Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Brain ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39021275

RESUMO

Dominant mutations in the calcium-permeable ion channel TRPV4 (transient receptor potential vanilloid 4) cause diverse and largely distinct channelopathies, including inherited forms of neuromuscular disease, skeletal dysplasias, and arthropathy. Pathogenic TRPV4 mutations cause gain of ion channel function and toxicity that can be rescued by small molecule TRPV4 antagonists in cellular and animal models, suggesting that TRPV4 antagonism could be therapeutic for patients. Numerous variants in TRPV4 have been detected with targeted and whole exome/genome sequencing, but for the vast majority, their pathogenicity remains unclear. Here, we used a combination of clinical information and experimental structure-function analyses to evaluate 30 TRPV4 variants across various functional protein domains. We report clinical features of seven patients with TRPV4 variants of unknown significance and provide extensive functional characterization of these and an additional 17 variants, including structural position, ion channel function, subcellular localization, expression level, cytotoxicity, and protein-protein interactions. We find that gain-of-function mutations within the TRPV4 intracellular ankyrin repeat domain target charged amino acid residues important for RhoA interaction, whereas ankyrin repeat domain residues outside of the RhoA interface have normal or reduced ion channel activity. We further identify a cluster of gain-of-function variants within the intracellular intrinsically disordered region that may cause toxicity via altered interactions with membrane lipids. In contrast, assessed variants in the transmembrane domain and other regions of the intrinsically disordered region do not cause gain of function and are likely benign. Clinical features associated with gain of function and cytotoxicity include congenital onset of disease, vocal cord weakness, and motor predominant disease, whereas patients with likely benign variants often demonstrated late-onset and sensory-predominant disease. These results provide a framework for assessing additional TRPV4 variants with respect to likely pathogenicity, which will yield critical information to inform patient selection for future clinical trials for TRPV4 channelopathies.

2.
Plant Biotechnol J ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016470

RESUMO

For several decades, a plant-based expression system has been proposed as an alternative platform for the production of biopharmaceuticals including therapeutic monoclonal antibodies (mAbs), but the immunogenicity concerns associated with plant-specific N-glycans attached in plant-based biopharmaceuticals has not been completely solved. To eliminate all plant-specific N-glycan structure, eight genes involved in plant-specific N-glycosylation were mutated in rice (Oryza sativa) using the CRISPR/Cas9 system. The glycoengineered cell lines, PhytoRice®, contained a predominant GnGn (G0) glycoform. The gene for codon-optimized trastuzumab (TMab) was then introduced into PhytoRice® through Agrobacterium co-cultivation. Selected cell lines were suspension cultured, and TMab secreted from cells was purified from the cultured media. The amino acid sequence of the TMab produced by PhytoRice® (P-TMab) was identical to that of TMab. The inhibitory effect of P-TMab on the proliferation of the BT-474 cancer cell line was significantly enhanced at concentrations above 1 µg/mL (****P < 0.0001). P-TMab bound to a FcγRIIIa variant, FcγRIIIa-F158, more than 2.7 times more effectively than TMab. The ADCC efficacy of P-TMab against Jurkat cells was 2.6 times higher than that of TMab in an in vitro ADCC assay. Furthermore, P-TMab demonstrated efficient tumour uptake with less liver uptake compared to TMab in a xenograft assay using the BT-474 mouse model. These results suggest that the glycoengineered PhytoRice® could be an alternative platform for mAb production compared to current CHO cells, and P-TMab has a novel and enhanced efficacy compared to TMab.

3.
Arch Pharm Res ; 47(1): 82-94, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38150171

RESUMO

Pantoprazole is used to treat gastroesophageal reflux disease (GERD), maintain healing of erosive esophagitis (EE), and control symptoms related to Zollinger-Ellison syndrome (ZES). Pantoprazole is mainly metabolized by cytochrome P450 (CYP) 2C19, converting to 4'-demethyl pantoprazole. CYP2C19 is a genetically polymorphic enzyme, and the genetic polymorphism affects the pharmacokinetics and/or pharmacodynamics of pantoprazole. In this study, we aimed to establish the physiologically based pharmacokinetic (PBPK) model to predict the pharmacokinetics of pantoprazole in populations with various CYP2C19 metabolic activities. A comprehensive investigation of previous reports and drug databases was conducted to collect the clinical pharmacogenomic data, physicochemical data, and disposition properties of pantoprazole, and the collected data were used for model establishment. The model was evaluated by comparing the predicted plasma concentration-time profiles and/or pharmacokinetic parameters (AUC and Cmax) with the clinical observation results. The predicted plasma concentration-time profiles in different CYP2C19 phenotypes properly captured the observed profiles. All fold error values for AUC and Cmax were included in the two-fold range. Consequently, the minimal PBPK model for pantoprazole related to CYP2C19 genetic polymorphism was properly established and it can predict the pharmacokinetics of pantoprazole in different CYP2C19 phenotypes. The present model can broaden the insight into the individualized pharmacotherapy for pantoprazole.


Assuntos
Polimorfismo Genético , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C19/metabolismo , Genótipo , Pantoprazol , Fenótipo , Humanos
4.
Arch Pharm Res ; 47(2): 95-110, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159179

RESUMO

Pitavastatin, a potent 3-hydroxymethylglutaryl coenzyme A reductase inhibitor, is indicated for the treatment of hypercholesterolemia and mixed dyslipidemia. Hepatic uptake of pitavastatin is predominantly occupied by the organic anion transporting polypeptide 1B1 (OATP1B1) and solute carrier organic anion transporter family member 1B1 (SLCO1B1) gene, which is a polymorphic gene that encodes OATP1B1. SLCO1B1 genetic polymorphism significantly alters the pharmacokinetics of pitavastatin. This study aimed to establish the physiologically based pharmacokinetic (PBPK) model to predict pitavastatin pharmacokinetics according to SLCO1B1 genetic polymorphism. PK-Sim® version 10.0 was used to establish the whole-body PBPK model of pitavastatin. Our pharmacogenomic data and a total of 27 clinical pharmacokinetic data with different dose administration and demographic properties were used to develop and validate the model, respectively. Physicochemical properties and disposition characteristics of pitavastatin were acquired from previously reported data or optimized to capture the plasma concentration-time profiles in different SLCO1B1 diplotypes. Model evaluation was performed by comparing the predicted pharmacokinetic parameters and profiles to the observed data. Predicted plasma concentration-time profiles were visually similar to the observed profiles in the non-genotyped populations and different SLCO1B1 diplotypes. All fold error values for AUC and Cmax were included in the two fold range of observed values. Thus, the PBPK model of pitavastatin in different SLCO1B1 diplotypes was properly established. The present study can be useful to individualize the dose administration strategy of pitavastatin in individuals with various ages, races, and SLCO1B1 diplotypes.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Transportadores de Ânions Orgânicos , Quinolinas , Humanos , Polimorfismo Genético , Quinolinas/farmacocinética , Transportadores de Ânions Orgânicos/genética , Transportador 1 de Ânion Orgânico Específico do Fígado/genética
5.
Arch Pharm Res ; 46(8): 713-721, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37728834

RESUMO

Tolperisone, a muscle relaxant used for post-stroke spasticity, is metabolized to its main metabolite by CYP2D6 and to a lesser extent by CYP2C19 and CYP1A2. We investigated the effects of CYP2D6 and CYP2C19 genetic polymorphisms and cigarette smoking on tolperisone pharmacokinetics. A 150 mg oral dose of tolperisone was given to 184 healthy Korean subjects and plasma concentrations of tolperisone were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). A 3.14-fold significant increase in AUC0-∞ was observed in the CYP2D6*10/*10 group compared with the CYP2D6*wt/*wt group, whereas a 3.59-fold increase in AUC0-∞ was observed in CYP2C19PMs compared to CYP2C19EMs. Smokers had a 38.5% decrease in AUC0-∞ when compared to non-smokers. When these effects were combined, CYP2D6*10/*10-CYP2C19PM-Non-smokers had a 25.9-fold increase in AUC0-∞ compared to CYP2D6*wt/*wt-CYP2C19EM-Smokers. Genetic polymorphisms of CYP2D6 and CYP2C19 and cigarette smoking independently and significantly affected tolperisone pharmacokinetics and these effects combined resulted in a much greater impact on tolperisone pharmacokinetics.


Assuntos
Fumar Cigarros , Tolperisona , Humanos , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Tolperisona/farmacocinética , Cromatografia Líquida , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C19/metabolismo , Área Sob a Curva , Espectrometria de Massas em Tandem , Polimorfismo Genético , Genótipo
6.
Arch Pharm Res ; 46(2): 111-116, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36564599

RESUMO

Tolperisone hydrochloride is a centrally-acting muscle relaxant used for relieving spasticities of neurological origin and muscle spasms associated with painful locomotor diseases. It is metabolized to the inactive metabolite mainly by CYP2D6 and, to a lesser extent, by CYP2C19 and CYP1A2. In our previous study, the pharmacokinetics of tolperisone was significantly affected by the genetic polymorphism of CYP2D6, but the wide interindividual variation of tolperisone pharmacokinetics was not explained by genetic polymorphism of CYP2D6 alone. Thus, we studied the effects of CYP2C19 genetic polymorphism on tolperisone pharmacokinetics. Eighty-one subjects with different CYP2C19 genotypes received a single oral dose of 150 mg tolperisone with 240 mL of water, and blood samples were collected up to 12 h after dosing. The plasma concentration of tolperisone was measured by a liquid chromatography-tandem mass spectrometry system. The CYP2C19PM group had significantly higher Cmax and lower CL/F values than the CYP2C19EM and CYP2C19IM groups. The AUCinf of the CYP2C19PM group was 2.86-fold and 3.00-fold higher than the CYP2C19EM and CYP2C19IM groups, respectively. In conclusion, the genetic polymorphism of CYP2C19 significantly affected tolperisone pharmacokinetics.


Assuntos
Tolperisona , Humanos , Tolperisona/farmacocinética , Citocromo P-450 CYP2D6/genética , Voluntários Saudáveis , Citocromo P-450 CYP2C19/genética , Genótipo , Polimorfismo Genético
7.
Theranostics ; 12(17): 7509-7531, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438494

RESUMO

Lipid nanoparticles (LNPs) have been one of the most successful nano-delivery vehicles that enable efficient delivery of cytotoxic chemotherapy agents, antibiotics, and nucleic acid therapeutics. During the coronavirus disease (COVID-19) pandemic, LNP-based COVID-19 messenger RNA (mRNA) vaccines from Pfizer/BioNTech and Moderna have been successfully developed, resulting in global sales of $37 billion and $17.7 billion, respectively, in 2021. Based on this success, the development of multiple LNP-based RNA therapeutics is gaining momentum due to its potential in vaccines and therapeutics for various genetic diseases and cancers. Furthermore, imaging techniques can be utilized to evaluate the pharmacokinetics and pharmacodynamics (PK/PD) effects, which helps target discovery and accelerates the development of LNP-based mRNA therapies. A thorough introduction and explanation of the components of LNPs and its functions along with various production methods of formulating LNPs are provided in this review. Furthermore, recent advances in LNP-based RNA therapeutics in clinics and clinical trials are explored. Additionally, the evaluation of PK/PD of LNPs for RNA delivery and the current and potential roles in developing LNP-based mRNA pharmaceutics through imaging techniques will be discussed.


Assuntos
COVID-19 , RNA , Humanos , Lipídeos , COVID-19/terapia , RNA Mensageiro/genética
8.
Theranostics ; 12(14): 6380-6394, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36168637

RESUMO

Rationale: [18F]fluorodeoxyglucose-positron emission tomography ([18F]FDG-PET) has been widely used as an imaging technique to measure interscapular brown adipose tissue (iBAT) activity. However, it is challenging to obtain iBAT-specific images using [18F]FDG-PET because increased uptake of [18F]FDG is observed in tumors, muscle, and inflamed tissues. Uncoupling protein 1 (UCP1) in the mitochondrial membrane, a well-known molecular marker of BAT, has been proposed as a useful BAT imaging marker. Recently, the UCP1 ThermoMouse was developed as a reporter mouse for monitoring UCP1 expression and investigating BAT activation. In addition, Translocator protein-18 kDa (TSPO) located in the outer mitochondrial membrane is also overexpressed in BAT, suggesting that TSPO-targeting PET has potential for iBAT imaging. However, there are no studies monitoring BAT using TSPO-targeting PET probes in the UCP1 ThermoMouse. Moreover, the non-invasive Cerenkov luminescence imaging (CLI) using Cerenkov radiation from the PET probe has been proposed as an alternative option for PET as it is less expensive and user-friendly. Therefore, we selected [18F]fm-PBR28-d 2 as a TSPO-targeting PET probe for iBAT imaging to evaluate the usefulness of CLI in the UCP1 ThermoMouse. Methods: UCP1 ThermoMouse was used to monitor UCP1 expression. Western blotting and immunohistochemistry were performed to measure the level of protein expression. [18F]fm-PBR28-d 2 and [18F]FDG were used as radioactive probes for iBAT imaging. PET images were acquired with SimPET, and optical images were acquired with IVIS 100. Results: UCP1 ThermoMouse showed that UCP1 and TSPO expressions were correlated in iBAT. In both PET and CLI, the TSPO-targeting probe [18F]fm-PBR28-d 2 was superior to [18F]FDG for acquiring iBAT images. The high molar activity of the probe was essential for CLI and PET imaging. We tested the feasibility of TSPO-targeting probe under cold exposure by imaging with TSPO-PET/CLI. Both signals of iBAT were clearly increased after cold stimulation. Under prolonged isoflurane anesthesia, TSPO-targeting images showed higher signals from iBAT in the short-term than in long-term groups. Conclusion: We demonstrated that TSPO-PET/CLI reflected UCP1 expression in iBAT imaging better than [18F]FDG-PET/CLI under the various conditions. Considering convenience and cost, TSPO-CLI could be used as an alternative TSPO-PET technique for iBAT imaging.


Assuntos
Fluordesoxiglucose F18 , Isoflurano , Tecido Adiposo Marrom/diagnóstico por imagem , Tecido Adiposo Marrom/metabolismo , Animais , Fluordesoxiglucose F18/metabolismo , Isoflurano/metabolismo , Luminescência , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Proteína Desacopladora 1/metabolismo
9.
Nat Commun ; 13(1): 2874, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610228

RESUMO

Single particle cryo-EM often yields multiple protein conformations within a single dataset, but experimentally deducing the temporal relationship of these conformers within a conformational trajectory is not trivial. Here, we use thermal titration methods and cryo-EM in an attempt to obtain temporal resolution of the conformational trajectory of the vanilloid receptor TRPV1 with resiniferatoxin (RTx) bound. Based on our cryo-EM ensemble analysis, RTx binding to TRPV1 appears to induce intracellular gate opening first, followed by selectivity filter dilation, then pore loop rearrangement to reach the final open state. This apparent conformational wave likely arises from the concerted, stepwise, additive structural changes of TRPV1 over many subdomains. Greater understanding of the RTx-mediated long-range allostery of TRPV1 could help further the therapeutic potential of RTx, which is a promising drug candidate for pain relief associated with advanced cancer or knee arthritis.


Assuntos
Fenômenos Bioquímicos , Diterpenos , Microscopia Crioeletrônica , Diterpenos/farmacologia , Conformação Proteica , Canais de Cátion TRPV/metabolismo
10.
Biomol Ther (Seoul) ; 29(2): 127-134, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32812529

RESUMO

Neuroinflammation-a common pathological feature of neurodegenerative disorders such as Alzheimer's disease-is mediated by microglial activation. Thus, inhibiting microglial activation is vital for treating various neurological disorders. 7,3',4'-Trihydroxyisoflavone (THIF)-a secondary metabolite of the soybean compound daidzein-possesses antioxidant and anticancer properties. However, the effects of 7,3',4'-THIF on microglial activation have not been explored. In this study, antineuroinflammatory effects of 7,3',4'-THIF in lipopolysaccharide (LPS)-stimulated BV2 microglial cells were examined. 7,3',4'-THIF significantly suppressed the production of the proinflammatory mediators nitric oxide (NO), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) as well as of the proinflammatory cytokine interleukin-6 (IL-6) in LPS-stimulated BV2 microglial cells. Moreover, 7,3',4'-THIF markedly inhibited reactive oxygen species (ROS) generation. Western blotting revealed that 7,3',4'-THIF diminished LPS-induced phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), glycogen synthase kinase-3ß (GSK-3ß), and nuclear factor kappa B (NF-κB). Overall, 7,3',4'-THIF exerts antineuroinflammatory effects against LPS-induced microglial activation by suppressing mitogen-activated protein kinase (MAPK) and NF-κB signaling, ultimately reducing proinflammatory responses. Therefore, these antineuroinflammatory effects of 7,3',4'-THIF suggest its potential as a therapeutic agent for neurodegenerative disorders.

11.
Arch Pharm Res ; 43(11): 1128-1143, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33225387

RESUMO

Emotional disorders such as anxiety and depression are widespread psychological diseases that affect up to 20% of the world's population. There are many approaches to the discovery of novel agents for the treatment of depressive- and anxiety-like symptoms. However, the efficacy of existing drugs for emotional disorders is only exerted after a few weeks of treatment and have serious side effects. Due to this, new strategies to find suitable and safe options are being sought by many researchers. Among them, a lot of interest has been attracted by plant-derived natural compounds due to their wide range of beneficial effects for new agent development. Flavonoids are natural polyphenol-like compounds found commonly in plants, fruits, vegetables, and medicinal herbs. A diverse range of flavonoids have been studied to investigate their potential therapeutic activities for the treatment of brain-associated disorders, including anxiety and depression. The main aim of this review is to understand the associations between the various flavonoids and the emotional disorders and discuss the therapeutic effects of these natural compounds that were demonstrated during the conduction of recent studies. The current work shows advances in the latest research of some flavonoids as a potential candidate for the treatment of emotional disorders. We summarize their behavioral, molecular, physiological, and neurochemical effects in various in vitro and in vivo models. Therefore, in the present work, the latest studies were collected on the most important flavonoid compounds and their underlying mechanisms of action in emotion-related disorders were discussed.


Assuntos
Afeto/efeitos dos fármacos , Ansiolíticos/uso terapêutico , Antidepressivos/uso terapêutico , Ansiedade/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Depressão/tratamento farmacológico , Emoções/efeitos dos fármacos , Flavonoides/uso terapêutico , Animais , Ansiolíticos/efeitos adversos , Ansiolíticos/farmacocinética , Antidepressivos/efeitos adversos , Antidepressivos/farmacocinética , Ansiedade/metabolismo , Ansiedade/fisiopatologia , Ansiedade/psicologia , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Depressão/metabolismo , Depressão/fisiopatologia , Depressão/psicologia , Flavonoides/efeitos adversos , Flavonoides/farmacocinética , Humanos
12.
Neuron ; 105(5): 882-894.e5, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-31866091

RESUMO

Transient receptor potential channel subfamily A member 1 (TRPA1) is a Ca2+-permeable cation channel that serves as one of the primary sensors of environmental irritants and noxious substances. Many TRPA1 agonists are electrophiles that are recognized by TRPA1 via covalent bond modifications of specific cysteine residues located in the cytoplasmic domains. However, a mechanistic understanding of electrophile sensing by TRPA1 has been limited due to a lack of high-resolution structural information. Here, we present the cryoelectron microscopy (cryo-EM) structures of nanodisc-reconstituted ligand-free TRPA1 and TRPA1 in complex with the covalent agonists JT010 and BITC at 2.8, 2.9, and 3.1 Å, respectively. Our structural and functional studies provide the molecular basis for electrophile recognition by the extraordinarily reactive C621 in TRPA1 and mechanistic insights into electrophile-dependent conformational changes in TRPA1. This work also provides a platform for future drug development targeting TRPA1.


Assuntos
Acetamidas/metabolismo , Irritantes/metabolismo , Isotiocianatos/metabolismo , Canal de Cátion TRPA1/ultraestrutura , Tiazóis/metabolismo , Acetamidas/farmacologia , Microscopia Crioeletrônica , Cisteína/metabolismo , Células HEK293 , Humanos , Irritantes/farmacologia , Isotiocianatos/farmacologia , Modelos Moleculares , Nociceptores , Dor/metabolismo , Técnicas de Patch-Clamp , Fosfolipídeos/metabolismo , Domínios Proteicos , Estrutura Terciária de Proteína , Prurido/metabolismo , Canal de Cátion TRPA1/efeitos dos fármacos , Canal de Cátion TRPA1/metabolismo , Tiazóis/farmacologia
13.
Arch Pharm Res ; 42(12): 1081-1091, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31705299

RESUMO

Daidzein, one of the important isoflavones, is extensively metabolized in the human body following consumption. In particular, 6,7,4'-trihydroxyisoflavone (THIF), a major metabolite of daidzein, has been the focus of recent investigations due to its various health benefits, such as anti-cancer and anti-obesity effects. However, the protective effects of 6,7,4'-THIF have not yet been studied in models of Parkinson's disease (PD). Therefore, the present study aimed to investigate the protective activity of 6,7,4'-THIF on 6-hydroxydopamine (OHDA)-induced neurotoxicity in SH-SY5Y human neuroblastoma cells. Pretreatment of SH-SY5Y cells with 6,7,4'-THIF significantly inhibited 6-OHDA-induced neuronal cell death, lactate dehydrogenase release, and reactive oxygen species production. In addition, 6,7,4'-THIF significantly attenuated reductions in 6-OHDA-induced superoxide dismutase activity and glutathione content. Moreover, 6,7,4'-THIF attenuated alterations in Bax and Bcl-2 expression and caspase-3 activity in 6-OHDA-induced SH-SY5Y cells. Furthermore, 6,7,4'-THIF significantly reduced 6-OHDA-induced phosphorylation of c-Jun N-terminal kinase, p38 mitogen-activated protein kinase, and extracellular signal-regulated kinase 1/2. Additionally, 6,7,4'-THIF effectively prevented 6-OHDA-induced loss of tyrosine hydroxylase. Taken together, these results suggest that 6,7,4'-THIF, a major metabolite of daidzein, may be an attractive option for treating and/or preventing neurodegenerative disorders such as PD.


Assuntos
Antineoplásicos/farmacologia , Isoflavonas/metabolismo , Isoflavonas/farmacologia , Neuroblastoma/tratamento farmacológico , Neurônios/efeitos dos fármacos , Oxidopamina/antagonistas & inibidores , Antineoplásicos/química , Antineoplásicos/metabolismo , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Isoflavonas/química , Estrutura Molecular , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Neurônios/metabolismo , Neurônios/patologia , Estresse Oxidativo/efeitos dos fármacos , Oxidopamina/farmacologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/prevenção & controle , Células Tumorais Cultivadas
14.
Nat Commun ; 10(1): 3740, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31431622

RESUMO

The transient receptor potential melastatin 2 (TRPM2) channel plays a key role in redox sensation in many cell types. Channel activation requires binding of both ADP-ribose (ADPR) and Ca2+. The recently published TRPM2 structures from Danio rerio in the ligand-free and the ADPR/Ca2+-bound conditions represent the channel in closed and open states, which uncovered substantial tertiary and quaternary conformational rearrangements. However, it is unclear how these rearrangements are achieved within the tetrameric channel during channel gating. Here we report the cryo-electron microscopy structures of Danio rerio TRPM2 in the absence of ligands, in complex with Ca2+ alone, and with both ADPR and Ca2+, resolved to ~4.3 Å, ~3.8 Å, and ~4.2 Å, respectively. In contrast to the published results, our studies capture ligand-bound TRPM2 structures in two-fold symmetric intermediate states, offering a glimpse of the structural transitions that bridge the closed and open conformations.


Assuntos
Adenosina Difosfato Ribose/metabolismo , Cálcio/metabolismo , Estrutura Quaternária de Proteína , Canais de Cátion TRPM/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Linhagem Celular , Microscopia Crioeletrônica , Células HEK293 , Humanos , Ativação do Canal Iônico , Técnicas de Patch-Clamp , Células Sf9 , Spodoptera , Canais de Cátion TRPM/química , Peixe-Zebra , Proteínas de Peixe-Zebra/química
15.
Arch Pharm Res ; 42(8): 722-731, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31350730

RESUMO

Isoorientin (ISO) is considered one of the most important flavonoids with various pharmacological effects such as antioxidant, anti-inflammatory, and anti-cancer activities. Despite these beneficial activities, the effects of ISO on learning and memory have not been investigated so far. The current study evaluated the memory-enhancing effects of ISO in a scopolamine-treated mouse model by using the Y-maze and passive avoidance tests. The results showed that ISO (5 and 10 mg/kg, p.o.) treatment significantly improved the cognitive impairments caused by scopolamine. Additionally, ISO significantly decreased scopolamine-induced acetylcholinesterase and thiobarbituric acid reactive substance activities in both the hippocampus and frontal cortex of mice. In addition, ISO significantly increased the levels of total superoxide dismutase induced by scopolamine in the hippocampus and frontal cortex. Moreover, Western blot results indicated that ISO reversed the decreases in expression of phosphorylated cAMP response element binding (CREB) and brain-derived neurotrophic factor (BDNF) in the hippocampus and frontal cortex of scopolamine-treated mice. Thus, our results provide initial evidence that ISO ameliorates scopolamine-induced memory and cognitive impairments partly by restoring the cholinergic system, antioxidant defense, and p-CREB/BDNF signaling pathway, thereby exhibiting memory-enhancing activities.


Assuntos
Antioxidantes/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Colinérgicos/farmacologia , Disfunção Cognitiva/tratamento farmacológico , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Lobo Frontal/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Luteolina/farmacologia , Animais , Colinérgicos/química , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/metabolismo , Lobo Frontal/metabolismo , Hipocampo/metabolismo , Luteolina/química , Masculino , Memória/efeitos dos fármacos , Camundongos , Estrutura Molecular , Escopolamina , Transdução de Sinais/efeitos dos fármacos
16.
Nat Struct Mol Biol ; 26(7): 599-606, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31235912

RESUMO

The human equilibrative nucleoside transporter 1 (hENT1), a member of the SLC29 family, plays crucial roles in adenosine signaling, cellular uptake of nucleoside for DNA and RNA synthesis, and nucleoside-derived anticancer and antiviral drug transport in humans. Because of its central role in adenosine signaling, it is the target of adenosine reuptake inhibitors (AdoRI), several of which are used clinically. Despite its importance in human physiology and pharmacology, the molecular basis of hENT1-mediated adenosine transport and its inhibition by AdoRIs are limited, owing to the absence of structural information on hENT1. Here, we present crystal structures of hENT1 in complex with two chemically distinct AdoRIs: dilazep and S-(4-nitrobenzyl)-6-thioinosine (NBMPR). Combined with mutagenesis study, our structural analyses elucidate two distinct inhibitory mechanisms exhibited on hENT1 and provide insight into adenosine recognition and transport. Our studies provide a platform for improved pharmacological intervention of adenosine and nucleoside analog drug transport by hENT1.


Assuntos
Adenosina/metabolismo , Dilazep/farmacologia , Transportador Equilibrativo 1 de Nucleosídeo/antagonistas & inibidores , Transportador Equilibrativo 1 de Nucleosídeo/química , Tioinosina/análogos & derivados , Cristalografia por Raios X , Dilazep/química , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Humanos , Modelos Moleculares , Conformação Proteica/efeitos dos fármacos , Tioinosina/química , Tioinosina/farmacologia
17.
Int J Oncol ; 53(6): 2518-2530, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30221742

RESUMO

Clinically relevant sirtuin (SIRT) inhibitors may possess antitumor activities. A previous study indicated that 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) exhibited potent anticancer activity by SIRT1 inhibition. Therefore, the aim of the present study was to investigate whether its derivatives (J11-C1 and J19) exhibited anticancer activity against ovarian cancer SKOV3 cells. Cell viability was determined using an MTT assay. Cell cycle arrest, apoptosis and autophagy were determined using flow cytometry or western blot analysis. J11-Cl and J19 were less cytotoxic to SKOV3 cells compared with 15d-PGJ2. Molecular docking studies supported the interactions of 15d-PGJ2, J11-Cl and J19 with various amino acids in SIRT1 proteins. Similar to 15d-PGJ2, J11-C1 and J19 inhibited SIRT1 enzymatic activity and decreased SIRT1 expression levels in a concentration-dependent manner. J11-C1 induced apoptotic cell death more effectively compared with J19, which was associated with markedly decreased expression of the anti-apoptotic molecule B-cell lymphoma 2 (Bcl-2). Furthermore, the levels of light chain 3-Ⅱ (LC3-II) and beclin-1 were clearly induced in SKOV3 cells treated with J11-Cl. Thus, 15d-PGJ2 and its derivatives exhibited anticancer activity possibly by inducing apoptotic or autophagic cell death pathways. Collectively, the results of the present study suggest that 15d-PGJ2 and its derivatives exerted antitumor activity by selectively modulating the expression of genes associated with cell cycle arrest, apoptosis and autophagy. Notably, J11-C1 is a novel candidate SIRT1 inhibitor with anticancer activity.


Assuntos
Antineoplásicos/farmacologia , Proteína Beclina-1/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Neoplasias Ovarianas/metabolismo , Prostaglandina D2/análogos & derivados , Sirtuína 1/metabolismo , Autofagia , Proteína Beclina-1/genética , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas Associadas aos Microtúbulos/genética , Modelos Moleculares , Simulação de Acoplamento Molecular , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Prostaglandina D2/química , Prostaglandina D2/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/química
18.
Korean J Physiol Pharmacol ; 22(5): 577-584, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30181704

RESUMO

Bladder dysfunction is a common complication of diabetes mellitus (DM). However, there have been a few studies evaluating bladder smooth muscle contraction in DM in the presence of pharmacological inhibitors. In the present study, we compared the contractility of bladder smooth muscle from normal rats and DM rats. Furthermore, we utilized pharmacological inhibitors to delineate the mechanisms underlying bladder muscle differences between normal and DM rats. DM was established in 14 days after using a single injection of streptozotocin (65 mg/kg, intraperitoneal) in Sprague-Dawley rats. Bladder smooth muscle contraction was induced electrically using electrical field stimulation consisting of pulse trains at an amplitude of 40 V and pulse duration of 1 ms at frequencies of 2-10 Hz. In this study, the pharmacological inhibitors atropine (muscarinic receptor antagonist), U73122 (phospholipase C inhibitor), DPCPX (adenosine A1 receptor antagonist), udenafil (PDE5 inhibitor), prazosin (α1-receptor antagonist), verapamil (calcium channel blocker), and chelerythrine (protein kinase C inhibitor) were used to pretreat bladder smooth muscles. It was found that the contractility of bladder smooth muscles from DM rats was lower than that of normal rats. In addition, there were significant differences in percent change of contractility between normal and DM rats following pretreatment with prazosin, udenafil, verapamil, and U73122. In conclusion, we suggest that the decreased bladder muscle contractility in DM rats was a result of perturbations in PLC/IP3-mediated intracellular Ca2+ release and PDE5 activity.

19.
Eur J Pharmacol ; 826: 140-147, 2018 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-29510125

RESUMO

Daidzein is one of the major isoflavfones found in soy food and plants. Following ingestion, daidzein is readily converted to hydroxylated metabolites in the human body. 6,7,4'-Trihydroxyisoflavone (THIF), one of the metabolites of daidzein, has several pharmacological activities, including anti-cancer and anti-obesity properties. However, no reports exist on the effects of 6,7,4'-THIF for cognitive function in mice. The present study aimed to investigate the effects of 6,7,4'-THIF against scopolamine-induced learning and memory impairments using the Y-maze and passive avoidance test. A single administration of 6,7,4'-THIF significantly improved scopolamine-induced cognitive dysfunction in these in vivo tests. Moreover, treatment with 6,7,4'-THIF alone enhanced learning and memory performance in the same behavioral tests. Molecular studies showed that 6,7,4'-THIF significantly inhibited acetylcholinesterase and thiobarbituric acid reactive substance (TBARS) activities in the hippocampus of scopolamine-induced mice. In addition, immunohistochemistry and Western blot results revealed that 6,7,4'-THIF significantly increased brain-derived neurotrophic factor (BDNF) and phosphor cAMP response element binding (CREB) in the hippocampus of mice. Taken together, these findings suggest that 6,7,4'-THIF improves cognitive dysfunction induced by scopolamine and enhances learning and memory by activation of the cholinergic system and the p-CREB/BDNF signaling pathway in mice.


Assuntos
Acetilcolinesterase/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Isoflavonas/farmacologia , Transtornos da Memória/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Colinérgicos , Cognição/efeitos dos fármacos , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/patologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Isoflavonas/metabolismo , Isoflavonas/uso terapêutico , Masculino , Malondialdeído/metabolismo , Aprendizagem em Labirinto , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/patologia , Camundongos , Camundongos Endogâmicos ICR , Fosforilação , Escopolamina/toxicidade , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
20.
Arch Pharm Res ; 41(3): 347-353, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29516347

RESUMO

Clomiphene citrate, a selective estrogen receptor modulator, is metabolized into its 4-hydroxylated active metabolites, primarily by CYP2D6. In this study, we investigated the effects of the most common CYP2D6 variant allele in Asians, CYP2D6*10, on the pharmacokinetics of clomiphene and its two active metabolites (4-OH-CLO and 4-OH-DE-CLO) in healthy Korean subjects. A single 50-mg oral dose of clomiphene citrate was given to 22 Korean subjects divided into three genotype groups according to CYP2D6 genotypes, CYP2D6*wt/*wt (n = 8; *wt = *1 or *2), CYP2D6*wt/*10 (n = 8) and CYP2D6*10/*10 (n = 6). Concentrations of clomiphene and its metabolites were determined using a validated HPLC-MS/MS analytical method in plasma samples collected up to 168 h after the drug intake. There was a significant difference only in the Cmax of clomiphene between three CYP2D6 genotype groups (p < 0.05). Paradoxically, the elimination half-life (t1/2) and AUC of both active metabolites were all significantly increased in the CYP2D6*10 homozygous carriers, compared with other genotype groups (all p < 0.001). The AUCinf of corrected clomiphene active moiety in CYP2D6*10/*10 subjects was 2.95- and 2.05-fold higher than that of CYP2D6*wt/*wt and *wt/*10 genotype groups, respectively (both p < 0.001). Along with the partial impacts on the biotransformation of clomiphene and its metabolites by CYP2D6 genetic polymorphism, further studies on the effects of other CYP enzymes in a multiple-dosing condition can provide more definite evidence for the inter-individual variabilities in clomiphene pharmacokinetics and/or drug response.


Assuntos
Alelos , Clomifeno/farmacocinética , Citocromo P-450 CYP2D6/genética , Moduladores Seletivos de Receptor Estrogênico/farmacocinética , Clomifeno/metabolismo , Feminino , Humanos , Masculino , Moduladores Seletivos de Receptor Estrogênico/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA