Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Virus Res ; 345: 199383, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38697296

RESUMO

The emergence of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) has posed a significant global health concern due to its severe respiratory illness and high fatality rate. Currently, despite the potential for resurgence, there are no specific treatments for MERS-CoV, and only supportive care is available. Our study aimed to address this therapeutic gap by developing a potent neutralizing bispecific antibody (bsAb) against MERS-CoV. Initially, we isolated four human monoclonal antibodies (mAbs) that specifically target the MERS-CoV receptor-binding domain (RBD) using phage display technology and an established human antibody library. Among these four selected mAbs, our intensive in vitro functional analyses showed that the MERS-CoV RBD-specific mAb K111.3 exhibited the most potent neutralizing activity against MERS-CoV pseudoviral infection and the molecular interaction between MERS-CoV RBD and human dipeptidyl peptidase 4. Consequently, we engineered a novel bsAb, K207.C, by utilizing K111.3 as the IgG base and fusing it with the single-chain variable fragment of its non-competing pair, K111.1. This engineered bsAb showed significantly enhanced neutralization potential against MERS-CoV compared to its parental mAb. These findings suggest that K207.C may serve as a potential candidate for effective MERS-CoV neutralization, further highlighting the promise of the bsAb dual-targeting approach in MERS-CoV neutralization.


Assuntos
Anticorpos Biespecíficos , Anticorpos Neutralizantes , Anticorpos Antivirais , Coronavírus da Síndrome Respiratória do Oriente Médio , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Humanos , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Animais , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/química , Anticorpos Monoclonais/imunologia , Ligação Proteica , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Dipeptidil Peptidase 4/imunologia , Camundongos , Testes de Neutralização
2.
J Med Virol ; 96(3): e29506, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38445718

RESUMO

With the global pandemic and the continuous mutations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the need for effective and broadly neutralizing treatments has become increasingly urgent. This study introduces a novel strategy that targets two aspects simultaneously, using bifunctional antibodies to inhibit both the attachment of SARS-CoV-2 to host cell membranes and viral fusion. We developed pioneering IgG4-(HR2)4 bifunctional antibodies by creating immunoglobulin G4-based and phage display-derived human monoclonal antibodies (mAbs) that specifically bind to the SARS-CoV-2 receptor-binding domain, engineered with four heptad repeat 2 (HR2) peptides. Our in vitro experiments demonstrate the superior neutralization efficacy of these engineered antibodies against various SARS-CoV-2 variants, ranging from original SARS-CoV-2 strain to the recently emerged Omicron variants, as well as SARS-CoV, outperforming the parental mAb. Notably, intravenous monotherapy with the bifunctional antibody neutralizes a SARS-CoV-2 variant in a murine model without causing significant toxicity. In summary, this study unveils the significant potential of HR2 peptide-driven bifunctional antibodies as a potent and versatile strategy for mitigating SARS-CoV-2 infections. This approach offers a promising avenue for rapid development and management in the face of the continuously evolving SARS-CoV-2 variants, holding substantial promise for pandemic control.


Assuntos
Anticorpos Biespecíficos , COVID-19 , Humanos , Animais , Camundongos , SARS-CoV-2/genética , Anticorpos Monoclonais/uso terapêutico , Imunoglobulina G , Peptídeos/genética , Poder Psicológico
3.
BMB Rep ; 57(4): 188-193, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38449302

RESUMO

Gastric cancer (GC), a leading cause of cancer-related mortality, remains a significant challenge despite recent therapeutic advancements. In this study, we explore the potential of targeting cell surface glucose-regulated protein 94 (GRP94) with antibodies as a novel therapeutic approach for GC. Our comprehensive analysis of GRP94 expression across various cancer types, with a specific focus on GC, revealed a substantial overexpression of GRP94, highlighting its potential as a promising target. Through in vitro and in vivo efficacy assessments, as well as toxicological analyses, we found that K101.1, a fully human monoclonal antibody designed to specifically target cell surface GRP94, effectively inhibits GC growth and angiogenesis without causing in vivo toxicity. Furthermore, our findings indicate that K101.1 promotes the internalization and concurrent downregulation of cell surface GRP94 on GC cells. In conclusion, our study suggests that cell surface GRP94 may be a potential therapeutic target in GC, and that antibody-based targeting of cell surface GRP94 may be an effective strategy for inhibiting GRP94-mediated GC growth and angiogenesis. [BMB Reports 2024; 57(4): 188-193].


Assuntos
Anticorpos Monoclonais , Neoplasias Gástricas , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Neoplasias Gástricas/imunologia , Humanos , Anticorpos Monoclonais/farmacologia , Linhagem Celular Tumoral , Animais , Camundongos , Proliferação de Células/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/imunologia , Neovascularização Patológica/metabolismo , Camundongos Nus
4.
Medicina (Kaunas) ; 59(12)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38138162

RESUMO

Background and Objectives: Gramicidin, a bactericidal antibiotic used in dermatology and ophthalmology, has recently garnered attention for its inhibitory actions against cancer cell growth. However, the effects of gramicidin on ovarian cancer cells and the underlying mechanisms are still poorly understood. We aimed to elucidate the anticancer efficacy of gramicidin against ovarian cancer cells. Materials and Methods: The anticancer effect of gramicidin was investigated through an in vitro experiment. We analyzed cell proliferation, DNA fragmentation, cell cycle arrest and apoptosis in ovarian cancer cells using WST-1 assay, terminal deoxynucleotidyl transferase dUTP nick and labeling (TUNEL), DNA agarose gel electrophoresis, flow cytometry and western blot. Results: Gramicidin treatment induces dose- and time-dependent decreases in OVCAR8, SKOV3, and A2780 ovarian cancer cell proliferation. TUNEL assay and DNA agarose gel electrophoresis showed that gramicidin caused DNA fragmentation in ovarian cancer cells. Flow cytometry demonstrated that gramicidin induced cell cycle arrest. Furthermore, we confirmed via Western blot that gramicidin triggered apoptosis in ovarian cancer cells. Conclusions: Our results strongly suggest that gramicidin exerts its inhibitory effect on cancer cell growth by triggering apoptosis. Conclusively, this study provides new insights into the previously unexplored anticancer properties of gramicidin against ovarian cancer cells.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Gramicidina/farmacologia , Gramicidina/uso terapêutico , Linhagem Celular Tumoral , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Apoptose , Proliferação de Células , DNA/farmacologia
5.
Biomedicines ; 11(6)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37371752

RESUMO

Gentian violet (GV) is known to have antibacterial and antifungal effects, but recent studies have demonstrated its inhibitory effects on the growth of several types of cancer cells. Here, we investigated the anticancer efficacy of GV in ovarian cancer cells. GV significantly reduced the proliferation of OVCAR8, SKOV3, and A2780 cells. Results of transferase dUTP nick and labeling (TUNEL) assay and Western blot assay indicated that the inhibitory effect of GV on ovarian cancer cells was due to the induction of apoptosis. Moreover, GV significantly increased reactive oxygen species (ROS) and upregulated the expression of p53, PUMA, BAX, and p21, critical components for apoptosis induction, in ovarian cancer cells. Our results suggest that GV is a novel antiproliferative agent and is worthy of exploration as a potential therapeutic agent for ovarian cancer.

6.
BMC Cancer ; 23(1): 490, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37259024

RESUMO

BACKGROUND: Thrombocytopenia is a common complication in cancer patients undergoing chemotherapy. Chemotherapy-induced thrombocytopenia (CIT) leads to dose reduction and treatment delays, lowering chemotherapy efficacy and survival rate. Thus, rapid recovery and continuous maintenance of platelet count during chemotherapy cycles are crucial in patients with CIT. Thrombopoietin (TPO) and its receptor, myeloid proliferative leukemia (MPL) protein, play a major role in platelet production. Although several MPL agonists have been developed to regulate thrombopoiesis, none have been approved for the management of CIT due to concerns regarding efficacy or safety. Therefore, the development of effective MPL agonists for treating CIT needs to be further expanded. METHODS: Anti-MPL antibodies were selected from the human combinatorial antibody phage libraries using phage display. We identified 2R13 as the most active clone among the binding antibodies via cell proliferation assay using BaF3/MPL cells. The effect of 2R13 on megakaryocyte differentiation was evaluated in peripheral blood CD34+ cells by analyzing megakaryocyte-specific differentiation markers (CD41a+ and CD42b+) and DNA ploidy using flow cytometry. The 2R13-induced platelet production was examined in 8- to 10-week-old wild-type BALB/c female mice and a thrombocytopenia mouse model established by intraperitoneal injection of 5-fluorouracil (150 mg/kg). The platelet counts were monitored twice a week over 14 days post-initiation of treatment with a single injection of 2R13, or recombinant human TPO (rhTPO) for seven consecutive days. RESULTS: We found that 2R13 specifically interacted with MPL and activated its signaling pathways. 2R13 stimulated megakaryocyte differentiation, evidenced by increasing the proportion of high-ploidy (≥ 8N) megakaryocytes in peripheral blood-CD34+ cells. The platelet count was increased by a single injection of 2R13 for up to 14 days. Injection of 5-fluorouracil considerably reduced the platelet count by day 4, which was recovered by 2R13. The platelets produced by 2R13 sustained a higher count than that achieved using seven consecutive injections of rhTPO. CONCLUSIONS: Our findings suggest that 2R13 is a promising therapeutic agent for CIT treatment.


Assuntos
Antineoplásicos , Trombocitopenia , Camundongos , Animais , Humanos , Feminino , Receptores de Trombopoetina , Plaquetas/metabolismo , Trombopoese , Anticorpos , Proteínas Recombinantes/efeitos adversos , Antígenos CD34 , Fluoruracila/uso terapêutico , Trombocitopenia/induzido quimicamente , Trombocitopenia/tratamento farmacológico , Antineoplásicos/efeitos adversos
7.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36983085

RESUMO

Antibody phage display is a key technology for the discovery and development of target-specific monoclonal antibodies (mAbs) for use in research, diagnostics, and therapy. The construction of a high-quality antibody library, with larger and more diverse antibody repertoires, is essential for the successful development of phage display-derived mAbs. In this study, a large human combinatorial single-chain variable fragment library (1.5 × 1011 colonies) was constructed from Epstein-Barr virus-infected human peripheral blood mononuclear cells stimulated with a combination of two of the activators of human B cells, the Toll-like receptor 7/8 agonist R848 and interleukin-2. Next-generation sequencing analysis with approximately 1.9 × 106 and 2.7 × 106 full-length sequences of heavy chain variable (VH) and κ light chain variable (Vκ) domains, respectively, revealed that the library consists of unique VH (approximately 94%) and Vκ (approximately 91%) sequences with greater diversity than germline sequences. Lastly, multiple unique mAbs with high affinity and broad cross-species reactivity could be isolated from the library against two therapeutically relevant target antigens, validating the library quality. These findings suggest that the novel antibody library we have developed may be useful for the rapid development of target-specific phage display-derived recombinant human mAbs for use in therapeutic and diagnostic applications.


Assuntos
Infecções por Vírus Epstein-Barr , Biblioteca de Peptídeos , Humanos , Leucócitos Mononucleares , Herpesvirus Humano 4 , Anticorpos Monoclonais/genética , Sequenciamento de Nucleotídeos em Larga Escala
8.
Int J Mol Sci ; 23(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35805896

RESUMO

Small-cell lung cancer (SCLC) is the most aggressive form of lung cancer and the leading cause of global cancer-related mortality. Despite the earlier identification of membrane-proximal cleavage of cell adhesion molecule 1 (CADM1) in cancers, the role of the membrane-bound fragment of CAMD1 (MF-CADM1) is yet to be clearly identified. In this study, we first isolated MF-CADM1-specific fully human single-chain variable fragments (scFvs) from the human synthetic scFv antibody library using the phage display technology. Following the selected scFv conversion to human immunoglobulin G1 (IgG1) scFv-Fc antibodies (K103.1-4), multiple characterization studies, including antibody cross-species reactivity, purity, production yield, and binding affinity, were verified. Finally, via intensive in vitro efficacy and toxicity evaluation studies, we identified K103.3 as a lead antibody that potently promotes the death of human SCLC cell lines, including NCI-H69, NCI-H146, and NCI-H187, by activated Jurkat T cells without severe endothelial toxicity. Taken together, these findings suggest that antibody-based targeting of MF-CADM1 may be an effective strategy to potentiate T cell-mediated SCLC death, and MF-CADM1 may be a novel potential therapeutic target in SCLC for antibody therapy.


Assuntos
Neoplasias Pulmonares , Anticorpos de Cadeia Única , Carcinoma de Pequenas Células do Pulmão , Molécula 1 de Adesão Celular/genética , Técnicas de Visualização da Superfície Celular , Humanos , Anticorpos de Cadeia Única/farmacologia
9.
Biomed Pharmacother ; 150: 113051, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35658213

RESUMO

Colorectal cancer (CRC) is one of the life-threatening malignancies worldwide. Thus, novel potential therapeutic targets and therapeutics for the treatment of CRC need to be identified to improve the clinical outcomes of patients with CRC. In this study, we found that glucose-regulated protein 94 (GRP94) is overexpressed in CRC tissues, and its high expression is correlated with increased microvessel density. Next, through phage display technology and consecutive in vitro functional isolations, we generated a novel human monoclonal antibody that specifically targets cell surface GRP94 and shows superior internalizing activity comparable to trastuzumab. We found that this antibody specifically inhibits endothelial cell tube formation and simultaneously promotes the downregulation of GRP94 expression on the endothelial cell surface. Finally, we demonstrated that this antibody effectively suppresses tumor growth and angiogenesis of HCT116 human CRC cells without causing severe toxicity in vivo. Collectively, these findings suggest that cell surface GRP94 is a novel potential anti-angiogenic target in CRC and that antibody targeting of GRP94 on the endothelial cell surface is an effective strategy to suppress CRC tumor angiogenesis.


Assuntos
Neoplasias Colorretais , Glicoproteínas de Membrana/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/patologia , Proteínas de Choque Térmico HSP70 , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Proteínas de Membrana/uso terapêutico , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo
10.
Int J Mol Sci ; 23(10)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35628495

RESUMO

Cancer is the second leading cause of death worldwide after cardiovascular diseases. Harnessing the power of immune cells is a promising strategy to improve the antitumor effect of cancer immunotherapy. Recent progress in recombinant DNA technology and antibody engineering has ushered in a new era of bispecific antibody (bsAb)-based immune-cell engagers (ICEs), including T- and natural-killer-cell engagers. Since the first approval of blinatumomab by the United States Food and Drug Administration (US FDA), various bsAb-based ICEs have been developed for the effective treatment of patients with cancer. Simultaneously, several potential therapeutic targets of bsAb-based ICEs have been identified in various cancers. Therefore, this review focused on not only highlighting the action mechanism, design and structure, and status of bsAb-based ICEs in clinical development and their approval by the US FDA for human malignancy treatment, but also on summarizing the currently known and emerging therapeutic targets in cancer. This review provides insights into practical considerations for developing next-generation ICEs.


Assuntos
Imunoterapia , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Estados Unidos
11.
Int J Mol Sci ; 22(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34208855

RESUMO

Patients with advanced colorectal cancer (CRC) with distant metastases have a poor prognosis. We evaluated the clinicopathological relevance of GRP94 expression in these cases. The immunohistochemical expression of GRP94 was studied in 189 CRC patients with synchronous (SM; n = 123) and metachronous metastases (MM; n = 66), using tissue microarray; the association between GRP94 expression, outcome, and tumor-infiltrating lymphocytes (TILs) was also evaluated. GRP94 was expressed in 64.6% (122/189) patients with CRC; GRP94 positivity was found in 67.5% and 59.1% patients with SM and MM, respectively. In the SM group, high GRP94 expression was more common in patients with a higher density of CD4+ TILs (p = 0.002), unlike in the MM group. Survival analysis showed that patients with GRP94 positivity had significantly favorable survival (p = 0.030); after multivariate analysis, GRP94 only served as an independent prognostic factor (p = 0.034; hazard ratio, 0.581; 95% confidence interval, 0.351-0.961) in the SM group. GRP94 expression was detected in 49.4% of metastatic sites and showed significant heterogeneity between primary and metastatic lesions (p = 0.012). GRP94 is widely expressed in CRC with distant metastases; its expression was associated with favorable prognosis in the SM group, unlike in the MM group.


Assuntos
Neoplasias Colorretais/patologia , Glicoproteínas de Membrana/metabolismo , Neoplasias Primárias Múltiplas/patologia , Segunda Neoplasia Primária/patologia , Regulação para Cima , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Colorretais/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Linfócitos do Interstício Tumoral/metabolismo , Masculino , Pessoa de Meia-Idade , Neoplasias Primárias Múltiplas/metabolismo , Segunda Neoplasia Primária/metabolismo , Prognóstico , Análise de Sobrevida , Análise Serial de Tecidos
12.
Cells ; 10(5)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069315

RESUMO

In Section 4.1.3 of the published paper, the authors made an incorrect and unsupported statement regarding PU-H71 and a Samus-sponsored Phase 1 clinical trial [...].

13.
Cells ; 10(3)2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802964

RESUMO

Glucose-regulated protein 94 (GRP94) is an endoplasmic reticulum (ER)-resident member of the heat shock protein 90 (HSP90) family. In physiological conditions, it plays a vital role in regulating biological functions, including chaperoning cellular proteins in the ER lumen, maintaining calcium homeostasis, and modulating immune system function. Recently, several reports have shown the functional role and clinical relevance of GRP94 overexpression in the progression and metastasis of several cancers. Therefore, the current review highlights GRP94's physiological and pathophysiological roles in normal and cancer cells. Additionally, the unmet medical needs of small chemical inhibitors and the current development status of monoclonal antibodies specifically targeting GRP94 will be discussed to emphasize the importance of cell surface GRP94 as an emerging therapeutic target in monoclonal antibody therapy for cancer.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Membrana Celular/imunologia , Glicoproteínas de Membrana/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Humanos , Glicoproteínas de Membrana/imunologia , Glicoproteínas de Membrana/metabolismo , Chaperonas Moleculares/efeitos dos fármacos , Chaperonas Moleculares/metabolismo , Neoplasias/metabolismo
14.
Biomedicines ; 9(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466394

RESUMO

Colorectal cancer (CRC) is one of the leading causes of cancer deaths worldwide. Recent advances in recombinant DNA technology have led to the development of numerous therapeutic antibodies as major sources of blockbuster drugs for CRC therapy. Simultaneously, increasing numbers of therapeutic targets in CRC have been identified. In this review, we first highlight the physiological and pathophysiological roles and signaling mechanisms of currently known and emerging therapeutic targets, including growth factors and their receptors as well as immune checkpoint proteins, in CRC. Additionally, we discuss the current status of monoclonal antibodies in clinical development and approved by US Food and Drug Administration for CRC therapy.

16.
Biomolecules ; 10(3)2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138170

RESUMO

Tetraspanin 8 (TSPAN8) is a member of the tetraspanin superfamily that forms TSPAN8-mediated protein complexes by interacting with themselves and other various cellular signaling molecules. These protein complexes help build tetraspanin-enriched microdomains (TEMs) that efficiently mediate intracellular signal transduction. In physiological conditions, TSPAN8 plays a vital role in the regulation of biological functions, including leukocyte trafficking, angiogenesis and wound repair. Recently, reports have increasingly shown the functional role and clinical relevance of TSPAN8 overexpression in the progression and metastasis of several cancers. In this review, we will highlight the physiological and pathophysiological roles of TSPAN8 in normal and cancer cells. Additionally, we will cover the current status of monoclonal antibodies specifically targeting TSPAN8 and the importance of TSPAN8 as an emerging therapeutic target in cancers for monoclonal antibody therapy.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Proteínas de Neoplasias , Neoplasias , Tetraspaninas , Humanos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Tetraspaninas/antagonistas & inibidores , Tetraspaninas/metabolismo
17.
Biomolecules ; 9(11)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31683810

RESUMO

Colorectal cancer (CRC) is one of the leading causes of cancer death worldwide. Cetuximab, a human/mouse chimeric monoclonal antibody, is effective in a limited number of CRC patients because of cetuximab resistance. This study aimed to identify novel therapeutic targets in cetuximab-resistant CRC in order to improve clinical outcomes. Through phage display technology, we isolated a fully human antibody strongly binding to the cetuximab-resistant HCT116 cell surface and identified the target antigen as glucose-regulated protein 94 (GRP94) using proteomic analysis. Short interfering RNA-mediated GRP94 knockdown showed that GRP94 plays a key role in HCT116 cell growth. In vitro functional studies revealed that the GRP94-blocking antibody we developed strongly inhibits the growth of various cetuximab-resistant CRC cell lines. We also demonstrated that GRP94 immunoglobulin G monotherapy significantly reduces HCT116 cell growth more potently compared to cetuximab, without severe toxicity in vivo. Therefore, cell surface GRP94 might be a potential novel therapeutic target in cetuximab-resistant CRC, and antibody-based targeting of GRP94 might be an effective strategy to suppress GRP94-expressing cetuximab-resistant CRC.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Antineoplásicos Imunológicos/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/imunologia , Proteínas de Choque Térmico HSP70/imunologia , Proteínas de Membrana/imunologia , Animais , Cetuximab/administração & dosagem , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/fisiopatologia , Resistencia a Medicamentos Antineoplásicos , Células HCT116 , Proteínas de Choque Térmico HSP70/genética , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C
18.
Front Oncol ; 9: 571, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31355133

RESUMO

Current chemotherapy regimens have certain limitations in improving the survival rates of patients with advanced ovarian cancer. Hepatocyte growth factor (HGF) is important in ovarian cancer cell migration and invasion. This study assessed the effects of YYB-101, a humanized monoclonal anti-HGF antibody, on the growth and metastasis of ovarian cancer cells. YYB-101 suppressed the phosphorylation of the HGF receptor c-MET and inhibited the migration and invasion of SKOV3 and A2780 ovarian cancer cells. Moreover, the combination of YYB-101 and paclitaxel synergistically inhibited tumor growth in an in vivo ovarian cancer mouse xenograft model and significantly increased the overall survival (OS) rate compared with either paclitaxel or YYB-101 alone. Taken together, these findings suggest that YYB-101 has therapeutic potential in ovarian cancer when combined with conventional chemotherapy agents.

19.
Int J Mol Sci ; 19(4)2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29614819

RESUMO

Tumor necrosis factor alpha (TNFα) is a pro-inflammatory cytokine that triggers the expression of inflammatory molecules, including other cytokines and cell adhesion molecules. TNFα induces the expression of intercellular cell adhesion molecule-1 and vascular cell adhesion molecule-1 (VCAM-1). VCAM-1 was originally identified as a cell adhesion molecule that helps regulate inflammation-associated vascular adhesion and the transendothelial migration of leukocytes, such as macrophages and T cells. Recent evidence suggests that VCAM-1 is closely associated with the progression of various immunological disorders, including rheumatoid arthritis, asthma, transplant rejection, and cancer. This review covers the role and relevance of VCAM-1 in inflammation, and also highlights the emerging potential of VCAM-1 as a novel therapeutic target in immunological disorders and cancer.


Assuntos
Neoplasias/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Animais , Humanos , Inflamação/metabolismo , Inflamação/patologia , Neoplasias/patologia , Fator de Necrose Tumoral alfa/metabolismo
20.
Mol Oncol ; 12(3): 356-372, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29316206

RESUMO

The C-type lectin-like domain of CLEC14a (CLEC14a-C-type lectin-like domain [CTLD]) is a key domain that mediates endothelial cell-cell contacts in angiogenesis. However, the role of CLEC14a-CTLD in pathological angiogenesis has not yet been clearly elucidated. In this study, through complementarity-determining region grafting, consecutive deglycosylation, and functional isolation, we generated a novel anti-angiogenic human monoclonal antibody that specifically targets CLEC14a-CTLD and that shows improved stability and homogeneity relative to the parental antibody. We found that this antibody directly inhibits CLEC14a-CTLD-mediated endothelial cell-cell contact and simultaneously downregulates expression of CLEC14a on the surface of endothelial cells. Using various in vitro and in vivo functional assays, we demonstrated that this antibody effectively suppresses vascular endothelial growth factor (VEGF)-dependent angiogenesis and tumor angiogenesis of SNU182 human hepatocellular carcinoma, CFPAC-1 human pancreatic cancer, and U87 human glioma cells. Furthermore, we also found that this antibody significantly inhibits tumor angiogenesis of HCT116 and bevacizumab-adapted HCT116 human colorectal cancer cells. These findings suggest that antibody targeting of CLEC14a-CTLD has the potential to suppress VEGF-dependent angiogenesis and tumor angiogenesis and that CLEC14a-CTLD may be a novel anti-angiogenic target for VEGF-dependent angiogenesis and tumor angiogenesis.


Assuntos
Anticorpos Monoclonais/farmacologia , Moléculas de Adesão Celular/metabolismo , Imunoglobulina G/farmacologia , Lectinas Tipo C/metabolismo , Neovascularização Patológica/tratamento farmacológico , Neovascularização Fisiológica/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Moléculas de Adesão Celular/genética , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/imunologia , Linhagem Celular Tumoral , Feminino , Células HCT116 , Células Endoteliais da Veia Umbilical Humana , Humanos , Imunoglobulina G/imunologia , Lectinas Tipo C/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neovascularização Patológica/imunologia , Neovascularização Fisiológica/imunologia , Fator A de Crescimento do Endotélio Vascular/genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA