reguladores/efeitos dos fármacos , Fator de Crescimento Transformador beta/farmacologia
13.
Exp Dermatol ; 23(7): 492-6, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24824846

RESUMO

Accumulating evidence has shown that the Toll-like receptor 7 agonist imiquimod (IMQ) induces psoriasiform skin inflammation in mice and that this inflammation is dependent on the IL-23/IL-17 axis. Moreover, it has been demonstrated that the main source of IL-17 is not Th17 but is dermal gamma delta (γδ) T cells in mouse psoriasiform skin. Recent advances in the understanding of immunopathogenesis of psoriasis led to an alteration in the treatment paradigm to the use of highly efficacious biologics. However, their high cost impedes the extensive use of these agents. Thus, inexpensive and safe medications are still considered valuable. In this study, we introduce the therapeutic efficacy of a newly formulated methotrexate (MTX), a chemical conjugate of MTX with cell permeable peptide, for the treatment of psoriasis. Topically applied skin-penetrating (SP)-MTX reduced the psoriasiform skin phenomenon, epidermal thickness and infiltrating immune cells into the dermis. IL-17A-producing dermal γδ T cells in the cellular infiltrate that contribute IL-23/IL-17 axis were well abrogated by SP-MTX. Furthermore, SP-MTX had no toxic effects on liver, kidney or myeloid cells, unlike systemic administration of MTX. In conclusion, topically applied SP-MTX ameliorated psoriasiform skin inflammation in mice with the criteria of clinical phenomenon, histopathology and immunology, without inducing systemic toxic effects.


Assuntos
Dermatite/tratamento farmacológico , Interleucina-17/metabolismo , Metotrexato/administração & dosagem , Psoríase/tratamento farmacológico , Pele/efeitos dos fármacos , Aminoquinolinas/efeitos adversos , Animais , Antígeno CD11c/metabolismo , Linfócitos T CD4-Positivos/citologia , Citocinas/metabolismo , DNA Complementar/metabolismo , Dermatite/etiologia , Feminino , Imiquimode , Inflamação , Interleucina-23/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos/química , Permeabilidade , Psoríase/induzido quimicamente , Psoríase/imunologia , Pele/imunologia , Pele/patologia
14.
J Control Release ; 166(3): 307-15, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23298615

RESUMO

Inhibition of the early intracellular event that triggers neurodegenerative cascades and reversal of neuronal cell death are essential for effective treatment of Alzheimer's disease (AD). In this study, a novel therapeutic for AD, a transducible humanin with an extended caspase-3 cleavage sequence (tHN-C3), was developed and showed multiple mechanisms of therapeutic action. These included targeted delivery of anti-apoptotic protein humanin through the blood-brain barrier (BBB) to neuronal cells, specific inhibition of caspase-3 activation to inhibit the early triggering of AD progression, and delivery of humanin into the cytoplasm of neuronal cells undergoing apoptosis where it exerts its anti-apoptotic functions effectively. The tHN-C3 prevented neuronal cell death induced by H2O2, or soluble Aß42, via Bax binding. In animal models of AD induced by amyloid beta, in Tg2576 mice, and in the rat middle cerebral artery occlusion model of stroke, tHN-C3 effectively prevented neuronal cell death, inflammatory cell infiltration into the brain, and improved cognitive memory. The therapeutic effectiveness of tHN-C3 was comparable to that of Aricept, a clinically approved drug for AD treatment. Therefore, tHN-C3 may be a new remedy with multiple therapeutic functions targeting the early and late stages of neurodegeneration in AD and other brain injuries.


Assuntos
Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Citoplasma/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/administração & dosagem , Doenças Neurodegenerativas/tratamento farmacológico , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Animais , Animais Recém-Nascidos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Citoproteção , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Proteínas de Fluorescência Verde/genética , Humanos , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular/farmacocinética , Peptídeos e Proteínas de Sinalização Intracelular/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/enzimologia , Neurônios/patologia , Fármacos Neuroprotetores/farmacocinética , Fármacos Neuroprotetores/uso terapêutico , Ratos
15.
Exp Dermatol ; 21(12): 969-71, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23171464

RESUMO

 In contact hypersensitivity (CHS), multiple cells, inflammatory mediators and cytokines are known to be involved in the regulation of the immune response. Previously, we revealed the reactive oxygen species generation by 2, 4, 6-trinitrobenzene sulphonic acid (TNBS) in vivo, followed by heat shock protein 70 (Hsp70) carbonylation and the exogenous antioxidant role of cell-permeable Hsp70. Here, we demonstrate the role of Hsp70 using cell-permeable Hsp70 in the mouse CHS model. Pretreatment of cell-permeable Hsp70: (i) suppressed ear swelling; (ii) down-regulated phosphorylated p38, but up-regulated phosphorylated extracellular signal-regulated kinase; (iii) increased population of CD4(+) CD25(+) Foxp3(+) T cells; (iv) decreased secretion of tumor necrosis factor-α (TNF-α), IL-12, interferon-γ and IL-2 and (v) but up-regulated IL-4 and transforming growth factor beta (TGF-ß) in the lymph nodes. In conclusion, cell-permeable Hsp70 attenuates CHS through modulation of MAPK pathway and regulation of Th1, Th2 and regulatory T cells.


Assuntos
Dermatite de Contato/metabolismo , Dermatite de Contato/terapia , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Transdução de Sinais/fisiologia , Administração Tópica , Animais , Modelos Animais de Doenças , Feminino , Terapia Genética/métodos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Transdução Genética/métodos
16.
Nat Immunol ; 13(4): 369-78, 2012 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-22366891

RESUMO

The function of the kinase Btk in neutrophil activation is largely unexplored. Here we found that Btk-deficient neutrophils had more production of reactive oxygen species (ROS) after engagement of Toll-like receptors (TLRs) or receptors for tumor-necrosis factor (TNF), which was associated with more apoptosis and was reversed by transduction of recombinant Btk. Btk-deficient neutrophils in the resting state showed hyperphosphorylation and activation of phosphatidylinositol-3-OH kinase (PI(3)K) and protein tyrosine kinases (PTKs) and were in a 'primed' state with plasma membrane-associated GTPase Rac2. In the absence of Btk, the adaptor Mal was associated with PI(3)K and PTKs at the plasma membrane, whereas in control resting neutrophils, Btk interacted with and confined Mal in the cytoplasm. Our data identify Btk as a critical gatekeeper of neutrophil responses.


Assuntos
Apoptose/imunologia , Ativação de Neutrófilo/imunologia , Neutrófilos/metabolismo , Proteínas Tirosina Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/imunologia , Tirosina Quinase da Agamaglobulinemia , Separação Celular , Citometria de Fluxo , Imunofluorescência , Humanos , Immunoblotting , Imunoprecipitação , Luminescência , Neutrófilos/citologia , Neutrófilos/imunologia , Proteínas Tirosina Quinases/imunologia , Espécies Reativas de Oxigênio/imunologia
17.
Int J Hematol ; 95(3): 299-310, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22311461

RESUMO

Wiskott-Aldrich syndrome (WAS) is an X-linked immunodeficiency disease affecting cell morphology and signal transduction in hematopoietic cells. The function of Wiskott-Aldrich syndrome protein (WASp) and its partners in protein interaction have been studied intensively in mice; however, detailed biochemical characterization of its signal transduction and assessment of its functional consequence in human WASp-deficient lymphocytes remain difficult. In this study, we generated Nalm-6 cells in which the WAS protein gene (WASP) was disrupted by homologous recombination-based gene targeting and a cell-permeable form of recombinant WASp for functional study. The WASP⁻/⁻ cells showed impaired adhesive capacity and polarization to plate-bound anti-CD47 mAb, anti-CD9 mAb, or to fibronectin. The defective morphological changes were accompanied by impaired intracellular signaling. In addition, the WASp-deficient cells displayed augmented apoptosis induced by CD24 cross-linking. A recombinant fusion protein composed of Hph-1 cell-permeable peptide and WASp prepared in Escherichia coli. Hph-1-WASp was efficiently transduced and expressed in WASP⁻/⁻ Nalm-6 cells in a dose-dependent manner. The wild-type WASp, but not the mutant restored adhesion capacity, spreading morphology, and cytoskeletal reorganization. Additionally, the recombinant protein was successfully transduced into normal lymphocytes. These findings suggest that gene-disrupted model cell lines and cell-permeable recombinant proteins may serve as important tools for the detailed analysis of intracellular molecules involved in PID.


Assuntos
Apoptose/genética , Células Precursoras de Linfócitos B/metabolismo , Transdução de Sinais , Proteína da Síndrome de Wiskott-Aldrich/genética , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Antígeno CD24/metabolismo , Antígeno CD47/imunologia , Antígeno CD47/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Adesão Celular/genética , Linhagem Celular , Polaridade Celular/efeitos dos fármacos , Fibronectinas/farmacologia , Ordem dos Genes , Marcação de Genes , Vetores Genéticos/genética , Humanos , Complexo Repressor Polycomb 1 , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Tetraspanina 29/antagonistas & inibidores , Tetraspanina 29/imunologia
18.
J Clin Invest ; 122(1): 91-106, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22133875

RESUMO

Mutations in the coactivator CREB-binding protein (CBP) are a major cause of the human skeletal dysplasia Rubinstein-Taybi syndrome (RTS); however, the mechanism by which these mutations affect skeletal mineralization and patterning is unknown. Here, we report the identification of 3-phosphoinositide-dependent kinase 1 (PDK1) as a key regulator of CBP activity and demonstrate that its functions map to both osteoprogenitor cells and mature osteoblasts. In osteoblasts, PDK1 activated the CREB/CBP complex, which in turn controlled runt-related transcription factor 2 (RUNX2) activation and expression of bone morphogenetic protein 2 (BMP2). These pathways also operated in vivo, as evidenced by recapitulation of RTS spectrum phenotypes with osteoblast-specific Pdk1 deletion in mice (Pdk1osx mice) and by the genetic interactions observed in mice heterozygous for both osteoblast-specific Pdk1 deletion and either Runx2 or Creb deletion. Finally, treatment of Pdk1osx and Cbp+/- embryos with BMPs in utero partially reversed their skeletal anomalies at birth. These findings illustrate the in vivo function of the PDK1-AKT-CREB/CBP pathway in bone formation and provide proof of principle for in utero growth factor supplementation as a potential therapy for skeletal dysplasias.


Assuntos
Proteína Morfogenética Óssea 2/administração & dosagem , Proteína Morfogenética Óssea 7/administração & dosagem , Proteína de Ligação a CREB/genética , Terapias Fetais/métodos , Proteínas Serina-Treonina Quinases/genética , Síndrome de Rubinstein-Taybi/genética , Síndrome de Rubinstein-Taybi/terapia , Animais , Desenvolvimento Ósseo/genética , Desenvolvimento Ósseo/fisiologia , Proteína Morfogenética Óssea 2/genética , Proteína de Ligação a CREB/deficiência , Subunidade alfa 1 de Fator de Ligação ao Core/deficiência , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/deficiência , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Mutação , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoblastos/patologia , Gravidez , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Proteínas Recombinantes/administração & dosagem , Síndrome de Rubinstein-Taybi/embriologia , Síndrome de Rubinstein-Taybi/metabolismo , Transdução de Sinais , Útero
19.
Biomaterials ; 33(5): 1563-72, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22098778

RESUMO

Rheumatoid arthritis (RA) is a systemic autoimmune disease that is initiated and maintained by various inflammatory/immune cells and their cytokines, leading to cartilage degradation and bone erosion. Despite its potent therapeutic efficacy on RA, the oral administration of methotrexate (MTX) provokes serious adverse systemic complications, thus necessitating the local application of MTX. Here, we show that transcutaneous MTX (TC-MTX) can efficiently penetrate joint skin ex vivo and in vivo, and that TC-MTX can significantly improve the various inflammatory symptoms associated with RA. Further, TC-MTX preserved the joint-structures in mice with collagen-induced arthritis (CIA), which was also confirmed by three-dimensional micro-computed tomography scan. TC-MTX markedly decreased the secretion of inflammatory cytokines both in the serum and in inflamed joints of CIA mice. Further, its therapeutic potential is comparable to that of etanercept, a biological agent that block tumor necrosis factor (TNF)-α. Importantly, the systemic cytotoxicity of TC-MTX was not detected. Thus, TC-MTX can be a new therapeutic modality for RA patients without systemic complications.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Permeabilidade da Membrana Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Metotrexato/farmacologia , Metotrexato/uso terapêutico , Administração Cutânea , Animais , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Artrite Reumatoide/diagnóstico por imagem , Artrite Reumatoide/patologia , Morte Celular/efeitos dos fármacos , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Etanercepte , Imunoglobulina G/farmacologia , Imunoglobulina G/uso terapêutico , Mediadores da Inflamação/metabolismo , Cinética , Masculino , Metotrexato/administração & dosagem , Metotrexato/química , Camundongos , Receptores do Fator de Necrose Tumoral/uso terapêutico , Tetra-Hidrofolato Desidrogenase/metabolismo , Distribuição Tecidual/efeitos dos fármacos , Resultado do Tratamento , Microtomografia por Raio-X
20.
Biochem Biophys Res Commun ; 417(1): 162-8, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22138397

RESUMO

Protein delivery to primary cells by protein transduction domain (PTD) serves as a novel measure for manipulation of the cells for biological study and for the treatment of various human conditions. Although the method has been employed to modulate cellular function in vitro, only limited reports are available on its application in the replacement of deficient signaling molecules into primary cells. We examined the potential of recombinant proteins to compensate for defective cytosolic components of the NADPH oxidase complex in chronic granulomatous disease (CGD) neutrophils in both p47(phox) and p67(phox) deficiency. The p47(phox) or p67(phox) protein linked to Hph-1 PTD was effectively expressed in soluble form and transduced into human neutrophils efficiently without eliciting unwanted signal transduction or apoptosis. The delivered protein was stable for more than 24h, expressed in the cytoplasm, translocated to the membrane fraction upon activation, and, most importantly able to restored reactive oxygen species (ROS) production. Although research on human primary neutrophils using the protein delivery system is still limited, our data show that the protein transduction approach for neutrophils may be applicable to the control of local infections in CGD patients by direct delivery of the protein product.


Assuntos
Doença Granulomatosa Crônica/enzimologia , NADPH Oxidases/metabolismo , Neutrófilos/enzimologia , Fosfoproteínas/metabolismo , Proteínas Recombinantes/metabolismo , Adulto , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Criança , Pré-Escolar , Citoplasma/enzimologia , Feminino , Humanos , Masculino , NADPH Oxidases/genética , Fosfoproteínas/genética , Complexo Repressor Polycomb 1 , Transporte Proteico , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA