Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 277(Pt 1): 133784, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39084972

RESUMO

In this study, various chitosan-based films such as chitosan (C), chitosan-condensed tannin (CT), chitosan-casein (CC), and chitosan-casein-condensed tannin (CCT) films were prepared for the purpose of food packaging. In order to improve the hydrophobicity of these films, carnauba wax was blended into CCT to produce CCTW film. Properties such as morphology, UV resistance, water solubility, barrier performance, tensile strength, antioxidant, antibacterial and its performance as food packaging were evaluated. Compared with other chitosan-based films, CCTW films exhibited higher UV resistance, tensile strength, thermal stability and hydrophobicity. The addition of both condensed tannin and carnauba wax has significantly decreased the water vapor and oxygen permeability of the CCTW films. The CCTW films were proved capable of repelling most daily consuming liquids. Besides, CCTW films displayed outstanding free radical scavenging rate and antibacterial properties. Meanwhile, bananas wrapped with CCTW films remained fresh for seven days without any mold growth and outperformed other types of films. Apart from that, the CCTW films also showed biodegradable characteristics after exposure to Penicillium sp. These distinguished characteristics made the CCTW films a promising packaging material for long-term food storage.


Assuntos
Antibacterianos , Antioxidantes , Caseínas , Quitosana , Embalagem de Alimentos , Ceras , Embalagem de Alimentos/métodos , Quitosana/química , Antibacterianos/farmacologia , Antibacterianos/química , Caseínas/química , Antioxidantes/química , Antioxidantes/farmacologia , Ceras/química , Resistência à Tração , Solubilidade , Permeabilidade , Vapor , Interações Hidrofóbicas e Hidrofílicas , Taninos/química
2.
Polymers (Basel) ; 15(19)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37835913

RESUMO

The depletion of natural resources and increasing environmental apprehension regarding the reduction of harmful isocyanates employed in manufacturing polyurethanes (PUs) have generated significant attention from both industrial and academic sectors. This attention is focused on advancing bio-based non-isocyanate polyurethane (NIPU) resins as viable and sustainable substitutes, possessing satisfactory properties. This review presents a comprehensive analysis of the progress made in developing bio-based NIPU polymers for wood adhesive applications. The main aim of this paper is to conduct a comprehensive analysis of the latest advancements in the production of high-performance bio-based NIPU resins derived from lignin and tannin for wood composites. A comprehensive evaluation was conducted on scholarly publications retrieved from the Scopus database, encompassing the period from January 2010 to April 2023. In NIPU adhesive manufacturing, the exploration of substitute materials for isocyanates is imperative, due to their inherent toxicity, high cost, and limited availability. The process of demethylation and carbonation of lignin and tannin has the potential to produce polyphenolic compounds that possess hydroxyl and carbonyl functional groups. Bio-based NIPUs can be synthesized through the reaction involving diamine molecules. Previous studies have provided evidence indicating that NIPUs derived from lignin and tannin exhibit enhanced mechanical properties, decreased curing temperatures and shortened pressing durations, and are devoid of isocyanates. The characterization of NIPU adhesives based on lignin and tannin was conducted using various analytical techniques, including Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), matrix-assisted laser desorption/ionization with time-of-flight (MALDI-TOF) mass spectrometry, and gel permeation chromatography (GPC). The adhesive performance of tannin-based NIPU resins was shown to be superior to that of lignin-based NIPUs. This paper elucidates the potential of lignin and tannin as alternate sources for polyols in the manufacturing of NIPUs, specifically for their application as wood adhesives.

3.
Polymers (Basel) ; 15(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36904501

RESUMO

Lignin is a natural biopolymer with a complex three-dimensional network and it is rich in phenol, making it a good candidate for the production of bio-based polyphenol material. This study attempts to characterize the properties of green phenol-formaldehyde (PF) resins produced through phenol substitution by the phenolated lignin (PL) and bio-oil (BO), extracted from oil palm empty fruit bunch black liquor. Mixtures of PF with varied substitution rates of PL and BO were prepared by heating a mixture of phenol-phenol substitute with 30 wt.% NaOH and 80% formaldehyde solution at 94 °C for 15 min. After that, the temperature was reduced to 80 °C before the remaining 20% formaldehyde solution was added. The reaction was carried out by heating the mixture to 94 °C once more, holding it for 25 min, and then rapidly lowering the temperature to 60 °C, to produce the PL-PF or BO-PF resins. The modified resins were then tested for pH, viscosity, solid content, FTIR, and TGA. Results revealed that the substitution of 5% PL into PF resins is enough to improve its physical properties. The PL-PF resin production process was also deemed environmentally beneficial, as it met 7 of the 8 Green Chemistry Principle evaluation criteria.

4.
Polymers (Basel) ; 14(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35808722

RESUMO

Oil palm trunk (OPT) veneers have the potential to be used in the production of plywood for marine applications. However, OPT is not resistant to fungal decay and termites, limiting its use in the production of marine plywood. As a result, in this study, phenolic resin treatment was used to improve the biological durability of OPT and produce marine grade equivalent (MGE) plywood. The OPT veneer was treated with medium molecular weight phenol formaldehyde (MmwPF) resin. The results showed that MmwPF resin with a solid content of 30% resulted in higher weight percent gain and polymer retention. Veneers treated with 30% MmwPF resin were then pressed for more than 10 min at temperatures above 140 °C. Dimensional stability, shear strength, bending strength, fungal decay resistance, and termite resistance were all tested on the plywood produced. The results of this study revealed that MGE plywood has satisfactory bonding quality and excellent biological durability. Good bending strength was recorded for the MGE plywood with modulus of rupture and modulus of elasticity ranged between 31.03 and 38.85 MPa and 4110 and 5120 MPa, respectively. Rubberwood, as a reference sample in this study, is not durable (Class 5) against white rot fungi and is moderately durable (Class III) against subterranean termite attacks. Interestingly, MGE plywood produced in this study was found very durable (Class 1) against white rot fungi. It is also durable (Class II) and very durable (Class I) against termite attacks, depending on the pressing parameters employed. Based on their outstanding bonding quality, bending strength, and biological durability, the study confirmed the feasibility of OPT plywood for marine applications.

5.
Polymers (Basel) ; 13(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34685253

RESUMO

The study investigated the effects of the addition of starch on the properties of oil palm biomass particleboard bonded with citric acid. Three kinds of oil palm biomasses were used in this study for the fabrication of particleboard, namely, oil palm frond (OPF), oil palm trunk (OPT), and empty fruit bunch (EFB) particles. Citric acid and tapioca starch at the mixing ratios of 100:0, 87.5:12.5, and 75:25 were prepared at a 60% solid content. A 30% resin content based on the oven-dried weight of the oil palm biomass particles was used. The sprayed particles were pre-dried at 80 °C for 12 h before being hot-pressed at 180 °C and 4 MPa pressure for 10 min. The physical and mechanical properties of the particleboard were evaluated. The mixtures of citric acid and tapioca starch were characterized by thermogravimetric analysis (TGA). Thermal stability of citric acid was reduced after the addition of tapioca starch. The addition of 12.5% tapioca starch improved the bending strength of the particleboard but increased the thickness swelling slightly. All UF-bonded particleboard exhibited significantly inferior performance than that of citric-acid-bonded particleboard. Citric-acid-bonded particleboard maintained its original shape after being subjected to a cyclic-aging treatment, while the UF-bonded particleboard disintegrated half way through the treatment. The performance of EFB particleboard was significantly inferior to its OPT and OPF counterparts.

6.
Polymers (Basel) ; 12(8)2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32824275

RESUMO

Mechanical strength, thermal conductivity and electrical breakdown of polypropylene/lignin/kenaf core fiber (PP/L/KCF) composite were studied. PP/L, PP/KCF and PP/L/KCF composites with different fiber and lignin loading was prepared using a compounding process. Pure PP was served as control. The results revealed that tensile and flexural properties of the PP/L/KCF was retained after addition of lignin and kenaf core fibers. Thermal stability of the PP composites improved compared to pure PP polymer. As for thermal conductivity, no significant difference was observed between PP composites and pure PP. However, PP/L/KCF composite has higher thermal diffusivity. All the PP composites produced are good insulating materials that are suitable for building. All PP composites passed withstand voltage test in air and oil state as stipulated in IEC 60641-3 except PP/L in oil state. SEM micrograph showed that better interaction and adhesion between polymer matrix, lignin and kenaf core fibers was observed and reflected on the better tensile strength recorded in PP/L/KCF composite. This study has successfully filled the gap of knowledge on using lignin and kenaf fibers as PP insulator composite materials. Therefore, it can be concluded that PP/Lignin/KCF has high potential as an insulating material.

7.
Materials (Basel) ; 13(5)2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164150

RESUMO

Oil palm empty fruit bunch (OPEFB) is considered the cheapest natural fiber with good properties and exists abundantly in Malaysia. It has great potential as an alternative main raw material to substitute woody plants. On the other hand, the well-known polymeric hydrogel has gathered a lot of interest due to its three-dimensional (3D) cross-linked network with high porosity. However, some issues regarding its performance like poor interfacial connectivity and mechanical strength have been raised, hence nanocellulose has been introduced. In this review, the plantation of oil palm in Malaysia is discussed to show the potential of OPEFB as a nanocellulose material in hydrogel production. Nanocellulose can be categorized into three nano-structured celluloses, which differ in the processing method. The most popular nanocellulose hydrogel processing methods are included in this review. The 3D printing method is taking the lead in current hydrogel production due to its high complexity and the need for hygiene products. Some of the latest advanced applications are discussed to show the high commercialization potential of nanocellulose hydrogel products. The authors also considered the challenges and future direction of nanocellulose hydrogel. OPEFB has met the requirements of the marketplace and product value chains as nanocellulose raw materials in hydrogel applications.

8.
Polymers (Basel) ; 13(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396733

RESUMO

The thermal, thermo-mechanical and flammability properties of kenaf core hybrid polymer nanocomposites reinforced with unbleached and bleached nanocrystalline cellulose (NCC) were studied. The studied chemical composition found that unbleached NCC (NCC-UB) had 90% more lignin content compared to bleached NCC (NCC-B). Nanocelluloses were incorporated within polypropylene (PP) as the matrix, together with kenaf core as a main reinforcement and maleic anhydride grafted polypropylene (MAPP) as a coupling agent via a melt mixing compounding process. The result showed that the thermal stability of the nanocomposites was generally affected by the presence of lignin in NCC-UB and sulfate group on the surface of NCC-B. The residual lignin in NCC-UB appeared to overcome the poor thermal stability of the composites that was caused by sulfation during the hydrolysis process. The lignin helped to promote the late degradation of the nanocomposites, with the melting temperature occurring at a relatively higher temperature of 219.1 °C for PP/NCC-UB, compared to 185.9 °C for PP/NCC-B. Between the two types of nanocomposites, PP/NCC-B had notably lower thermo-mechanical properties, which can be attributed to the poor bonding and dispersion properties of the NCC-B in the nanocomposites blend. The PP/NCC-UB showed better thermal properties due to the effect of residual lignin, which acted as a compatibilizer between NCC-UB and polymer matrix, thus improved the bonding properties. The residual lignin in PP/NCC-UB helped to promote char formation and slowed down the burning process, thus increasing the flame resistance of the nanocomposites. Overall, the residual lignin on the surface of NCC-UB appeared to aid better stability on the thermal and flammability properties of the nanocomposites.

9.
Waste Manag ; 100: 128-137, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31536923

RESUMO

Oil palm empty fruit bunch (EFB) is the most significant waste generated from the agricultural industry in Malaysia. Composting is one of the potential approaches to utilize EFB. However, composting of EFB is a time-consuming process, thus impractical for industrial application. The composting process can be shortened by introducing competent fungi into an optimal EFB composting system. This study was conducted to isolate and identify competent fungi that can naturally compost EFB. Samplings were carried out at eight different time points over a 20-weeks experimental period. The physical properties of EFB samples such as pH, residual oil content, and moisture content were measured and the EFB composting process that was indicated by the contents of cellulose, hemicellulose, and lignin were assessed. The fungal growth, distribution, and lignocellulolytic enzyme activities were evaluated. The results indicated that the changes in physical properties of EFB were correlated to the fungal growth. The gradual reduction in moisture content and residual oil, and the increment in pH values in EFB samples throughout the experimental period resulted in reduced fungal growth and diversity. Such phenomenon delayed EFB composting process as revealed by the changes in EFB lignin, hemicellulose, and cellulose contents. The most dominant and resilient fungi (Lichtheimia ramosa and Neurospora crassa) survived up to 16 weeks and were capable of producing various lignocellulolytic enzymes. Further understanding of these factors that would contribute to effective EFB composting could be useful for future industrial applications.


Assuntos
Compostagem , Frutas , Fungos , Malásia , Óleo de Palmeira
10.
J Mech Behav Biomed Mater ; 99: 169-185, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31357064

RESUMO

Since ancient Egypt, orthosis was generally made from wood and then later replaced with metal and leather which are either heavy, bulky, or thick decreasing comfort among the wearers. After the age of revolution, the manufacturing of products using plastics and carbon composites started to spread due to its low cost and form-fitting feature whereas carbon composite were due to its high strength/stiffness to weight ratio. Both plastic and carbon composite has been widely applied into medical devices such as the orthosis and prosthesis. However, carbon composite is also quite expensive, making it the less likely material to be used as an Ankle-Foot Orthosis (AFO) material whereas plastics has low strength. Kenaf composite has a high potential in replacing all the current materials due to its flexibility in controlling the strength to weight ratio properties, cost-effectiveness, abundance of raw materials, and biocompatibility. The aim of this review paper is to discuss on the possibility of using kenaf composite as an alternative material to fabricate orthotics and prosthetics. The discussion will be on the development of orthosis since ancient Egypt until current era, the existing AFO materials, the problems caused by these materials, and the possibility of using a Kenaf fiber composite as a replacement of the current materials. The results show that Kenaf composite has the potential to be used for fabricating an AFO due to its tensile strength which is almost similar to polypropylene's (PP) tensile strength, and the cheap raw material compared to other type of materials.


Assuntos
Órtoses do Pé/história , Órtoses do Pé/tendências , Polipropilenos/química , Desenho de Prótese , Animais , Tornozelo , Materiais Biocompatíveis/química , Carbono/química , Fibra de Carbono , , Hibiscus , História do Século XX , História do Século XXI , História Antiga , Humanos , Teste de Materiais , Plásticos/química , Impressão Tridimensional , Resistência ao Cisalhamento , Propriedades de Superfície , Temperatura , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA