Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(7): 4532-4541, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38326951

RESUMO

Here, we present the synthesis and characterization of a novel 2D crystalline framework, named C2O, which mainly consists of carbon and oxygen in a 2:1 molar ratio and features crown ether holes in its skeletal structure. The covalent-frameworked 2D crown ether can be synthesized on a gram-scale and exhibits fine chemical stability in various environments, including acid, base, and different organic solvents. The C2O efficiently activates KI through the strong coordination of K+ with crown ether holes in a rigid framework, which enhances the nucleophilicity of I- and significantly improves its catalytic activity for CO2 fixation with epoxides. The presence of C2O with KI results in remarkable increases in CO2 conversion from 5.7% to 99.9% and from 2.9% to 74.2% for epichlorohydrin and allyl glycidyl ether, respectively. Moreover, C2O possesses both electrophilic and nucleophilic sites at the edge of its framework, allowing for the customization of physicochemical properties by a diverse range of chemical modifications. Specifically, incorporating allyl glycidyl ether (AGE) as an electrophile or ethoxyethylamine (EEA) as a nucleophile into C2O enables the synthesis of C2O-AGE or C2O-EEA, respectively. These modified frameworks exhibit improved conversions of 97.2% and 99.9% for CO2 fixation with allyl glycidyl ether, outperforming unmodified C2O showing a conversion of 74.2%. This newly developed scalable, durable, and customizable covalent framework holds tremendous potential for the design and preparation of outstanding materials with versatile functionalities, rendering them highly attractive for a wide range of applications.

2.
Sci Transl Med ; 15(688): eabq2395, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36947594

RESUMO

Adult mammals are incapable of multitissue regeneration, and augmentation of this potential may shift current therapeutic paradigms. We found that a common co-receptor of interleukin 6 (IL-6) cytokines, glycoprotein 130 (gp130), serves as a major nexus integrating various context-specific signaling inputs to either promote regenerative outcomes or aggravate disease progression. Via genetic and pharmacological experiments in vitro and in vivo, we demonstrated that a signaling tyrosine 814 (Y814) within gp130 serves as a major cellular stress sensor. Mice with constitutively inactivated Y814 (F814) were resistant to surgically induced osteoarthritis as reflected by reduced loss of proteoglycans, reduced synovitis, and synovial fibrosis. The F814 mice also exhibited enhanced regenerative, not reparative, responses after wounding in the skin. In addition, pharmacological modulation of gp130 Y814 upstream of the SRC and MAPK circuit by a small molecule, R805, elicited a protective effect on tissues after injury. Topical administration of R805 on mouse skin wounds resulted in enhanced hair follicle neogenesis and dermal regeneration. Intra-articular administration of R805 to rats after medial meniscal tear and to canines after arthroscopic meniscal release markedly mitigated the appearance of osteoarthritis. Single-cell sequencing data demonstrated that genetic and pharmacological modulation of Y814 resulted in attenuation of inflammatory gene signature as visualized by the anti-inflammatory macrophage and nonpathological fibroblast subpopulations in the skin and joint tissue after injury. Together, our study characterized a molecular mechanism that, if manipulated, enhances the intrinsic regenerative capacity of tissues through suppression of a proinflammatory milieu and prevents pathological outcomes in injury and disease.


Assuntos
Citocinas , Osteoartrite , Camundongos , Ratos , Animais , Cães , Receptor gp130 de Citocina , Interleucina-6 , Proteoglicanas , Mamíferos
3.
Int J Mol Sci ; 23(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36077170

RESUMO

The dynamics of uterine endometrium is important for successful establishment and maintenance of embryonic implantation and development, along with extensive cell differentiation and proliferation. The tissue event is precisely and complicatedly regulated as several signaling pathways are involved including two main hormones, estrogen and progesterone signaling. We previously showed a novel signaling molecule, Serine/threonine protein kinase 3/4 (STK3/4), which is responded to hormone in the mouse uterine epithelium. However, the role and regulation of its target, YES-associated protein (YAP) remains unknown. In this study, we investigated the expression and regulation of YAP in mouse endometrium. We found that YAP was periodically expressed in the endometrium during the estrous cycle. Furthermore, periodic expression of YAP was shown to be related to the pathway under hormone treatment. Interestingly, estrogen was shown to positively modulate YAP via endometrial epithelial receptors. In addition, the knockdown of YAP showed that YAP regulated various target genes in endometrial cells. The knockdown of YAP down-regulated numerous targets including ADAMTS1, AMOT, AMOTL1, ANKRD1, CTNNA1, MCL1. On the other hand, the expressions of AREG and AXL were increased by its knockdown. These findings imply that YAP responds via Hippo signaling under various intrauterine signals and is considered to play a role in the expression of factors important for uterine endometrium dynamic regulation.


Assuntos
Estrogênios , Proteínas Serina-Treonina Quinases , Útero/metabolismo , Proteínas de Sinalização YAP/metabolismo , Animais , Estrogênios/metabolismo , Feminino , Camundongos , Progesterona/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais
4.
Front Cell Infect Microbiol ; 12: 909218, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35899045

RESUMO

Background: Despite the use of vaccines and therapeutics against the coronavirus disease 2019 (COVID-19) pandemic, this severe disease has been a critical burden on public health, whereas the pathogenic mechanism remains elusive. Recently, accumulating evidence underscores the potential role of the aberrant B-cell response and humoral immunity in disease progression, especially in high-risk groups. Methods: Using single-cell RNA (scRNA) sequencing analysis, we investigated transcriptional features of B-cell population in peripheral blood from COVID-19 patients and compared them, according to clinical severity and disease course, against a public B-cell dataset. Results: We confirmed that acute B cells differentiate into plasma cells, particularly in severe patients, potentially through enhanced extrafollicular (EF) differentiation. In severe groups, the elevated plasma B-cell response displayed increased B-cell receptor (BCR) diversity, as well as higher levels of anti-severe acute respiratory syndrome coronavirus 2 (anti-SARS-CoV-2) spike antibodies in plasma, than those in moderate cases, suggesting more robust and heterogeneous plasma cell response in severe COVID-19 patients. Trajectory analysis identified a differentiation pathway for the EF B-cell response from active naïve to atypical memory B cells (AM2), in addition to the emergence of an aberrant plasma cell subset (PC2), which was associated with COVID-19 progression and severity. The AM2 and PC2 subsets surged in the acute phase of the severe disease and presented multiple inflammatory features, including higher cytokine expression and humoral effector function, respectively. These features differ from other B-cell subsets, suggesting a pathogenic potential for disease progression. Conclusion: The acute surge of AM2 and PC2 subsets with lower somatic hypermutation and higher inflammatory features may be driven by the EF B-cell response during the acute phase of severe COVID-19 and may represent one of the critical drivers in disease severity.


Assuntos
Subpopulações de Linfócitos B , COVID-19 , Anticorpos Antivirais , Progressão da Doença , Humanos , Pandemias
5.
Int J Mol Sci ; 23(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35409214

RESUMO

The uterus is essential for embryo implantation and fetal development. During the estrous cycle, the uterine endometrium undergoes dramatic remodeling to prepare for pregnancy. Angiogenesis is an essential biological process in endometrial remodeling. Steroid hormones regulate the series of events that occur during such remodeling. Researchers have investigated the potential factors, including angiofactors, involved in endometrial remodeling. The Hippo signaling pathway discovered in the 21st century, plays important roles in various cellular functions, including cell proliferation and cell death. However, its role in the endometrium remains unclear. In this review, we describe the female reproductive system and its association with the Hippo signaling pathway, as well as novel Hippo pathway genes and potential target genes.


Assuntos
Endométrio , Via de Sinalização Hippo , Implantação do Embrião/fisiologia , Endométrio/metabolismo , Ciclo Estral/fisiologia , Feminino , Humanos , Gravidez , Útero/metabolismo
6.
Front Immunol ; 13: 837590, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281008

RESUMO

IL-32 plays a contradictory role such as tumor proliferation or suppressor in cancer development depending on the cancer type. In most cancers, it was found that the high expression of IL-32 was associated with more proliferative and progression of cancer. However, studying the isoforms of IL-32 cytokine has placed its paradoxical role into a wide range of functions based on its dominant isoform and surrounding environment. IL-32ß, for example, was found mostly in different types of cancer and associated with cancer expansion. This observation is legitimate since cancer exhibits some hypoxic environment and IL-32ß was known to be induced under hypoxic conditions. However, IL-32θ interacts directly with protein kinase C-δ reducing NF-κB and STAT3 levels to inhibit epithelial-mesenchymal transition (EMT). This effect could explain the different functions of IL-32 isoforms in cancer. However, pro- or antitumor activity which is dependant on obesity, gender, and age as it relates to IL-32 has yet to be studied. Obesity-related IL-32 regulation indicated the role of IL-32 in cancer metabolism and inflammation. IL-32-specific direction in cancer therapy is difficult to conclude. In this review, we address that the paradoxical effect of IL-32 on cancer is attributed to the dominant isoform, cancer type, tumor microenvironment, and genetic background. IL-32 seems to have a contradictory role in cancer. However, investigating multiple IL-32 isoforms could explain this doubt and bring us closer to using them in therapy.


Assuntos
Interleucinas , Neoplasias , Humanos , Interleucinas/genética , NF-kappa B/metabolismo , Obesidade , Isoformas de Proteínas/genética , Microambiente Tumoral
7.
Front Immunol ; 13: 837588, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281066

RESUMO

Cytokines are significantly associated with the homeostasis of immune responses in health and disease. Interleukin-32 (IL-32) is a cytokine originally discovered in natural killer cell transcript 4. IL-32 with different disorders has been described in terms of pathogenesis and the progression of diseases. Clinical studies have investigated IL-32 under various conditions, such as viral infection, autoimmune diseases, inflammatory diseases, certain types of cancer, vascular disease, and pulmonary diseases. The high expression of IL-32 was identified in different tissues with various diseases and found to have multiple transcripts of up to seven isoforms. However, the purification and biological activities of these isoforms have not been investigated yet. Therefore, in this study, we purified and compared the biological activity of recombinant IL-32 (rIL-32) isoforms. This is the first time for seven rIL-32 isoforms (α, ß, δ, γ, ϵ, ζ, and θ) to be cloned and purified using an Escherichia coli expression system. Next, we evaluate the biological activities of these seven rIL-32 isoforms, which were used to treat different types of cells by assessing the levels of inflammatory cytokine production. The results revealed that rIL-32θ possessed the most dominant biological activity in both immune and non-immune cells.


Assuntos
Interleucinas , Expressão Gênica , Interleucinas/genética , Interleucinas/metabolismo , Isoformas de Proteínas/genética
8.
Cell Death Dis ; 12(2): 159, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33558527

RESUMO

Although tetraarsenic hexoxide is known to exert an anti-tumor effect by inducing apoptosis in various cancer cells, its effect on other forms of regulated cell death remains unclear. Here, we show that tetraarsenic hexoxide induces the pyroptotic cell death through activation of mitochondrial reactive oxygen species (ROS)-mediated caspase-3/gasdermin E (GSDME) pathway, thereby suppressing tumor growth and metastasis of triple-negative breast cancer (TNBC) cells. Interestingly, tetraarsenic hexoxide-treated TNBC cells exhibited specific pyroptotic characteristics, including cell swelling, balloon-like bubbling, and LDH releases through pore formation in the plasma membrane, eventually suppressing tumor formation and lung metastasis of TNBC cells. Mechanistically, tetraarsenic hexoxide markedly enhanced the production of mitochondrial ROS by inhibiting phosphorylation of mitochondrial STAT3, subsequently inducing caspase-3-dependent cleavage of GSDME, which consequently promoted pyroptotic cell death in TNBC cells. Collectively, our findings highlight tetraarsenic hexoxide-induced pyroptosis as a new therapeutic strategy that may inhibit cancer progression of TNBC cells.


Assuntos
Antineoplásicos/farmacologia , Trióxido de Arsênio/farmacologia , Caspase 3/metabolismo , Mitocôndrias/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Receptores de Estrogênio/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Caspase 3/genética , Linhagem Celular Tumoral , Ativação Enzimática , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/secundário , Camundongos Endogâmicos BALB C , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
9.
Photobiomodul Photomed Laser Surg ; 38(10): 646-652, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32758054

RESUMO

Objective: The aim of this study was to quantitatively and qualitatively evaluate the effects of the indocyanine green (ICG)-near-infrared (NIR) photoreaction on Streptococcus mutans biofilms. Background: ICG recently emerged as a photosensitive agent for photodynamic therapy. Although the effects of ICG-NIR on S. mutans inhibition are documented, little is known about its influence on biofilms, which are resistant to antimicrobial treatment and a major cause of plaque that leads to dental caries. Methods: ICG was used as a photosensitizer with a diode laser irradiated in a rectangular shape (810 nm, 300 mW) as a light source on S. mutans ATCC 25175 biofilms. Viability was determined by the colony forming unit (CFU) count and confocal laser-scanning microscopy. The biofilm surface temperature was measured with a one-channel thermocouple thermometer. Results: ICG and NIR diode laser significantly decreased the CFU count of S. mutans compared with the control group in a time-dependent manner. When irradiated with light after ICG application, temperature changes of 8.4°C, 12.4°C, and 14.9°C were observed with 10, 30, and 60 sec of irradiation, respectively. Conclusions: The ICG-NIR diode laser photoreaction can inhibit S. mutans biofilms, especially at 60 sec. An optimized protocol is needed for clinical application of ICG-NIR diode laser treatment.


Assuntos
Cárie Dentária , Streptococcus mutans , Biofilmes , Cárie Dentária/terapia , Humanos , Verde de Indocianina , Lasers Semicondutores
10.
Arthritis Rheumatol ; 72(8): 1278-1288, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32249508

RESUMO

OBJECTIVE: Inhibition of hedgehog (HH) signaling prevents cartilage degeneration and promotes repair in animal models of osteoarthritis (OA). This study, undertaken in OA models and in human OA articular cartilage, was designed to explore whether kappa opioid receptor (KOR) modulation via the inhibition of HH signaling may have therapeutic potential for achieving disease-modifying activity in OA. METHODS: Primary human articular cartilage and synovial tissue samples from patients with knee OA undergoing total joint replacement and from healthy human subjects were obtained from the National Disease Research Interchange. For in vivo animal studies, a partial medial meniscectomy (PMM) model of knee OA in rats was used. A novel automated 3-dimensional indentation tester (Mach-1) was used to quantify the thickness and stiffness properties of the articular cartilage. RESULTS: Inhibition of HH signaling through KOR activation was achieved with a selective peptide agonist, JT09, which reduced HH signaling via the cAMP/CREB pathway in OA human articular chondrocytes (P = 0.002 for treated versus untreated OA chondrocytes). Moreover, JT09 markedly decreased matrix degeneration induced by an HH agonist, SAG, in pig articular chondrocytes and cartilage explants (P = 0.026 versus untreated controls). In vivo application of JT09 via intraarticular injection into the rat knee joint after PMM surgery significantly attenuated articular cartilage degeneration (60% improvement in the tibial plateau; P = 0.021 versus vehicle-treated controls). In JT09-treated rats, cartilage content, structure, and functional properties were largely maintained, and osteophyte formation was reduced by 70% (P = 0.005 versus vehicle-treated controls). CONCLUSION: The results of this study define a novel mechanism for the role of KOR in articular cartilage homeostasis and disease, providing a potential unifying mechanistic basis for the overlap in disease processes and features involving opioid and HH signaling. Moreover, this study identifies a potential novel therapeutic strategy in which KOR modulation can improve outcomes in patients with OA.


Assuntos
Proteínas Hedgehog/antagonistas & inibidores , Peptídeos Opioides/farmacologia , Osteoartrite do Joelho/tratamento farmacológico , Peptídeos/farmacologia , Receptores Opioides kappa/agonistas , Transdução de Sinais/efeitos dos fármacos , Adulto , Animais , Cartilagem Articular/efeitos dos fármacos , Técnicas de Cultura de Células , Condrócitos/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Injeções Intra-Articulares , Articulação do Joelho/metabolismo , Masculino , Meniscectomia , Pessoa de Meia-Idade , Peptídeos/uso terapêutico , Ratos , Suínos
11.
Sci Rep ; 10(1): 2935, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32076068

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies. TGF-ß is strongly expressed in both the epithelial and stromal compartments of PDAC, and dysregulation of TGF-ß signalling is a frequent molecular disturbance in PDAC progression and metastasis. In this study, we investigated whether blockade of TGF-ß signalling synergizes with nal-IRI/5-FU/LV, a chemotherapy regimen for malignant pancreatic cancer, in an orthotopic pancreatic tumour mouse model. Compared to nal-IRI/5-FU/LV treatment, combining nal-IRI/5-FU/LV with vactosertib, a TGF-ß signalling inhibitor, significantly improved long-term survival rates and effectively suppressed invasion to surrounding tissues. Through RNA-sequencing analysis, we identified that the combination treatment results in robust abrogation of tumour-promoting gene signatures and positive enrichment of tumour-suppressing and apoptotic gene signatures. Particularly, the expression of tumour-suppressing gene Ccdc80 was induced by vactosertib and further induced by vactosertib in combination with nal-IRI/5-FU/LV. Ectopic expression of CCDC80 suppressed migration and colony formation concomitant with decreased expression of epithelial-to-mesenchymal transition (EMT) markers in pancreatic cancer cells. Collectively, these results indicate that combination treatment of vactosertib with nal-IRI/5-FU/LV improves overall survival rates in a mouse model of pancreatic cancer by suppressing invasion through CCDC80. Therefore, combination therapy of nal-IRI/5-FU/LV with vactosertib could provide clinical benefits to pancreatic cancer patients.


Assuntos
Fluoruracila/uso terapêutico , Irinotecano/uso terapêutico , Leucovorina/uso terapêutico , Nanopartículas/química , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Modelos Animais de Doenças , Sinergismo Farmacológico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fluoruracila/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Irinotecano/farmacologia , Leucovorina/farmacologia , Lipossomos , Camundongos Endogâmicos C57BL , Invasividade Neoplásica , Neoplasias Pancreáticas/genética , Análise de Sobrevida , Transcriptoma/genética , Triazóis/farmacologia , Triazóis/uso terapêutico , Ensaio Tumoral de Célula-Tronco , Regulação para Cima/efeitos dos fármacos
12.
Antioxidants (Basel) ; 8(8)2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31387266

RESUMO

(1) Background: Extensive research has focused on flavan-3-ols, but information about the bioactivities of green tea flavonols is limited. (2) Methods: In this study, we investigated the antioxidative, anti-inflammatory, and anticancer effects of flavonol glycosides and aglycones from green tea using in vitro cell models. The fractions rich in flavonol glycoside (FLG) and flavonol aglycone (FLA) were obtained from green tea extract after treatment with tannase and cellulase, respectively. (3) Results: FLG and FLA contained 16 and 13 derivatives, respectively, including apigenin, kaempferol, myricetin, and quercetin, determined by mass spectrometry. FLA exhibited higher radical-scavenging activity than that of FLG. FLG and FLA attenuated the levels of intracellular oxidative stress in neuron-like PC-12 cells. The treatment of RAW 264.7 murine macrophages with FLG and FLA significantly reduced the mRNA expression of inflammation-related genes in a dose-dependent manner. Furthermore, FLG and FLA treatments decreased the viability of the colon adenoma cell line DLD-1 and breast cancer cell line E0771. Moreover, the treatment with FLG or FLA combined with paclitaxel had synergistic anticancer effects on the DLD-1 cell line. (4) Conclusions: Flavonols from green tea exerted beneficial effects on health and may be superior to flavan-3-ols.

13.
Immune Netw ; 19(2): e8, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31089435

RESUMO

IL-32 exists as seven mRNA transcripts that can translate into distinct individual IL-32 variants with specific protein domains. These translated protein domains of IL-32 variants code for specific functions that allow for interaction with different molecules intracellularly or extracellularly. The longest variant is IL-32γ possessing 234 amino acid residues with all 11 protein domains, while the shortest variant is IL-32α possessing 131 amino acid residues with three of the protein domains. The first domain exists in 6 variants except IL-32δ variant, which has a distinct translation initiation codon due to mRNA splicing. The last eleventh domain is common domain for all seven IL-32 variants. Numerous studies in different fields, such as inflammation, autoimmunity, pathogen infection, and cancer biology, have claimed the specific biological activity of individual IL-32 variant despite the absence of sufficient data. There are 4 additional IL-32 variants without proper transcripts. In this review, the structural characteristics of seven IL-32 transcripts are described based on the specific protein domains.

14.
Photobiomodul Photomed Laser Surg ; 37(5): 282-287, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31084564

RESUMO

Objective: The aim of this study was to evaluate the effect of photodynamic therapy (PDT) on multispecies oral caries biofilms composed of Streptococcus mutans, Lactobacillus casei, and Candida albicans. Background: The abovementioned microorganisms largely cause dental caries, especially early childhood caries (ECC), by synthesizing of acids in the presence of sugar. PDT is considered an effective process to remove oral biofilms, and erythrosine, an oral bacterial disclosing agent, is an ideal dye that can be used as a photosensitizer in PDT. However, until now, there are no studies that have reported the effect of erythrosine-mediated PDT on biofilms, including the three microorganisms. Methods: The biofilms were formed on hydroxyapatite discs, and erythrosine was used as the photosensitizer, diluted to a concentration of 40 µM for 3 min. Light was irradiated for 10 and 20 sec using a blue light-emitting diode dental curing light. After the experiment, the colony-forming units of each microbial group cultured on blood agar plates were counted, and a confocal laser-scanning microscope was used to evaluate the effect of PDT. Results: The counts of all three microorganisms significantly decreased in the PDT group compared with those in the control group. For S. mutans and L. casei, there was a larger decrease proportional to the amount of energy irradiated. Conclusions: Overall, PDT showed a significant antimicrobial effect against oral biofilms composed of the three microorganisms, suggesting its potential clinical application for infants with ECC.


Assuntos
Biofilmes/efeitos da radiação , Candida albicans/efeitos da radiação , Cárie Dentária/microbiologia , Lacticaseibacillus casei/efeitos da radiação , Fotoquimioterapia , Streptococcus mutans/efeitos da radiação , Lâmpadas de Polimerização Dentária , Eritrosina , Fármacos Fotossensibilizantes , Células-Tronco
15.
J Mol Med (Berl) ; 96(10): 1049-1060, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30088034

RESUMO

Osteoarthritis (OA), the most common form of arthritis, is characterized by inflammation of joints and cartilage degradation leading to disability, discomfort, severe pain, inflammation, and stiffness of the joint. It has been shown that adenosine, a purine nucleoside composed of adenine attached to ribofuranose, is enzymatically produced by the human synovium. However, the functional significance of adenosine signaling in homeostasis and pathology of synovial joints remains unclear. Adenosine acts through four cell surface receptors, i.e., A1, A2A, A2B, and A3, and here, we have systematically analyzed mice with a deficiency for A3 receptor as well as pharmacological modulations of this receptor with specific analogs. The data show that adenosine receptor signaling plays an essential role in downregulating catabolic mechanisms resulting in prevention of cartilage degeneration. Ablation of A3 resulted in development of OA in aged mice. Mechanistically, A3 signaling inhibited cellular catabolic processes in chondrocytes including downregulation of Ca2+/calmodulin-dependent protein kinase (CaMKII), an enzyme that promotes matrix degradation and inflammation, as well as Runt-related transcription factor 2 (RUNX2). Additionally, selective A3 agonists protected chondrocytes from cell apoptosis caused by pro-inflammatory cytokines or hypo-osmotic stress. These novel data illuminate the protective role of A3, which is mediated via inhibition of intracellular CaMKII kinase and RUNX2 transcription factor, the two major pro-catabolic regulators in articular cartilage. KEY MESSAGES: Adenosine receptor A3 (A3) knockout results in progressive loss of articular cartilage in vivo. Ablation of A3 results in activation of matrix degradation and cartilage hypertrophy. A3 agonists downregulate RUNX2 and CaMKII expression in osteoarthritic human articular chondrocytes. A3 prevents articular cartilage matrix degradation induced by inflammation and osmotic fluctuations. A3 agonist inhibits proteolytic activity of cartilage-degrading enzymes.


Assuntos
Cartilagem Articular/patologia , Receptor A3 de Adenosina/genética , Animais , Condrócitos/metabolismo , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoartrite/metabolismo , Osteoartrite/patologia , Receptor A3 de Adenosina/metabolismo , Suínos
16.
Immune Netw ; 18(3): e19, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29984037

RESUMO

Virus-like particles (VLPs) derived from human papillomavirus (HPV) L1 capsid proteins were used for HPV quadrivalent recombinant vaccine. The HPV quadrivalent vaccine is administrated in a 3-dose regimen of initial injection followed by subsequent doses at 2 and 6 months to prevent cervical cancer, vulvar, and vaginal cancers. The type 6, 11, 16, or 18 of HPV infection is associated with precancerous lesions and genital warts in adolescents and young women. The HPV vaccine is composed of viral L1 capsid proteins are produced in eukaryotic expression systems and purified in the form of VLPs. Four different the L1 protein of 3 different subtypes of HPV: HPV11, HPV16, and HPV18 were expressed in Escherichia coli divided into 2 fragments as N- and C-terminal of each protein in order to examine the efficacy of HPV vaccine. Vaccinated sera failed to recognize N-terminal L1 HPV type 16 and type 18 by western blot while they detected N-terminal L1 protein of HPV type 11. Moreover, the recombinant C-terminal L1 proteins of type 16 was non-specifically recognized by the secondary antibody conjugated with horseradish peroxidase. This expression and purification system may provide simple method to obtain robust recombinant L1 protein of HPV subtypes to improve biochemical analysis of antigens with immunized sera.

18.
J Cancer Prev ; 23(1): 1-9, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29629343

RESUMO

BACKGROUND: Smad3 linker phosphorylation plays essential roles in tumor progression and metastasis. We have previously reported that the mutation of Smad3 linker phosphorylation sites (Smad3-Erk/Pro-directed kinase site mutant constructs [EPSM]) markedly reduced the tumor progression while increasing the lung metastasis in breast cancer. METHODS: We performed high-throughput RNA-Sequencing of the human prostate cancer cell lines infected with adenoviral Smad3-EPSM to identify the genes regulated by Smad3-EPSM. RESULTS: In this study, we identified genes which are differentially regulated in the presence of Smad3-EPSM. We first confirmed that Smad3-EPSM strongly enhanced a capability of cell motility and invasiveness as well as the expression of epithelial-mesenchymal transition marker genes, CDH2, SNAI1, and ZEB1 in response to TGF-ß1 in human pancreatic and prostate cancer cell lines. We identified GADD45B, CTGF, and JUNB genes in the expression profiles associated with cell motility and invasiveness induced by the Smad3-EPSM. CONCLUSIONS: These results suggested that inhibition of Smad3 linker phosphorylation may enhance cell motility and invasiveness by inducing expression of GADD45B, CTGF, and JUNB genes in various cancers.

19.
Ann Rheum Dis ; 77(5): 760-769, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29436471

RESUMO

OBJECTIVE: Human adult articular cartilage (AC) has little capacity for repair, and joint surface injuries often result in osteoarthritis (OA), characterised by loss of matrix, hypertrophy and chondrocyte apoptosis. Inflammation mediated by interleukin (IL)-6 family cytokines has been identified as a critical driver of proarthritic changes in mouse and human joints, resulting in a feed-forward process driving expression of matrix degrading enzymes and IL-6 itself. Here we show that signalling through glycoprotein 130 (gp130), the common receptor for IL-6 family cytokines, can have both context-specific and cytokine-specific effects on articular chondrocytes and that a small molecule gp130 modulator can bias signalling towards anti-inflammatory and antidegenerative outputs. METHODS: High throughput screening of 170 000 compounds identified a small molecule gp130 modulator termed regulator of cartilage growth and differentiation (RCGD 423) that promotes atypical homodimeric signalling in the absence of cytokine ligands, driving transient increases in MYC and pSTAT3 while suppressing oncostatin M- and IL-6-mediated activation of ERK and NF-κB via direct competition for gp130 occupancy. RESULTS: This small molecule increased proliferation while reducing apoptosis and hypertrophic responses in adult chondrocytes in vitro. In a rat partial meniscectomy model, RCGD 423 greatly reduced chondrocyte hypertrophy, loss and degeneration while increasing chondrocyte proliferation beyond that observed in response to injury. Moreover, RCGD 423 improved cartilage healing in a rat full-thickness osteochondral defect model, increasing proliferation of mesenchymal cells in the defect and also inhibiting breakdown of cartilage matrix in de novo generated cartilage. CONCLUSION: These results identify a novel strategy for AC remediation via small molecule-mediated modulation of gp130 signalling.


Assuntos
Doenças das Cartilagens/tratamento farmacológico , Cartilagem Articular/metabolismo , Receptor gp130 de Citocina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Condrócitos/metabolismo , Modelos Animais de Doenças , Genes myc/efeitos dos fármacos , Ratos , Fator de Transcrição STAT3/metabolismo
20.
Biochem Biophys Res Commun ; 494(3-4): 706-713, 2017 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-29097203

RESUMO

Smad3 linker phosphorylation is a candidate target for several kinases that play important roles in cancer cell initiation, proliferation and progression. Also, Smad3 is an essential intracellular mediator of TGF-ß1-induced transcriptional responses during carcinogenesis. Therefore, it is highly advantageous to identify and develop inhibitors targeting Smad3 linker phosphorylation for the treatment of cancers. Galangin (3,5,7-trihydroxyflavone) has been known to be an active flavonoid showing a cytotoxic effect on several cancer cells. However, the mechanism of action of galangin in various cancers remains unclear, and there has been no report concerning regulation of Smad3 phosphorylation by galangin. In the present study, we show that galangin significantly induced apoptosis and inhibited cell proliferation in the presence of TGF-ß1 in both human prostate and pancreatic cancer cell lines. Particularly, galangin effectively inhibits phosphorylation of the Thr-179 site at Smad3 linker region through suppression of CDK4 phosphorylation. Thus, galangin can be a promising candidate as a selective inhibitor to suppress phosphorylation of Smad3 linker region.


Assuntos
Proliferação de Células/efeitos dos fármacos , Flavonoides/administração & dosagem , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Sítios de Ligação , Linhagem Celular Tumoral , Humanos , Neoplasias/patologia , Fosforilação/efeitos dos fármacos , Ligação Proteica , Treonina/metabolismo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA