Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 328, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184609

RESUMO

Membrane-camouflaged nanomedicines often suffer from reduced efficacy caused by membrane protein disintegration and spatial disorder caused by separation and reassembly of membrane fragments during the coating process. Here we show that intracellularly gelated macrophages (GMs) preserve cell membrane structures, including protein content, integration and fluidity, as well as the membrane lipid order. Consequently, in our testing GMs act as cellular sponges to efficiently neutralize various inflammatory cytokines via receptor-ligand interactions, and serve as immune cell-like carriers to selectively bind inflammatory cells in culture medium, even under a flow condition. In a rat model of collagen-induced arthritis, GMs alleviate the joint injury, and suppress the overall arthritis severity. Upon intravenous injection, GMs efficiently accumulate in the inflammatory lungs of acute pneumonia mice for anti-inflammatory therapy. Conveniently, GMs are amenable to lyophilization and can be stored at ambient temperatures for at least 1 month without loss of integrity and bio-activity. This intracellular gelation technology provides a universal platform for targeted inflammation neutralization treatment.


Assuntos
Artrite Experimental , Ratos , Camundongos , Animais , Artrite Experimental/tratamento farmacológico , Meios de Cultura , Citocinas , Liofilização , Macrófagos
2.
Bio Protoc ; 13(12): e4695, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37397790

RESUMO

Cell-based carrier exhibits inherent advantages as the next generation of drug delivery system, namely high biocompatibility and physiological function. Current cell-based carriers are constructed via direct payload internalization or conjugation between cell and payload. However, the cells involved in these strategies must be firstly extracted from the body and the cell-based carrier must be prepared in vitro. Herein, we synthesize bacteria-mimetic gold nanoparticles (GNPs) for the construction of cell-based carrier in mice. Both ß-cyclodextrin (ß-CD)-modified GNPs and adamantane (ADA)-modified GNPs are coated by E. coli outer membrane vesicles (OMVs). The E. coli OMVs induce the phagocytosis of GNPs by circulating immune cells, leading to intracellular degradation of OMVs and subsequent supramolecular self-assembly of GNPs driven by ß-CD-ADA host-guest interactions. In vivo construction of cell-based carrier based on bacteria-mimetic GNPs avoids the immunogenicity induced by allogeneic cells and restriction by the number of separated cells. Due to the inflammatory tropism, endogenous immune cells carry the intracellular GNP aggregates to the tumor tissues in vivo. Graphical overview Collect the outer membrane vesicles (OMVs) of E. coli by gradient centrifugation (a) and coat on gold nanoparticles (GNP) surface (b) to prepare OMV-coated cyclodextrin (CD)-GNPs and OMV-coated adamantane (ADA)-GNPs (c) via ultrasonic method.

3.
Adv Mater ; 35(20): e2211626, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36905923

RESUMO

Immune cells exhibit great potential as carriers of nanomedicine, attributed to their high tolerance to internalized nanomaterials and targeted accumulation in inflammatory tissues. However, the premature efflux of internalized nanomedicine during systemic delivery and slow infiltration into inflammatory tissues have limited their translational applications. Herein, a motorized cell platform as a nanomedicine carrier for highly efficient accumulation and infiltration in the inflammatory lungs and effective treatment of acute pneumonia are reported. ß-Cyclodextrin and adamantane respectively modified manganese dioxide nanoparticles are intracellularly self-assembled into large aggregates mediated via host-guest interactions, to effectively inhibit the efflux of nanoparticles, catalytically consume/deplete H2 O2 to alleviate inflammation, and generate O2 to propel macrophage movement for rapid tissue infiltration. With curcumin loaded into MnO2 nanoparticles, macrophages carry the intracellular nano-assemblies rapidly into the inflammatory lungs via chemotaxis-guided, self-propelled movement, for effective treatment of acute pneumonia via immunoregulation induced by curcumin and the aggregates.


Assuntos
Curcumina , Pneumonia , Curcumina/farmacologia , Curcumina/uso terapêutico , Nanopartículas , Pneumonia/tratamento farmacológico , Quimiotaxia , Macrófagos
4.
J Control Release ; 349: 2-15, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35779655

RESUMO

Current pharmacological treatments of atherosclerosis often target either cholesterol control or inflammation management, to inhibit atherosclerotic progression, but cannot lead to direct plaque lysis and atherosclerotic regression, partly due to the poor accumulation of medicine in the atherosclerotic plaques. Due to enhanced macrophage recruitment during atheromatous plaque progression, a macrophage-liposome conjugate was facilely constructed for targeted anti-atherosclerosis therapy via synergistic plaque lysis and inflammation alleviation. Endogenous macrophage is utilized as drug-transporting cell, upon membrane-modification with a ß-cyclodextrin (ß-CD) derivative to form ß-CD decorated macrophage (CD-MP). Adamantane (ADA) modified quercetin (QT)-loaded liposome (QT-NP), can be conjugated to CD-MP via host-guest interactions between ß-CD and ADA to form macrophage-liposome conjugate (MP-QT-NP). Thus, macrophage carries liposome "hand-in-hand" to significantly increase the accumulation of anchored QT-NP in the aorta plaque in response to the plaque inflammation. In addition to anti-inflammation effects of QT, MP-QT-NP efficiently regresses atherosclerotic plaques from both murine aorta and human carotid arteries via CD-MP mediated cholesterol efflux, due to the binding of cholesterol by excess membrane ß-CD. Transcriptome analysis of atherosclerotic murine aorta and human carotid tissues reveal that MP-QT-NP may activate NRF2 pathway to inhibit plaque inflammation, and simultaneously upregulate liver X receptor to promote cholesterol efflux.


Assuntos
Adamantano , Aterosclerose , Ciclodextrinas , Placa Aterosclerótica , beta-Ciclodextrinas , Adamantano/metabolismo , Adamantano/farmacologia , Adamantano/uso terapêutico , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Colesterol/metabolismo , Ciclodextrinas/farmacologia , Humanos , Inflamação/metabolismo , Lipossomos/metabolismo , Receptores X do Fígado , Macrófagos , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Fator 2 Relacionado a NF-E2/uso terapêutico , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/metabolismo , Quercetina/farmacologia , Quercetina/uso terapêutico , beta-Ciclodextrinas/uso terapêutico
5.
Sci Adv ; 8(19): eabn1805, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35544569

RESUMO

Cell-based drug carriers are mostly prepared in vitro, which may negatively affect the physiological functions of cells, and induce possible immune rejections when applied to different individuals. In addition, the immunosuppressive tumor microenvironment limits immune cell-mediated delivery. Here, we report an in vivo strategy to construct cell-based nanomedicine carriers, where bacteria-mimetic gold nanoparticles (GNPs) are intravenously injected, selectively phagocytosed by phagocytic immune cells, and subsequently self-assemble into sizable intracellular aggregates via host-guest interactions. The intracellular aggregates minimize exocytosis of GNPs from immune cells and activate the photothermal property via plasmonic coupling effects. Phagocytic immune cells carry the intracellular GNP aggregates to melanoma tissue via inflammatory tropism. Moreover, an initial photothermal treatment (PTT) of the tumor induces tumor damage that subsequently provides positive feedback to recruit more immune cell-based carriers for enhanced targeting efficiency. The optimized secondary PTT notably improves antitumor immunotherapy, further strengthened by immune checkpoint blockade.


Assuntos
Melanoma , Nanopartículas Metálicas , Nanopartículas , Neoplasias , Bactérias , Linhagem Celular Tumoral , Ouro , Humanos , Melanoma/tratamento farmacológico , Nanomedicina , Microambiente Tumoral
6.
Biomed Pharmacother ; 132: 110749, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33017766

RESUMO

BACKGROUND: Clofazimine (CFZ), a riminophenazine, is now commonly used in the treatment of multidrug-resistant tuberculosis. However, its use may be potentially associated with cardiac dysfunction in some individuals. In this study, the zebrafish heart, by merit of its developmental and genetic characteristics being in homology with that of human, was chosen as an animal model for evaluation of such dysfunction. METHODS: Morphological and physiological parameters were used to assess cardiac dysfunction. Transcriptome analysis was performed, followed by validation with real-time quantitative PCR, for delineation of the relevant genomics. RESULTS: Exposure of 2 dpf zebrafish to 4 mg/L CFZ for 2 days, adversely affected cardiac functions including significant decreases in HR, SV, CO, and FS, with observable pathophysiological developments of pericardial effusion and blood accumulation in the heart, in comparison with the control group. In addition, genes which respond to xenobiotic stimulus, related to oxygen transport, glutathione metabolism and extracellular matrix -receptor interactions, were significantly enriched among the differentially up-regulated genes. Antioxidant response element motif was enriched in the 5000 base pair upstream regions of the differentially expressed genes. Co-administration of N-acetylcysteine was shown to protect zebrafish against the development of CFZ-induced cardiac dysfunction. CONCLUSIONS: This study suggests an important role of oxidative stress as a major pathogenetic mechanism of riminophenazine-induced cardiac dysfunction.


Assuntos
Antituberculosos/toxicidade , Clofazimina/toxicidade , Cardiopatias/induzido quimicamente , Estresse Oxidativo/efeitos dos fármacos , Acetilcisteína/farmacologia , Animais , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Cardiopatias/fisiopatologia , Cardiopatias/prevenção & controle , Peixe-Zebra
7.
ACS Appl Mater Interfaces ; 12(23): 25604-25615, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32406668

RESUMO

In spite of the rapid emergence of numerous nanoparticles (NPs) for biomedical applications, it is often challenging to precisely control, or effectively tame, the bioactivity/toxicity of NPs, thereby exhibiting limited applications in biomedical areas. Herein, we report the construction of hyaluronic acid (HA)-laminated, otherwise toxic methylviologen (MV), NPs via ternary host-guest complexation among cucurbit[8]uril, trans-azobenzene-conjugated HA, and MV-functionalized polylactic acid NPs (MV-NPs). The high, nonspecific toxicity of MV-NPs was effectively shielded (turned off) by HA lamination, as demonstrated in cells, zebrafish, and mouse models. The supramolecular host-guest interaction-mediated HA coating offered several HA-MV-NP modalities, including hyaluronidase locally and photoirradiation remotely, to precisely remove HA lamination on demand, thereby endowing materials with the capability of selective decoating-induced activation (DIA) for applications as a user-friendly herbicide, a selective antibacterial agent, or an anticancer nanomedicine. This work offers facile supramolecular coating and DIA strategies to effectively tame and precisely control the bioactivity and toxicity of functional nanomaterials for diverse applications.


Assuntos
Antibacterianos/uso terapêutico , Antineoplásicos/uso terapêutico , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Paraquat/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Animais , Antibacterianos/química , Antibacterianos/toxicidade , Antineoplásicos/química , Antineoplásicos/toxicidade , Hidrocarbonetos Aromáticos com Pontes/química , Hidrocarbonetos Aromáticos com Pontes/toxicidade , Linhagem Celular Tumoral , Escherichia coli/efeitos dos fármacos , Feminino , Fluoretos/química , Fluoretos/efeitos da radiação , Gadolínio/química , Gadolínio/efeitos da radiação , Ácido Hialurônico/química , Ácido Hialurônico/toxicidade , Imidazóis/química , Imidazóis/toxicidade , Raios Infravermelhos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Nanopartículas/química , Nanopartículas/efeitos da radiação , Nanopartículas/toxicidade , Paraquat/química , Paraquat/toxicidade , Poliésteres/química , Poliésteres/toxicidade , Staphylococcus aureus/efeitos dos fármacos , Túlio/química , Túlio/efeitos da radiação , Itérbio/química , Itérbio/efeitos da radiação , Peixe-Zebra
8.
Nat Commun ; 11(1): 2622, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32457361

RESUMO

Vascular disease remains the leading cause of death and disability, the etiology of which often involves atherosclerosis. The current treatment of atherosclerosis by pharmacotherapy has limited therapeutic efficacy. Here we report a biomimetic drug delivery system derived from macrophage membrane coated ROS-responsive nanoparticles (NPs). The macrophage membrane not only avoids the clearance of NPs from the reticuloendothelial system, but also leads NPs to the inflammatory tissues, where the ROS-responsiveness of NPs enables specific payload release. Moreover, the macrophage membrane sequesters proinflammatory cytokines to suppress local inflammation. The synergistic effects of pharmacotherapy and inflammatory cytokines sequestration from such a biomimetic drug delivery system lead to improved therapeutic efficacy in atherosclerosis. Comparison to macrophage internalized with ROS-responsive NPs, as a live-cell based drug delivery system for treatment of atherosclerosis, suggests that cell membrane coated drug delivery approach is likely more suitable for dealing with an inflammatory disease than the live-cell approach.


Assuntos
Aterosclerose/tratamento farmacológico , Citocinas/metabolismo , Sistemas de Liberação de Medicamentos , Macrófagos/metabolismo , Nanopartículas/metabolismo , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aterosclerose/metabolismo , Atorvastatina/uso terapêutico , Materiais Biomiméticos , Membrana Celular/metabolismo , Liberação Controlada de Fármacos , Feminino , Camundongos , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Resultado do Tratamento
9.
Org Biomol Chem ; 15(38): 8046-8053, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28795750

RESUMO

Small-molecule kinase inhibitors (SMKIs) have been widely used in the treatment of a variety of cancers due to their clinically demonstrated efficacy. However, the use of some SMKIs, such as sorafenib (SO), has been plagued by their cardiotoxicity that has been frequently observed in treated patients. Herein we report that the encapsulation of SO by a synthetic receptor cucurbit[7]uril (CB[7]) alleviated the inherent cardiotoxicity of SO, as demonstrated in an in vivo zebrafish model. Moreover, the anti-cancer activity of SO was well preserved, upon its encapsulation by CB[7], as demonstrated by both in vitro and in vivo cancer/angiogenesis models. This discovery may provide new insights into a novel supramolecular formulation of SMKIs for the management of their side-effects.


Assuntos
Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Hidrocarbonetos Aromáticos com Pontes/química , Cardiotoxicidade , Imidazóis/química , Niacinamida/análogos & derivados , Compostos de Fenilureia/efeitos adversos , Compostos de Fenilureia/química , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Humanos , Substâncias Macromoleculares , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Neovascularização Fisiológica/efeitos dos fármacos , Niacinamida/efeitos adversos , Niacinamida/química , Sorafenibe , Peixe-Zebra
10.
Nanoscale ; 9(34): 12533-12542, 2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-28819666

RESUMO

In order to realize a combination of chemotherapy and selective drug release into tumor cells, novel pH-sensitive prodrugnanoparticles were designed and prepared via the self-assembly of a synthetic amphiphilic macromolecular prodrug for the selective co-delivery of doxorubicin (Dox) and curcumin (Cur). Dox was covalently conjugated to the oxidized sodium alginate through a Schiff base reaction to produce an amphiphilic macromolecular prodrug, and the prodrug was subsequently self-assembled into nanoparticles (Dox-NPs) in an aqueous solution, which were responsive to the acidic environment in tumor cells. Additionally, a second chemotherapeutic agent, Cur, was encapsulated in the core of nanoparticles (Cur-Dox-NPs) via hydrophobic effects, with a significant drug loading capacity. Cur-Dox-NPs exhibited an efficient release of both Dox and Cur in acidic media and further studies of their intracellular uptake and drug release confirmed that Dox-NPs were easily taken up by cells and selectively released the drug into the human breast cancer cell line MCF-7. In vitro cytotoxicity studies of the NPs showed a remarkable efficacy against MCF-7 cell lines, whereas an improved safety profile was observed in the human breast epithelial cell line MCF-10A. Furthermore, in vivo studies in zebrafish further confirmed an efficient absorption of Dox-NPs. In vivo cardiotoxicity experiments on a zebrafish model showed that Dox-NPs exhibited an improved cardiotoxicity profile in comparison with free Dox. This study demonstrated that this novel pH-sensitive prodrug-nanoparticle system may provide a simple and efficient platform for the selective co-delivery of multiple drugs to tumor cells.


Assuntos
Ácido Algínico/química , Curcumina/administração & dosagem , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos , Nanopartículas , Pró-Fármacos/química , Animais , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Peixe-Zebra
11.
Org Biomol Chem ; 15(20): 4336-4343, 2017 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-28470298

RESUMO

Fasudil (FSD), a selective rho kinase (ROCK) inhibitor, was found to form 1 : 1 host-guest inclusion complexes with a synthetic macrocyclic receptor, cucurbit[7]uril (CB[7]), in aqueous solutions, as evidenced by 1H NMR, photoluminescence and UV-visible spectroscopic titrations, isothermal titration calorimetry (ITC) titration, and electrospray ionization (ESI) mass spectrometry, as well as density functional theory (DFT) molecular modeling. Upon encapsulation, whereas the UV-vis absorbance of FSD experienced a moderate decrease and bathochromic shift, the fluorescence intensity of FSD at 354 nm was dramatically enhanced for up to 69-fold at neutral pH, which could potentially be applied in fluorescent tracking of the drug delivery and release. More interestingly, the binding affinity (Ka = (4.28 ± 0.21) × 106 M-1), of FSD-CB[7] complexes under acidic conditions (pH = 2.0), is approximately three orders of magnitude higher than that (2.2∼6.6 × 103 M-1) under neutral pH conditions (pH = 7.0). Accordingly, UV-visible spectroscopic titration of the free and complexed FSD under various pH conditions has demonstrated that the encapsulation of FSD by CB[7] shifted the pKa of the isoquinoline-N upward from 3.05 to 5.96 (ΔpKa of 2.91). The significantly higher binding affinity of the complexes under acidic conditions may be applied in developing the "enteric" formulation of FSD. Furthermore, our in vitro study of the bioactivity of FSD in the absence and presence of CB[7] on a neural cell line, SH-SY5Y, showed that the complexation preserved the drug's pro-neurite efficacy. Thus this discovery may lead to a fluorescence-trackable, orally administered enteric formulation of rho kinase inhibitors that are stable under gastric conditions, without compromising bioactivity of the drugs.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Hidrocarbonetos Aromáticos com Pontes/química , Fluorescência , Imidazóis/química , Inibidores de Proteínas Quinases/química , Quinases Associadas a rho/antagonistas & inibidores , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/química , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Concentração de Íons de Hidrogênio , Imidazóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Quinases Associadas a rho/metabolismo
12.
Int J Mol Sci ; 18(1)2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-28067784

RESUMO

Sailuotong (SLT) is a standardised three-herb formulation consisting of Panax ginseng, Ginkgo biloba, and Crocus sativus designed for the management of vascular dementia. While the latest clinical trials have demonstrated beneficial effects of SLT in vascular dementia, the underlying cellular mechanisms have not been fully explored. The aim of this study was to assess the ability and mechanisms of SLT to act against hydrogen peroxide (H2O2)-induced oxidative damage in cultured human vascular endothelial cells (EAhy926). SLT (1-50 µg/mL) significantly suppressed the H2O2-induced cell death and abolished the H2O2-induced reactive oxygen species (ROS) generation in a concentration-dependent manner. Similarly, H2O2 (0.5 mM; 24 h) caused a ~2-fold increase in lactate dehydrogenase (LDH) release from the EA.hy926 cells which were significantly suppressed by SLT (1-50 µg/mL) in a concentration-dependent manner. Incubation of SLT (50 µg/mL) increased superoxide dismutase (SOD) activity and suppressed the H2O2-enhanced Bax/Bcl-2 ratio and cleaved caspase-3 expression. In conclusion, our results suggest that SLT protects EA.hy916 cells against H2O2-mediated injury via direct reduction of intracellular ROS generation and an increase in SOD activity. These protective effects are closely associated with the inhibition of the apoptotic death cascade via the suppression of caspase-3 activation and reduction of Bax/Bcl-2 ratio, thereby indicating a potential mechanism of action for the clinical effects observed.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Células Endoteliais/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Espécies Reativas de Oxigênio/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Western Blotting , Caspase 3/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Endoteliais/metabolismo , Humanos , L-Lactato Desidrogenase/metabolismo , Oxidantes/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Proteína X Associada a bcl-2/metabolismo
13.
J Mater Chem B ; 5(12): 2337-2346, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32263625

RESUMO

To enhance selective drug release and overcome undesired side effects, novel disulfide crosslinked sodium alginate nanoparticles were designed for achieving glutahione triggered drug release in tumor cells. The doxorubicin loaded crosslinked nanoparticles (DOX-NPs) demonstrated selective drug release in 10 mM glutathione and the further study of their cellular uptake and intracellular release confirmed that the crosslinked nanoparticles could be easily taken up and they only released the encapsulated therapeutic payload in cancer cells. The in vitro cytotoxicity of crosslinked DOX-NPs showed a selective and remarkable cytotoxic effect on Hep-G2 and HeLa cells, instead of on healthy human liver L-O2 cells. More interestingly, the otherwise cardiotoxic DOX showed no cardiotoxicity when formulated as crosslinked DOX-NPs, in an in vivo zebrafish model. This study has demonstrated that the disulfide crosslinked nanoparticle system may provide a promising drug delivery platform for selective drug release in cancer cells with a much improved safety profile.

14.
Eur J Pharmacol ; 767: 30-40, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26452518

RESUMO

In this study, we evaluated the anabolic effect and the underlying cellular mechanisms involved of vitamin K2 (10 nM) and 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) (10 nM), alone and in combination, on primary osteoblasts harvested from the iliac crests of C57BL/KsJ lean (+/+) and obese/diabetic (db/db) mice. A lower alkaline phosphatase (ALP) activity plus a reduced expression of bone anabolic markers and bone formation transcription factors (osteocalcin, Runx2, Dlx5, ATF4 and OSX) were consistently detected in osteoblasts of db/db mice compared to lean mice. A significantly higher calcium deposits formation in osteoblasts was observed in lean mice when compared to db/db mice. Co-administration of vitamin K2 (10 nM) and 1,25(OH)2D3 (10 nM) caused an enhancement of calcium deposits in osteoblasts in both strains of mice. Vitamins K2 and 1,25(OH)2D3 co-administration time-dependently (7, 14 and 21 days) increased the levels of bone anabolic markers and bone formation transcription factors, with a greater magnitude of increase observed in osteoblasts of db/db mice. Combined vitamins K2 plus 1,25(OH)2D3 treatment significantly enhanced migration and the re-appearance of surface microvilli and ruffles of osteoblasts of db/db mice. Thus, our results illustrate that vitamins K2 plus D3 combination could be a novel therapeutic strategy in treating diabetes-associated osteoporosis.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Vitamina D/análogos & derivados , Vitamina K 2/farmacologia , Fator 4 Ativador da Transcrição , Fosfatase Alcalina/metabolismo , Animais , Calcitriol , Cálcio/metabolismo , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/biossíntese , Sinergismo Farmacológico , Proteínas de Homeodomínio , Masculino , Camundongos , Osteocalcina/biossíntese , Fator de Transcrição Sp7 , Fatores de Transcrição/biossíntese , Vitamina D/farmacologia
15.
Biochim Biophys Acta ; 1850(6): 1253-60, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25731980

RESUMO

BACKGROUND: Animal venoms contain a diverse array of proteins and enzymes that are toxic toward various physiological systems. However, there are also some practical medicinal uses for these toxins including use as anti-bacterial and anti-tumor agents. METHODS: In this study, we identified a nine-residue cryptic oligopeptide, KRFKKFFKK (EVP50) that is repeatedly encoded in tandem within vipericidin sequences. RESULTS: EVP50 displayed in vivo potent lethal toxicity to zebrafish larvae (LD50=6 µM) when the peptide's N-terminus was chemically conjugated to rhodamine B (RhoB). In vitro, RhoB-conjugated EVP50 (RhoB-EVP50) exhibited a concentration-dependent cytotoxic effect toward MCF-7 and MDA-MB-231 breast cancer cells. In MCF-7 cells, the RhoB-EVP50 nonapeptide accumulated inside the cells within minutes. In the cytoplasm, the RhoB-EVP50 induced extracellular calcium influx and intracellular calcium release. Membrane budding was also observed after incubation with micromolar concentrations of the fluorescent EVP50 conjugate. CONCLUSIONS: The conjugate's interference with calcium homeostasis, its intracellular accumulation and its induced membrane dysfunction (budding and vacuolization) seem to act in concert to disrupt the cell circuitry. Contrastively, unconjugated EVP50 peptide did not display neither toxic nor cytotoxic activities in our in vivo and in vitro models. GENERAL SIGNIFICANCE: The synergic mechanism of toxicity was restricted to the structurally modified encrypted vipericidin nonapeptide.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Catelicidinas/farmacologia , Oligopeptídeos/farmacologia , Rodaminas/farmacologia , Venenos de Víboras/química , Peixe-Zebra/embriologia , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos , Antineoplásicos/isolamento & purificação , Antineoplásicos/metabolismo , Antineoplásicos/toxicidade , Neoplasias da Mama/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Catelicidinas/isolamento & purificação , Catelicidinas/metabolismo , Catelicidinas/toxicidade , Membrana Celular/efeitos dos fármacos , Membrana Celular/patologia , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Humanos , Larva/efeitos dos fármacos , Dose Letal Mediana , Células MCF-7 , Dados de Sequência Molecular , Oligopeptídeos/isolamento & purificação , Oligopeptídeos/metabolismo , Oligopeptídeos/toxicidade , Rodaminas/metabolismo , Rodaminas/toxicidade , Fatores de Tempo
16.
Analyst ; 140(4): 1237-52, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25554751

RESUMO

An automatable, robust, high-performance online multidimensional liquid chromatography (MDLC) platform comprising of pH 10 reversed-phase (RP), strong cation exchange (SCX), and pH 2 RP separation stages has been integrated into a modified commercial off-the-shelf LC instrument with a simple rewiring, enabling accelerated routine qualitative and quantitative proteomics analyses. This system has been redesigned with a dual-trap column configuration to improve the throughput by greatly decreasing the system idle time. The performance of this new design has been benchmarked through analysis of the total lysate of S. cerevisiae, in comparison with that of the former tailor-made system featuring more complicated components; the total run time per "load-and-go" LC/MS analysis was approximately 24 h, with minimal idle time and no labor-intensive steps. This platform features high-resolution fractionations, ease of use and a high degree of user programmability in the first two chromatographic dimensions, allowing flexible and effective sampling with (RP-SCX-RP) or without (RP-RP) the inclusion of SCX sub-fractionation; good proteome coverage and reproducibility was demonstrated through the analyses of bacterial, cell culture, and monkey brain tissue proteomes. The viability of the 3D RP-SCX-RP has been proven in proteome-wide studies of STO fibroblasts and yeast tryptic digests, resulting in extended proteome and protein coverages with high reproducibility-in particular, discovering extra-hydrophilic peptides-at the expense of the acquisition time. The identified inventory of the rat pheochromocytoma PC12 cell proteome-a total of 6345 proteins and 97 309 unique peptides is the most comprehensive dataset to date-provides an example of the value of the 3D RP-SCX-RP. The use of orthogonal chromatographic dimensions in the 3D RP-SCX-RP also circumvents the issues of isobaric interference of mass-tagging background contaminations, while significantly improving the accuracy of isobaric tags for relative and absolute quantitation (iTRAQ)-based protein quantitation experiments.


Assuntos
Cromatografia por Troca Iônica/instrumentação , Cromatografia de Fase Reversa/instrumentação , Peptídeos/análise , Proteoma/análise , Proteômica/instrumentação , Animais , Química Encefálica , Cátions/química , Desenho de Equipamento , Haplorrinos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Espectrometria de Massas , Peptídeos/isolamento & purificação , Proteoma/isolamento & purificação , Ratos , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/isolamento & purificação
17.
Anticancer Agents Med Chem ; 14(9): 1213-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25175685

RESUMO

Indirubin is an active ingredient mainly used to treat leukemia in China and is reported to be a leading inhibitor of cyclindependent kinases (CDKs) and glycogen synthase kinase-3 (GSK-3) by competing with ATP binding sites. New findings have indicated that its comprehensive structure may contribute to its polypharmacological activities particularly in cancer and neurodegenerative disease therapy, as both of these diseases are usually accompanied by a common molecular link related to abnormal phosphorylation of CDKs and GSK-3. In the elderly, cancer and neurodegenerative disease are tightly associated common diseases and sometimes unavoidably coexist. In this review, the underlying mechanisms of the dual actions of indirubin and its structurally-related compounds in cancer and neurodegenerative disease therapy are presented.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Animais , Antineoplásicos/química , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/metabolismo , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Indóis/química , Indóis/uso terapêutico , Neoplasias/enzimologia , Doenças Neurodegenerativas/enzimologia , Fármacos Neuroprotetores/química , Fosforilação , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
18.
PLoS One ; 9(1): e87556, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24498135

RESUMO

BACKGROUND: Dinoponera quadriceps is a predatory giant ant that inhabits the Neotropical region and subdues its prey (insects) with stings that deliver a toxic cocktail of molecules. Human accidents occasionally occur and cause local pain and systemic symptoms. A comprehensive study of the D. quadriceps venom gland transcriptome is required to advance our knowledge about the toxin repertoire of the giant ant venom and to understand the physiopathological basis of Hymenoptera envenomation. RESULTS: We conducted a transcriptome analysis of a cDNA library from the D. quadriceps venom gland with Sanger sequencing in combination with whole-transcriptome shotgun deep sequencing. From the cDNA library, a total of 420 independent clones were analyzed. Although the proportion of dinoponeratoxin isoform precursors was high, the first giant ant venom inhibitor cysteine-knot (ICK) toxin was found. The deep next generation sequencing yielded a total of 2,514,767 raw reads that were assembled into 18,546 contigs. A BLAST search of the assembled contigs against non-redundant and Swiss-Prot databases showed that 6,463 contigs corresponded to BLASTx hits and indicated an interesting diversity of transcripts related to venom gene expression. The majority of these venom-related sequences code for a major polypeptide core, which comprises venom allergens, lethal-like proteins and esterases, and a minor peptide framework composed of inter-specific structurally conserved cysteine-rich toxins. Both the cDNA library and deep sequencing yielded large proportions of contigs that showed no similarities with known sequences. CONCLUSIONS: To our knowledge, this is the first report of the venom gland transcriptome of the New World giant ant D. quadriceps. The glandular venom system was dissected, and the toxin arsenal was revealed; this process brought to light novel sequences that included an ICK-folded toxins, allergen proteins, esterases (phospholipases and carboxylesterases), and lethal-like toxins. These findings contribute to the understanding of the ecology, behavior and venomics of hymenopterans.


Assuntos
Venenos de Formiga/biossíntese , Formigas/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas de Insetos/biossíntese , Transcriptoma/fisiologia , Animais , Venenos de Formiga/genética , Formigas/genética , Perfilação da Expressão Gênica/métodos , Humanos , Proteínas de Insetos/genética
19.
PLoS One ; 7(9): e46253, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23049997

RESUMO

SU5416 was originally designed as a potent and selective inhibitor of vascular endothelial growth factor receptor-2 (VEGFR-2) for cancer therapy. In this study, we have found for the first time that SU5416 unexpectedly prevented 1-methyl-4-phenylpyridinium ion (MPP(+))-induced neuronal apoptosis in cerebellar granule neurons, and decreased 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced loss of dopaminergic neurons and impairment of swimming behavior in zebrafish in a concentration-dependent manner. However, VEGFR-2 kinase inhibitor II, another specific VEGFR-2 inhibitor, failed to reverse neurotoxicity at the concentration exhibiting anti-angiogenic activity, strongly suggesting that the neuroprotective effect of SU5416 is independent from its anti-angiogenic action. SU5416 potently reversed MPP(+)-increased intracellular nitric oxide level with an efficacy similar to 7-nitroindazole, a specific neuronal nitric oxide synthase (nNOS) inhibitor. Western blotting analysis showed that SU5416 reduced the elevation of nNOS protein expression induced by MPP(+). Furthermore, SU5416 directly inhibited the enzyme activity of rat cerebellum nNOS with an IC(50) value of 22.7 µM. In addition, knock-down of nNOS expression using short hairpin RNA (shRNA) abolished the neuroprotective effects of SU5416 against MPP(+)-induced neuronal loss. Our results strongly demonstrate that SU5416 might exert its unexpected neuroprotective effects by concurrently reducing nNOS protein expression and directly inhibiting nNOS enzyme activity. In view of the capability of SU5416 to cross the blood-brain barrier and the safety for human use, our findings further indicate that SU5416 might be a novel drug candidate for neurodegenerative disorders, particularly those associated with NO-mediated neurotoxicity.


Assuntos
1-Metil-4-fenilpiridínio/farmacologia , Indóis/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Óxido Nítrico Sintase Tipo I/metabolismo , Pirróis/farmacologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Animais , Western Blotting , Células Cultivadas , Óxido Nítrico Sintase Tipo I/genética , Células PC12 , Ratos , Ratos Sprague-Dawley , Peixe-Zebra
20.
J Agric Food Chem ; 60(33): 8171-82, 2012 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-22838648

RESUMO

Baicalein, one of the major flavonoids found in Scutellaria baicalensis Georgi, displays neuroprotective effects on experimental models of Parkinson's disease (PD) in vitro and in vivo. Although the antioxidative and/or anti-inflammatory activity of baicalein likely contributes to these neuroprotective effects, other modes of action remain largely uncharacterized. In the present study, baicalein pretreatment significantly prevented cells from 6-hydroxydopamine (6-OHDA)-induced damage by attenuating cellular apoptosis. However, post-treatment with baicalein did not show any restorative effect against 6-OHDA-induced cellular damage. We found that baicalein increased transcriptional factor NF-E2-related factor 2 (Nrf2)/hemo oxygenase 1(HO-1) protein expression and decreased Kelch-like ECH-associated protein 1 (Keap1) in a time- and concentration-dependent manner in PC12 cells. In addition, baicalein induced Nrf2 nuclear translocation and enhanced antioxidant response element (ARE) transcriptional activity, which conferred cytoprotection against 6-OHDA-induced oxidative injury. Moreover, we demonstrated that cytoprotective effects of baicalein could be attenuated by Nrf2 siRNA transfection and the HO-1 inhibitor zinc protoporphyrin (Znpp) as well as the proteasome inhibitor MG132. Furthermore, PKCα and AKT protein phosphorylation were up-regulated by baicalein pretreatment, and selective inhibitors targeted to PKC, PI3K, and AKT could block the cytoprotective effects of baicalein. Taken together, our results indicate that baicalein prevented PC12 cells from 6-OHDA-induced oxidative damage via the activation of Keap1/Nrf2/HO-1, and it also involves the PKCα and PI3K/AKT signaling pathway. Ultimately, the neuroprotective effects of baicalein may endue baicalein as a promising candidate for the prevention of PD.


Assuntos
Flavanonas/farmacologia , Heme Oxigenase (Desciclizante)/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteína Quinase C-alfa/metabolismo , Proteínas/metabolismo , Transdução de Sinais , Animais , Elementos de Resposta Antioxidante/efeitos dos fármacos , Antioxidantes/farmacologia , Citoproteção , Peptídeos e Proteínas de Sinalização Intracelular , Proteína 1 Associada a ECH Semelhante a Kelch , Leupeptinas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Oxidopamina/toxicidade , Células PC12 , Fosforilação , Inibidores de Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Protoporfirinas/farmacologia , Ratos , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA