Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JHEP Rep ; 3(1): 100193, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33294831

RESUMO

BACKGROUND & AIMS: Thrombospondin 1 (TSP1) is a multifunctional matricellular protein. We previously showed that TSP1 has an important role in obesity-associated metabolic complications, including inflammation, insulin resistance, cardiovascular, and renal disease. However, its contribution to obesity-associated non-alcoholic fatty liver disease/non-alcoholic steatohepatitis (NAFLD or NASH) remains largely unknown; thus, we aimed to determine its role. METHODS: High-fat diet or AMLN (amylin liver NASH) diet-induced obese and insulin-resistant NAFLD/NASH mouse models were utilised, in addition to tissue-specific Tsp1-knockout mice, to determine the contribution of different cellular sources of obesity-induced TSP1 to NAFLD/NASH development. RESULTS: Liver TSP1 levels were increased in experimental obese and insulin-resistant NAFLD/NASH mouse models as well as in obese patients with NASH. Moreover, TSP1 deletion in adipocytes did not protect mice from diet-induced NAFLD/NASH. However, myeloid/macrophage-specific TSP1 deletion protected mice against obesity-associated liver injury, accompanied by reduced liver inflammation and fibrosis. Importantly, this protection was independent of the levels of obesity and hepatic steatosis. Mechanistically, through an autocrine effect, macrophage-derived TSP1 suppressed Smpdl3b expression in liver, which amplified liver proinflammatory signalling (Toll-like receptor 4 signal pathway) and promoted NAFLD progression. CONCLUSIONS: Macrophage-derived TSP1 is a significant contributor to obesity-associated NAFLD/NASH development and progression and could serve as a therapeutic target for this disease. LAY SUMMARY: Obesity-associated non-alcoholic fatty liver disease is a most common chronic liver disease in the Western world and can progress to liver cirrhosis and cancer. No treatment is currently available for this disease. The present study reveals an important factor (macrophage-derived TSP1) that drives macrophage activation and non-alcoholic fatty liver disease development and progression and that could serve as a therapeutic target for non-alcoholic fatty liver disease/steatohepatitis.

2.
Biochem Biophys Res Commun ; 444(1): 69-74, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24434148

RESUMO

Atherosclerosis is the main underlying cause of major cardiovascular diseases such as stroke and heart attack. Oxidized phospholipids such as oxidized 1-palmitoyl-2-arachidonoyl-sn-Glycero-3-phosphorylcholine (OxPAPC) accumulate in lesions of and promote atherosclerosis. OxPAPC activates endothelial cells, a critical early event of atherogenesis. Epoxyisoprostane E2 (EI) is an oxidized fatty acid contained at the sn-2 position of 1-palmitoyl-2-epoxyisoprostane E2-sn-glycero-3-phosphorylcholine (PEIPC), the most active component of OxPAPC in regulating inflammation. OxPAPC and its components including PEIPC activate endothelial cells to express an array of genes in different categories including oxidative stress response genes such as tumor suppressor gene OKL38 and Heme oxygenase-1 (HO-1). EI can be released by lipase from PEIPC. In this study, we examined the ability of EI to stimulate oxidative stress response in endothelial cells. EI released from OxPAPC and synthetic EI stimulated the expression of oxidative stress response gene OKL38 and antioxidant gene HO-1. Treatment of endothelial cells with EI increased the production of superoxide. NADPH oxidase inhibitor Apocynin and superoxide scavenger N-acetyl-cysteine (NAC) significantly attenuated EI-stimulated expression of OKL38 and HO-1. We further demonstrated that EI activated oxidative stress-sensitive transcription factor Nrf2. Silencing of Nrf2 with siRNA significantly reduced EI stimulated expression of OKL38 and HO-1. Thus, we demonstrated that EI induced oxidative stress in endothelial cells leading to increased expression of oxidative stress response gene OKL38 and HO-1 via Nrf2 signaling pathway relevant to atherosclerosis.


Assuntos
Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Isoprostanos/farmacologia , Proteínas Reguladoras de Apoptose , Aterosclerose/etiologia , Aterosclerose/metabolismo , Células Cultivadas , Heme Oxigenase-1/genética , Humanos , Isoprostanos/metabolismo , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Fosfatidilcolinas/metabolismo , Fosfatidilcolinas/farmacologia , Proteínas/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
3.
Circ Res ; 111(6): 778-99, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22935534

RESUMO

There is increasing clinical evidence that phospholipid oxidation products (Ox-PL) play a role in atherosclerosis. This review focuses on the mechanisms by which Ox-PL interact with endothelial cells, monocyte/macrophages, platelets, smooth muscle cells, and HDL to promote atherogenesis. In the past few years major progress has been made in identifying these mechanisms. It has been recognized that Ox-PL promote phenotypic changes in these cell types that have long-term consequences for the vessel wall. Individual Ox-PL responsible for specific cellular effects have been identified. A model of the configuration of bioactive truncated Ox-PL within membranes has been developed that demonstrates that the oxidized fatty acid moiety protrudes into the aqueous phase, rendering it accessible for receptor recognition. Receptors and signaling pathways for individual Ox-PL species are now determined and receptor independent signaling pathways identified. The effects of Ox-PL are mediated both by gene regulation and transcription independent processes. It has now become apparent that Ox-PL affects multiple genes and pathways, some of which are proatherogenic and some are protective. However, at concentrations that are likely present in the vessel wall in atherosclerotic lesions, the effects promote atherogenesis. There have also been new insights on enzymes that metabolize Ox-PL and the significance of these enzymes for atherosclerosis. With the knowledge we now have of the regulation and effects of Ox-PL in different vascular cell types, it should be possible to design experiments to test the role of specific Ox-PL on the development of atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Fosfolipídeos/metabolismo , Transdução de Sinais , Citocinas/metabolismo , Células Endoteliais/metabolismo , Humanos , Macrófagos/metabolismo , Miócitos de Músculo Liso/metabolismo , Oxirredução , Receptores de Superfície Celular/metabolismo
4.
J Lipid Res ; 53(7): 1304-15, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22550136

RESUMO

Oxidation products of 1-palmitoyl-2-arachidonoyl-sn-glycerol-3-phosphatidylcholine (PAPC), referred to as OxPAPC, and an active component, 1-palmitoyl-2-(5,6-epoxyisoprostane E2)-sn-glycero-3-phosphatidylcholine (PEIPC), accumulate in atherosclerotic lesions and regulate over 1,000 genes in human aortic endothelial cells (HAEC). We previously demonstrated that OxPNB, a biotinylated analog of OxPAPC, covalently binds to a number of proteins in HAEC. The goal of these studies was to gain insight into the binding mechanism and determine whether binding regulates activity. In whole cells, N-acetylcysteine inhibited gene regulation by OxPAPC, and blocking cell cysteines with N-ethylmaleimide strongly inhibited the binding of OxPNB to HAEC proteins. Using MS, we demonstrate that most of the binding of OxPAPC to cysteine is mediated by PEIPC. We also show that OxPNB and PEIPE-NB, the analog of PEIPC, bound to a model protein, H-Ras, at cysteines previously shown to regulate activity in response to 15-deoxy-Δ12,14-prostaglandin J2 (15dPGJ2). This binding was observed with recombinant protein and in cells overexpressing H-Ras. OxPAPC and PEIPC compete with OxPNB for binding to H-Ras. 15dPGJ2 and OxPAPC increased H-Ras activity at comparable concentrations. Using microarray analysis, we demonstrate a considerable overlap of gene regulation by OxPAPC, PEIPC, and 15dPGJ2 in HAEC, suggesting that some effects attributed to 15dPGJ2 may also be regulated by PEIPC because both molecules accumulate in inflammatory sites. Overall, we provide evidence for the importance of OxPAPC-cysteine interactions in regulating HAEC function.


Assuntos
Cisteína/metabolismo , Células Endoteliais/metabolismo , Fosfatidilcolinas/metabolismo , Sítios de Ligação , Células Cultivadas , Cisteína/química , Células Endoteliais/efeitos dos fármacos , Etilmaleimida/farmacologia , Humanos , Isoprostanos/química , Isoprostanos/metabolismo , Fosfatidilcolinas/antagonistas & inibidores , Fosfatidilcolinas/química , Prostaglandina D2/análogos & derivados , Prostaglandina D2/química , Prostaglandina D2/metabolismo
5.
Arterioscler Thromb Vasc Biol ; 32(5): 1246-54, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22402363

RESUMO

OBJECTIVE: Atherosclerosis is a chronic inflammatory disease initiated by monocyte recruitment and retention in the vessel wall. An important mediator of monocyte endothelial interaction is the chemokine interleukin (IL)-8. The oxidation products of phospholipids, including oxidized 1-palmitoyl-2-arachidonyl-sn-glycerol-3-phosphocholine (Ox-PAPC), accumulate in atherosclerotic lesions and strongly induce IL-8 in human aortic endothelial cells (HAECs). The goal of this study was to identify the proximal events leading to induction of IL-8 by Ox-PAPC in vascular endothelial cells. METHODS AND RESULTS: In a systems genetics analysis of HAECs isolated from 96 different human donors, we showed that heparin-binding EGF-like growth factor (HBEGF) transcript levels are strongly correlated to IL-8 induction by Ox-PAPC. The silencing and overexpression of HBEGF in HAECs confirmed the role of HBEGF in regulating IL-8 expression. HBEGF has been shown to be stored in an inactive form and activation is dependent on processing by a dysintegrin and metalloproteinases (ADAM) to a form that can activate the epidermal growth factor (EGF) receptor. Ox-PAPC was shown to rapidly induce HBEGF processing and EGF receptor activation in HAECs. Using siRNA we identified 3 ADAMs that regulate IL-8 induction and directly demonstrated that Ox-PAPC increases ADAM activity in the cells using a substrate cleavage assay. We provide evidence for one mechanism of Ox-PAPC activation of ADAM involving covalent binding of Ox-PAPC to cysteine on ADAM. Free thiol cysteine analogs showed inhibition of IL-8 induction by Ox-PAPC, and both a cysteine analog and a cell surface thiol blocker strongly inhibited ADAM activity induction by Ox-PAPC. Using microarray analyses, we determined that this ADAM pathway may regulate at least 30% of genes induced by Ox-PAPC in HAECs. CONCLUSIONS: This study is the first report demonstrating a role for the ADAM-HBEGF-EGF receptor axis in Ox-PAPC induction of IL-8 in HAECs. These studies highlight a role for specific ADAMs as initiators of Ox-PAPC action and provide evidence for a role of covalent interaction of Ox-PAPC in activation of ADAMs.


Assuntos
Aterosclerose/genética , DNA/genética , Endotélio Vascular/metabolismo , Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular/genética , Metaloproteases/metabolismo , Fosfolipídeos/metabolismo , Aorta Torácica/metabolismo , Aorta Torácica/patologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Células Cultivadas , Endotélio Vascular/patologia , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Interleucina-8/biossíntese , Oxirredução , Análise Serial de Proteínas , Receptores de Superfície Celular , Transdução de Sinais
6.
Bioorg Med Chem Lett ; 17(6): 1634-40, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17257836

RESUMO

Autotaxin (ATX) is an autocrine motility factor that promotes cancer cell invasion, cell migration, and angiogenesis. ATX, originally discovered as a nucleotide phosphodiesterase, is known now to be responsible for the lysophospholipid-preferring phospholipase D activity in plasma. As such, it catalyzes the production of lysophosphatidic acid (LPA) from lysophophatidylcholine (LPC). ATX is thus an attractive drug target; small molecular inhibitors might be efficacious in slowing the spread of cancers. With this study we have generated a series of beta-keto and beta-hydroxy phosphonate derivatives of LPA, some of which are potent ATX inhibitors.


Assuntos
Complexos Multienzimáticos/antagonistas & inibidores , Organofosfonatos/síntese química , Organofosfonatos/farmacologia , Fosfodiesterase I/antagonistas & inibidores , Pirofosfatases/antagonistas & inibidores , Hidrólise , Indicadores e Reagentes , Lisofosfolipídeos/síntese química , Lisofosfolipídeos/química , Diester Fosfórico Hidrolases , Estereoisomerismo , Relação Estrutura-Atividade
7.
J Lipid Res ; 48(3): 709-15, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17192422

RESUMO

Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC) is present in oxidative modified LDL and accumulates in lesions of many chronic inflammatory diseases, such as atherosclerosis. In a microarray study, OxPAPC has been demonstrated to modulate the expression of >700 genes in human aortic endothelial cells. We found that the levels of mRNA for OKL38 [also named Bone marrow Derived Growth Factor (BDGI)], a tumor growth inhibitor, were strongly increased by OxPAPC. Here, we report that OKL38 is regulated by an oxidative signal induced by OxPAPC and its component lipid 1-palmitoyl-2-epoxyisoprostane E2-sn-glycero-3-phosphorylcholine. The stimulation of OKL38 by OxPAPC depends on superoxide production, because the NADPH oxidase (Nox) inhibitor apocynin and the superoxide scavenger N-acetyl cysteine block this stimulation. Oxidative stress by tert-butylhydroquinone treatment also induced the expression of OKL38. The stimulation of OKL38 expression by OxPAPC is mediated via transcription factor nuclear factor E2-related factor (Nrf2), a common factor involved in the regulation of oxidative stress-stimulated genes. Activation of Nrf2 induces the expression of OKL38, whereas small interfering RNA knockdown of Nrf2 blocks the stimulation of OKL38 by OxPAPC. Our results suggest that OKL38 is regulated via the Nox/Nrf2 pathway in response to oxidative stress stimuli.


Assuntos
Estresse Oxidativo , Fosfatidilcolinas/farmacologia , Fosfolipídeos/farmacologia , Proteínas/genética , Acetofenonas/farmacologia , Proteínas Reguladoras de Apoptose , Western Blotting , Células Cultivadas , Relação Dose-Resposta a Droga , Expressão Gênica/efeitos dos fármacos , Humanos , Hidroquinonas/farmacologia , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Fosfolipídeos/metabolismo , Proteínas/metabolismo , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Superóxidos/metabolismo
8.
Biochem J ; 391(Pt 2): 317-23, 2005 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-15926888

RESUMO

Envenomation by the brown recluse spider (Loxosceles reclusa) may cause local dermonecrosis and, rarely, coagulopathies, kidney failure and death. A venom phospholipase, SMaseD (sphingomyelinase D), is responsible for the pathological manifestations of envenomation. Recently, the recombinant SMaseD from Loxosceles laeta was demonstrated to hydrolyse LPC (lysophosphatidylcholine) to produce LPA (lysophosphatidic acid) and choline. Therefore activation of LPA signalling pathways may be involved in some manifestations of Loxosceles envenomation. To begin investigating this idea, we cloned a full-length cDNA encoding L. reclusa SMaseD. The 305 amino acid sequence of the L. reclusa enzyme is 87, 85 and 60% identical with those of L. arizonica, L. intermedia and L. laeta respectively. The recombinant enzyme expressed in bacteria had broad substrate specificity. The lysophospholipids LPC, LPI (18:1-1-oleyol lysophosphatidylinositol), LPS, LPG (18:1-1-oleoyl-lysophosphatidylglycerol), LBPA (18:1-1-oleoyl-lysobisphosphatidic acid) (all with various acyl chains), lyso-platelet-activating factor (C16:0), cyclic phosphatidic acid and sphingomyelin were hydrolysed, whereas sphingosylphosphorylcholine, PC (phosphatidylcholine; C22:6, C20:4 and C6:0), oxidized PCs and PAF (platelet-activating factor; C16:0) were not hydrolysed. The PAF analogue, edelfosine, inhibited enzyme activity. Recombinant enzyme plus LPC (C18:1) induced the migration of A2058 melanoma cells, and this activity was blocked by the LPA receptor antagonist, VPC32183. The recombinant spider enzyme was haemolytic, but this activity was absent from catalytically inactive H37N (His37-->Asn) and H73N mutants. Our results demonstrate that Loxosceles phospholipase D hydrolyses a wider range of lysophospholipids than previously supposed, and thus the term 'SMaseD' is too limited in describing this enzyme.


Assuntos
Lisofosfolipídeos/metabolismo , Fosfolipase D/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Venenos de Aranha/metabolismo , Aranhas/enzimologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , DNA Complementar/química , Regulação Enzimológica da Expressão Gênica , Dados de Sequência Molecular , Mutação , Fosfolipase D/antagonistas & inibidores , Fosfolipase D/química , Éteres Fosfolipídicos , Mutação Puntual , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Aranhas/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA