RESUMO
Aims: The study aimed to assess the clinical outcomes of arthroscopic debridement and partial excision in patients with traumatic central tears of the triangular fibrocartilage complex (TFCC), and to identify prognostic factors associated with unfavourable clinical outcomes. Methods: A retrospective analysis was conducted on patients arthroscopically diagnosed with Palmer 1 A lesions who underwent arthroscopic debridement and partial excision from March 2009 to February 2021, with a minimum follow-up of 24 months. Patients were assessed using the Disabilities of the Arm, Shoulder and Hand (DASH) questionnaire, Mayo Wrist Score (MWS), and visual analogue scale (VAS) for pain. The poor outcome group was defined as patients whose preoperative and last follow-up clinical score difference was less than the minimal clinically important difference of the DASH score (10.83). Baseline characteristics, arthroscopic findings, and radiological factors (ulnar variance, MRI, or arthrography) were evaluated to predict poor clinical outcomes. Results: A total of 114 patients were enrolled in this study, with a mean follow-up period of 29.8 months (SD 14.4). The mean DASH score improved from 36.5 (SD 21.5) to 16.7 (SD 14.3), the mean MWS from 59.7 (SD 17.9) to 79.3 (SD 14.3), and the mean VAS pain score improved from 5.9 (SD 1.8) to 2.2 (SD 2.0) at the last follow-up (all p < 0.001). Among the 114 patients, 16 (14%) experienced poor clinical outcomes and ten (8.8%) required secondary ulnar shortening osteotomy. Positive ulnar variance was the only factor significantly associated with poor clinical outcomes (p < 0.001). Positive ulnar variance was present in 38 patients (33%); among them, eight patients (21%) required additional operations. Conclusion: Arthroscopic debridement alone appears to be an effective and safe initial treatment for patients with traumatic central TFCC tears. The presence of positive ulnar variance was associated with poor clinical outcomes, but close observation after arthroscopic debridement is more likely to be recommended than ulnar shortening osteotomy as a primary treatment.
Assuntos
Fibrocartilagem Triangular , Traumatismos do Punho , Humanos , Fibrocartilagem Triangular/cirurgia , Prognóstico , Resultado do Tratamento , Estudos Retrospectivos , Artroscopia/efeitos adversos , Traumatismos do Punho/diagnóstico por imagem , Traumatismos do Punho/cirurgia , Traumatismos do Punho/etiologia , Dor/etiologiaRESUMO
Fusarium species are widespread soilborne pathogens that can cause damping-off, root rot, and wilting in soybean [Glycine max (L.) Merrill], subsequently leading to significant yield suppression. Several Fusarium spp. have already been documented for their pathogenicity on soybean plants in the Republic of Korea. The nationwide monitoring of soybean diseases continues to identify new pathogenic Fusarium spp. In 2016, five plant samples at R3-R4 growth stages, showing symptoms of wilting in the upper parts and root rot, were collected in Suwon, Gyeonggi, Republic of Korea. Fungal colonies were obtained from the diseased root samples, with the surface sterilized in 1% sodium hypochlorite for 2 min, rinsed thrice with sterile distilled water, and placed on water agar at 25°C. Five isolates were collected and purified by single-spore isolation. The fungal mycelium was subsequently cultivated on potato dextrose agar for ten days. The isolates produced abundant, aerial, and white mycelium and became purple in old cultures. Macroconidia were slender, falcate to almost straight, usually 3 to 5 septated, and thin-walled. Microconidia were formed in chains from polyphalides, clavate or oval, usually single-celled with a flattened base. These characteristics of isolates were consistent with the description of F. proliferatum (Leslie and Summerrell 2006), and the representative isolate 16-19 was selected for molecular identification to confirm its identity as F. proliferatum. Two evolutionarily conserved genes, the translation elongation factor 1-alpha (EF-1α) and the second-largest subunit of RNA polymerase II (RPB2) genes, were partially amplified using the primers described by O'Donnell et al. (2008), resulting in nucleotide sequences of 680 and 382 base pairs, respectively. These two sequences (GenBank accession numbers: OQ992720 and OR060666) showed 100 and 99.5% identity to the EF-1α and RPB2 of F. proliferatum A40 (GenBank accession numbers: KP964907 and KP964842). For the Petri-dish pathogenicity assay (Broders et al. 2007), five surface-sterilized seeds were placed on water agar media with either sterile water or actively growing '16-19' culture. After 7 days of incubation in a growth chamber (25°C; 12-hour photoperiod), brown lesions were observed on the roots of the inoculated plants, while no symptoms were observed in the sterile water-treated controls. The experiment was conducted three times. For root-cut pathogenicity assay, conidial suspension (1×106 conidia/ml) of the isolate '16-19' was prepared with harvested mycelia cultured on PDA for 10 days with sterile water. The roots of 10-day-old soybean seedlings were partially cut and soaked in either the suspension or sterile water for 2 hours. The seedlings were transplanted into 12 cm plastic pots (11 cm in height) and grew in a greenhouse (26 ± 3°C, 13-h photoperiod). The experiment followed a completely randomized design with three replicates (i.e. three plants in a pot), and it was repeated twice. The inoculated plants began to wilt 7 days after inoculation, while the sterile water-treated controls remained healthy. Ten days after inoculation, all plants were collected, washed under running tap water, and evaluated for the presence and severity of root rot using a 0-4 scale (Chang et al. 2015). The inoculated plants exhibited reduced vigor and developed dark brown lesions on their roots. F. proliferatum was reisolated from symptomatic root tissues of the infected plants, while not from those of the controls. Its colony and spores were morphologically identical to those of the original isolate. F. proliferatum was previously reported as a causative agent of soybean root rot in the United States (Díaz Arias et al. 2011) and Canada (Chang et al. 2015). This is the first report of soybean root rot caused by F. proliferatum in the Republic of Korea. This finding implies that F. proliferatum may potentially threaten soybean production in the Republic of Korea and suggests that effective disease management strategies should be established for soybean protection against the disease, along with continuous surveillance.
RESUMO
Background and purpose: Contouring of organs at risk is important for studying health effects following breast radiotherapy. However, manual contouring is time-consuming and subject to variability. The purpose of this study was to develop a deep learning-based method to automatically segment multiple structures on breast radiotherapy planning computed tomography (CT) images. Materials and methods: We used data from 118 patients, including 90 diagnostic CT scans with expert structure delineations for training and 28 breast radiotherapy planning CT images for testing. The radiotherapy CT images also had expert delineations for evaluating performance. We targeted a total of eleven organs at risk including five heart substructures. Segmentation performance was evaluated using the metrics of Dice similarity coefficient (DSC), overlap fraction, volume similarity, Hausdorff distance, mean surface distance, and dose. Results: The average DSC achieved on the radiotherapy planning images was 0.94 ± 0.02 for the whole heart, 0.96 ± 0.02 and 0.97 ± 0.01 for the left and right lung, 0.61 ± 0.10 for the esophagus, 0.81 ± 0.04 and 0.86 ± 0.04 for left and right atrium, 0.91 ± 0.02 and 0.84 ± 0.04 for left and right ventricle, and 0.21 ± 0.11 for the left anterior descending artery (LAD), respectively. Except for the LAD, the median difference in mean dose to these structures was small with absolute (relative) differences < 0.1 Gy (6 %). Conclusions: Except for the LAD, our method demonstrated excellent performance and can be generalized to segment additional structures of interest.
RESUMO
Defining the molecular dynamics associated with T cell differentiation enhances our understanding of T cell biology and opens up new possibilities for clinical implications. In this study, we investigated the dynamics of CD5 expression in CD8+ T cell differentiation and explored its potential clinical uses. Using PBMCs from 29 healthy donors, we observed a stepwise decrease in CD5 expression as CD8+ T cells progressed through the differentiation stages. Interestingly, we found that CD5 expression was initially upregulated in response to T cell receptor stimulation, but diminished as the cells underwent proliferation, potentially explaining the differentiation-associated CD5 downregulation. Based on the proliferation-dependent downregulation of CD5, we hypothesized that relative CD5 expression could serve as a marker to distinguish the heterogeneous CD8+ T cell population based on their proliferation history. In support of this, we demonstrated that effector memory CD8+ T cells with higher CD5 expression exhibited phenotypic and functional characteristics resembling less differentiated cells compared to those with lower CD5 expression. Furthermore, in the retrospective analysis of PBMCs from 30 non-small cell lung cancer patients, we found that patients with higher CD5 expression in effector memory T cells displayed CD8+ T cells with a phenotype closer to the less differentiated cells, leading to favorable clinical outcomes in response to immune checkpoint inhibitor (ICI) therapy. These findings highlight the dynamics of CD5 expression as an indicator of CD8+ T cell differentiation status, and have implications for the development of predictive biomarker for ICI therapy.
RESUMO
Anoctamin 1 (ANO1), a drug target for various cancers, including prostate and oral cancers, is an intracellular calcium-activated chloride ion channel that plays various physiopathological roles, especially in the induction of cancer growth and metastasis. In this study, we tested a novel compound isolated from Schisandra sphenanthera, known as schisandrathera D, for its inhibitory effect on ANO1. Schisandrathera D dose-dependently suppressed the ANO1 activation-mediated decrease in fluorescence of yellow fluorescent protein; however, it did not affect the adenosine triphosphate-induced increase in the intracellular calcium concentration or forskolin-induced cystic fibrosis transmembrane conductance regulator activity. Specifically, schisandrathera D gradually decreased the levels of ANO1 protein and significantly reduced the cell viability in ANO1-expressing cells when compared to those in ANO1-knockout cells. These effects could be attributed to the fact that schisandrathera D displayed better binding capacity to ANO1 protein than the previously known ANO1 inhibitor, Ani9. Finally, schisandrathera D increased the levels of caspase-3 and cleaved poly (ADP-ribose) polymerase 1, thereby indicating that its anticancer effect is mediated through apoptosis. Thus, this study highlights that schisandrathera D, which reduces ANO1 protein levels, has apoptosis-mediated anticancer effects in prostate and oral cancers, and thus, can be further developed into an anticancer agent.
RESUMO
Gene therapy is an innovative approach in the field of regenerative medicine. This therapy entails the transfer of genetic material into a patient's cells to treat diseases. In particular, gene therapy for neurological diseases has recently achieved significant progress, with numerous studies investigating the use of adeno-associated viruses for the targeted delivery of therapeutic genetic fragments. This approach has potential applications for treating incurable diseases, including paralysis and motor impairment caused by spinal cord injury and Parkinson's disease, and it is characterized by dopaminergic neuron degeneration. Recently, several studies have explored the potential of direct lineage reprogramming (DLR) for treating incurable diseases, and highlighted the advantages of DLR over conventional stem cell therapy. However, application of DLR technology in clinical practice is hindered by its low efficiency compared with cell therapy using stem cell differentiation. To overcome this limitation, researchers have explored various strategies such as the efficiency of DLR. In this study, we focused on innovative strategies, including the use of a nanoporous particle-based gene delivery system to improve the reprogramming efficiency of DLR-induced neurons. We believe that discussing these approaches can facilitate the development of more effective gene therapies for neurological disorders.
RESUMO
We recruited 50 patients with unresectable stage III NSCLC who received CCRT between March 2020 and March 2021. Durvalumab consolidation (DC) was administered to patients (n = 23) without progression after CCRT and programmed death-ligand 1 (PD-L1) ≥ 1%. Blood samples were collected before (C0) and after CCRT (C1) to calculate PBC counts and analyze CTCs. CTCs, isolated by the CD-PRIMETM system, exhibited EpCAM/CK+/CD45- phenotype in BioViewCCBSTM. At median follow-up of 27.4 months, patients with residual CTC clusters at C1 had worse median PFS than those without a detectable CTC cluster (11.0 vs. 27.8 months, p = 0.032), and this trend was noted only in the DC group (p = 0.034). Patients with high platelets at C1 (PLThi, >252 × 103/µL) had worse median PFS than those with low platelets (PLTlo) (5.9 vs. 17.1 months, p < 0.001). In multivariable analysis, PLThi and residual CTC clusters at C1 were independent risk factors for PFS, and DC group with PLThi and residual CTC clusters at C1 showed the worst median PFS (2.6 months, HR 45.16, p = 0.001), even worse than that of the CCRT alone group with PLThi (5.9 months, HR 15.39, p = 0.001). The comprehensive analysis of CTCs and PBCs before and after CCRT revealed that the clearance of CTC clusters and platelet counts at C1 might be potential biomarkers for predicting survival.
RESUMO
We demonstrate active plasmonic systems where plasmonic signals are repeatedly modulated by changing the orientation of nanoprobes under an external magnetic field, which is a prerequisite for in situ active nanorheology in intracellular viscosity measurements. Au/Ni/Au nanorods act as "nanotransmitters", which transmit the mechanical motion of nanorods to an electromagnetic radiation signal as a periodic sine function. This fluctuating optical response is transduced to frequency peaks via Fourier transform surface plasmon resonance (FTSPR). As a driving frequency of the external magnetic field applied to the Au/Ni/Au nanorods increases and reaches above a critical threshold, there is a transition from the synchronous motion of nanorods to asynchronous responses, leading to the disappearance of the FTSPR peak, which allows us to measure the local viscosity of the complex fluids. Using this ensemble-based method with plasmonic functional nanomaterials, we measure the intracellular viscosity of cancer cells and normal cells in a reliable and reproducible manner.
Assuntos
Campos Magnéticos , Nanoestruturas , Viscosidade , Fenômenos Físicos , Movimento (Física)RESUMO
BACKGROUND: The relationship between self-rated health (SRH) and the development of incident chronic kidney disease (CKD) has not been explored in the general population. METHODS: We reviewed the data of 7027 participants in the Ansung-Ansan cohort study. SRH was categorized as poor, fair, or good, and the outcome was the development of CKD, defined as the first event of an estimated glomerular filtration rate < 60 mL/min/1.73 m2, at least twice during the follow-up period. Hazard ratios (HRs) and confidence intervals (CIs) were calculated using Cox proportional hazards regression analysis. RESULTS: Over a mean follow-up duration of 11.9 years, 951 participants (13.5%) developed CKD. Compared with poor self-rated health, the HR (95% CI) of fair self-rated health for incident CKD development was 0.771 (0.657-0.905; P = 0.001), whereas that of good self-rated health was 0.795 (0.676-0.935; P = 0.006). However, the renal hazard of good self-rated health did not differ from that of fair self-rated health. In the fully adjusted model, the HR (95% CI) of poor self-rated health compared to non-poor self-rated health for incident CKD was 1.278 (1.114-1.465, P < 0.001). Old age, smoking, cardiovascular disease, diabetes, hypertension, impaired sleep, and high levels of C-reactive protein and white blood cell counts were associated with increased odds of poor self-rated health, whereas male sex, college graduate level of education, and alcohol consumption were associated with decreased odds of poor self-rated health. CONCLUSION: Poor self-rated health is independently associated with CKD development. Therefore, the early detection of potential CKD patients through a brief questionnaire assessment may help control the incidence of CKD.
Assuntos
Insuficiência Renal Crônica , Humanos , Masculino , Estudos de Coortes , Insuficiência Renal Crônica/diagnóstico , República da Coreia/epidemiologia , Fatores de Risco , Estudos RetrospectivosRESUMO
Purpose: Cyberattacks on health care systems have been on the rise over the past 5 years. Formulation and implementation of a robust postattack business continuity plan and/or contingency plan (CP) is essential for minimal disruption to patient care. The level of awareness and planning within the radiation oncology community for cyberattacks is not clear. This study was undertaken to survey and assess cyberattack CP awareness and preparedness. Methods and Materials: A survey instrument comprising 5 questions on awareness and preparedness of cyberattack CPs was e-mailed to 150 radiation oncology departments. Recipients included 105 institutions with residency programs in therapeutic medical physics, as listed by the Commission on Accreditation of Medical Physics Education Program (usually either school-based or large institutional settings), and 45 additional smaller settings within the United States, representing community practices. Results: Forty-three responses were deemed evaluable for analysis. Forty-two percent (18 respondents) of respondents responded that they are well-aware of the concept of a cyberattack CP. A large discrepancy in awareness exists between larger hospitals (LH) that have 5 or more treatment machines and smaller hospitals (SH) that have 4 or fewer, 54% versus 24 % (P < .05). Fifty-eight percent of respondents considered it "essential" to have such a plan in place, and 28% considered it "desirable" to do so but not practical. Nine percent regarded a cyberattack CP as unnecessary. No significant differences in responses were noted among different types or sizes of institutions on this issue. Sixty-two percent of LH responded that they were either preparing or evaluating a CP, compared with only 29% of SH (P = .03). However, no respondents explicitly replied that they already had a CP in place in their practices. Conclusions: The importance of cyberattack preparedness and implementation does not seem to be well-recognized in radiation oncology. Both the awareness and the preparedness of SH are substantially less than those of LH. Specific and ongoing education efforts in parallel with development of appropriate programs are needed to counter the increasingly pervasive and complex threat of cyberattacks.
RESUMO
BACKGRUOUND: Excessive proliferation and migration of vascular smooth muscle cells (VSMCs), which contributes to the development of occlusive vascular diseases, requires elevated mitochondrial oxidative phosphorylation to meet the increased requirements for energy and anabolic precursors. Therefore, therapeutic strategies based on blockade of mitochondrial oxidative phosphorylation are considered promising for treatment of occlusive vascular diseases. Here, we investigated whether DN200434, an orally available estrogen receptor-related gamma inverse agonist, inhibits proliferation and migration of VSMCs and neointima formation by suppressing mitochondrial oxidative phosphorylation. METHODS: VSMCs were isolated from the thoracic aortas of 4-week-old Sprague-Dawley rats. Oxidative phosphorylation and the cell cycle were analyzed in fetal bovine serum (FBS)- or platelet-derived growth factor (PDGF)-stimulated VSMCs using a Seahorse XF-24 analyzer and flow cytometry, respectively. A model of neointimal hyperplasia was generated by ligating the left common carotid artery in male C57BL/6J mice. RESULTS: DN200434 inhibited mitochondrial respiration and mammalian target of rapamycin complex 1 activity and consequently suppressed FBS- or PDGF-stimulated proliferation and migration of VSMCs and cell cycle progression. Furthermore, DN200434 reduced carotid artery ligation-induced neointima formation in mice. CONCLUSION: Our data suggest that DN200434 is a therapeutic option to prevent the progression of atherosclerosis.
Assuntos
Aterosclerose , Neointima , Ratos , Camundongos , Masculino , Animais , Neointima/prevenção & controle , Neointima/tratamento farmacológico , Neointima/metabolismo , Músculo Liso Vascular/metabolismo , Camundongos Endogâmicos C57BL , Proliferação de Células , Ratos Sprague-Dawley , Células Cultivadas , Artéria Carótida Primitiva/metabolismo , Artérias Carótidas/cirurgia , Artérias Carótidas/metabolismo , MamíferosRESUMO
Mutations affecting isocitrate dehydrogenase (IDH) enzymes are prevalent in glioma, leukemia, and other cancers. Although mutant IDH inhibitors are effective against leukemia, they seem to be less active in aggressive glioma, underscoring the need for alternative treatment strategies. Through a chemical synthetic lethality screen, we discovered that IDH1-mutant glioma cells are hypersensitive to drugs targeting enzymes in the de novo pyrimidine nucleotide synthesis pathway, including dihydroorotate dehydrogenase (DHODH). We developed a genetically engineered mouse model of mutant IDH1-driven astrocytoma and used it and multiple patient-derived models to show that the brain-penetrant DHODH inhibitor BAY 2402234 displays monotherapy efficacy against IDH-mutant gliomas. Mechanistically, this reflects an obligate dependence of glioma cells on the de novo pyrimidine synthesis pathway and mutant IDH's ability to sensitize to DNA damage upon nucleotide pool imbalance. Our work outlines a tumor-selective, biomarker-guided therapeutic strategy that is poised for clinical translation.
Assuntos
Neoplasias Encefálicas , Glioma , Leucemia , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Inibidores Enzimáticos/uso terapêutico , Glioma/tratamento farmacológico , Glioma/genética , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Camundongos , Mutação , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Salicilanilidas , TriazóisRESUMO
Anoctamin 1 (ANO1) is a calcium-activated chloride channel found in various cell types and is overexpressed in non-small cell lung cancer (NSCLC), a major cause of cancer-related mortality. With the rising interest in development of druggable compounds for NSCLC, there has been a corresponding rise in interest in ANO1, a novel drug target for NSCLC. However, as ANO1 inhibitors that have been discovered simultaneously exhibit both the functions of an inhibition of ANO1 channel as well as a reduction of ANO1 protein levels, it is unclear which of the two functions directly causes the anticancer effect. In this study, verteporfin, a chemical compound that reduces ANO1 protein levels was identified through high-throughput screening. Verteporfin did not inhibit ANO1-induced chloride secretion but reduced ANO1 protein levels in a dose-dependent manner with an IC50 value of ~300 nM. Moreover, verteporfin inhibited neither P2Y receptor-induced intracellular Ca2+ mobilization nor cystic fibrosis transmembrane conductance regulator (CFTR) channel activity, and molecular docking studies revealed that verteporfin bound to specific sites of ANO1 protein. Confirming that verteporfin reduces ANO1 protein levels, we then investigated the molecular mechanisms involved in its effect on NSCLC cells. Interestingly, verteporfin decreased ANO1 protein levels, the EGFR-STAT3 pathway as well as ANO1 mRNA expression. Verteporfin reduced the viability of ANO1-expressing cells (PC9, and gefitinib-resistant PC9) and induced apoptosis by increasing caspase-3 activity and PARP-1 cleavage. However, it did not affect hERG channel activity. These results show that the anticancer mechanism of verteporfin is caused via the down-regulation of ANO1.
Assuntos
Anoctamina-1 , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Proteínas de Neoplasias , Verteporfina , Anoctamina-1/genética , Anoctamina-1/metabolismo , Cálcio/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Canais de Cloreto/metabolismo , Regulação para Baixo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Simulação de Acoplamento Molecular , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Verteporfina/farmacologiaRESUMO
PURPOSE: Well-designed routine multileaf collimator (MLC) quality assurance (QA) is important to assure external-beam radiation treatment delivery accuracy. This study evaluates the clinical necessity of a comprehensive weekly (C-Weekly) MLC QA program compared to the American Association of Physics in Medicinerecommended weekly picket fence test (PF-Weekly), based on our seven-year experience with weekly MLC QA. METHODS: The C-Weekly MLC QA program used in this study includes 5 tests to analyze: (1) absolute MLC leaf position; (2) interdigitation MLC leaf position; (3) picket fence MLC leaf positions at static gantry angle; (4) minimum leaf-gap setting; and (5) volumetric-modulated arc therapy delivery. A total of 20,226 QA images from 16,855 tests (3,371 tests × 5) for 11 linacs at 5 photon clinical sites from May 2014 to June 2021 were analyzed. Failure mode and effects analysis was performed with 5 failure modes related to the 5 tests. For each failure mode, a risk probability number (RPN) was calculated for a C-Weekly and a PF-Weekly MLC QA program. The probability of occurrence was evaluated from statistical analyses of the C-Weekly MLC QA. RESULTS: The total number of failures for these 16,855 tests was 143 (0.9%): 39 (27.3%) for absolute MLC leaf position, 13 (9.1%) for interdigitation position, 9 (6.3%) for static gantry picket fence, 2 (1.4%) for minimum leaf-gap setting, and 80 (55.9%) for VMAT delivery. RPN scores for PF-Weekly MLC QA ranged from 60 to 192 and from 48 to 96 for C-Weekly MLC QA. CONCLUSION: RPNs for the 5 failure modes of MLC QA tests were quantitatively determined and analyzed. A comprehensive weekly MLC QA is imperative to lower the RPNs of the 5 failure modes to the desired level (<125); those from the PF-Weekly MLC QA program were found to be higher (>125). This supports the clinical necessity for comprehensive weekly MLC QA.
Assuntos
Aceleradores de Partículas , Radioterapia de Intensidade Modulada , Equipamentos e Provisões Elétricas , Humanos , Radioterapia de Intensidade Modulada/métodosRESUMO
Classically activated M1 macrophages reprogram their metabolism towards enhanced glycolysis to obtain energy and produce pro-inflammatory cytokines after activation by mammalian target of rapamycin complex 1 (mTORC1) and hypoxia-inducible factor (HIF)-1α. Thus, a strategy that constrains M1 polarization of macrophages via downregulation of glycolysis is essential for treating chronic inflammatory diseases. Cassiae semen has pharmacological activity against various inflammatory diseases. However, it is unclear whether specific compounds within Cassia seeds affect M1 polarization of macrophages. Here, we investigated whether Cassiaside C napthopyrone from Cassiae semen inhibits M1 polarization by downregulating glycolysis. We found that Cassiaside C reduced expression of inducible nitric oxide synthase and cyclooxygenase-2 and the phosphorylation of nuclear factor kappa B, all of which are upregulated in lipopolysaccharide (LPS)/interferon (IFN)-γ-treated Raw264.7 cells and peritoneal macrophages. Moreover, Cassiaside C-treated macrophages showed marked suppression of LPS/IFN-γ-induced HIF-1α, pyruvate dehydrogenase kinase 1, and lactate dehydrogenase A expression, along with downregulation of the phosphoinositide 3-kinases (PI3K)/AKT/mTORC1 signaling pathway. Consequently, Cassiaside C attenuated enhanced glycolysis and lactate production, but rescued diminished oxidative phosphorylation, in M1 polarized macrophages. Thus, Cassiaside C dampens M1 polarization of macrophages by downregulating glycolysis, which could be exploited as a therapeutic strategy for chronic inflammatory conditions.
Assuntos
Polaridade Celular , Glicólise , Glicosídeos , Ativação de Macrófagos , Macrófagos , Animais , Camundongos , Regulação da Expressão Gênica , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células RAW 264.7 , Transdução de Sinais , Polaridade Celular/efeitos dos fármacos , Glicosídeos/farmacologiaRESUMO
BACKGROUND: CD8+ tumor-infiltrating lymphocytes (TILs) comprise phenotypically and functionally heterogeneous subpopulations. Of these, effector memory CD45RA re-expressing CD8+ T cells (Temra) have been discovered and characterized as the most terminally differentiated subset. However, their exact ontogeny and physiological importance in association with tumor progression remain poorly understood. METHODS: We analyzed primary tumors and peripheral blood samples from 26 patients with non-small cell lung cancer and analyzed their phenotypes and functional characteristics using flow cytometry, RNA-sequencing, and bioinformatics. RESULTS: We found that tumor-infiltrating Temra (tilTemra) cells largely differ from peripheral blood Temra (pTemra), with distinct transcriptomes and functional properties. Notably, although majority of the pTemra was CD27-CD28- double-negative (DN), a large fraction of tilTemra population was CD27+CD28+ double-positive (DP), a characteristic of early-stage, less differentiated effector cells. Trajectory analysis revealed that CD8+ TILs undergo a divergent sequence of events for differentiation into either DP or DN tilTemra. Such a differentiation toward DP tilTemra relied on persistent expression of CD27 and CD28 and was associated with weak T cell receptor engagement. Thus, a higher proportion of DP Temra was correlated with lower immunogenicity of tumor antigens and consequently lower accumulation of CD8+ TILs. CONCLUSIONS: These data suggest a complex interplay between CD8+ T cells and tumors and define DP Temra as a unique subset of tumor-specific CD8+ TILs that are produced in patients with relatively low immunogenic cancer types, predicting immunogenicity of tumor antigens and CD8+ TIL counts, a reliable biomarker for successful cancer immunotherapy.
Assuntos
Antígenos de Neoplasias/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Imunoterapia/métodos , Neoplasias Pulmonares/genética , Linfócitos do Interstício Tumoral/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Diferenciação Celular , Humanos , Neoplasias Pulmonares/patologiaRESUMO
Polymorph conversion of transition metal dichalcogenides (TMDs) offers intriguing material phenomena that can be applied for tuning the intrinsic properties of 2D materials. In general, group VIB TMDs can have thermodynamically stable 2H phases and metastable 1T/T' phases. Herein, we report key principles to apply carbon monoxide (CO)-based gas-solid reactions for a universal polymorph conversion of group VIB TMDs without forming undesirable compounds. We found that the process conditions are strongly dependent on the reaction chemical potential of cations in the TMDs, which can be predicted by thermodynamic calculations, and that polymorphic conversion is triggered by S vacancy (VS) formation. Furthermore, we conducted DFT calculations for the reaction barriers of VS formation and S diffusion to reveal the polymorph conversion mechanism of WS2 and compared it with that of MoS2. We believe that phase engineering 2D materials via thermodynamically designed gas-solid reactions could be functionally used to achieve defect-related nanomaterials.
RESUMO
Non-small cell lung cancer (NSCLC) is one of the leading causes of cancer-related mortality; thus, therapeutic targets continue to be developed. Anoctamin1 (ANO1), a novel drug target considered for the treatment of NSCLC, is a Ca2+-activated chloride channel (CaCC) overexpressed in various carcinomas. It plays an important role in the development of cancer; however, the role of ANO1 in NSCLC is unclear. In this study, diethylstilbestrol (DES) was identified as a selective ANO1 inhibitor using high-throughput screening. We found that DES inhibited yellow fluorescent protein (YFP) fluorescence reduction caused by ANO1 activation but did not inhibit cystic fibrosis transmembrane conductance regulator channel activity or P2Y activation-related cytosolic Ca2+ levels. Additionally, electrophysiological analyses showed that DES significantly reduced ANO1 channel activity, but it more potently reduced ANO1 protein levels. DES also inhibited the viability and migration of PC9 cells via the reduction in ANO1, phospho-ERK1/2, and phospho-EGFR levels. Moreover, DES induced apoptosis by increasing caspase-3 activity and PARP-1 cleavage in PC9 cells, but it did not affect the viability of hepatocytes. These results suggest that ANO1 is a crucial target in the treatment of NSCLC, and DES may be developed as a potential anti-NSCLC therapeutic agent.
Assuntos
Anoctamina-1/antagonistas & inibidores , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Dietilestilbestrol/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Anoctamina-1/metabolismo , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Dietilestilbestrol/metabolismo , Humanos , Neoplasias Pulmonares , Proteínas de Neoplasias/metabolismo , Transdução de SinaisRESUMO
Excessive proliferation and migration of vascular smooth muscle cells (VSMCs) contribute to the development of atherosclerosis and restenosis. Glycolysis and glutaminolysis are increased in rapidly proliferating VSMCs to support their increased energy requirements and biomass production. Thus, it is essential to develop new pharmacological tools that regulate metabolic reprogramming in VSMCs for treatment of atherosclerosis. The effects of 6-diazo-5-oxo-L-norleucine (DON), a glutamine antagonist, have been broadly investigated in highly proliferative cells; however, it is unclear whether DON inhibits proliferation of VSMCs and neointima formation. Here, we investigated the effects of DON on neointima formation in vivo as well as proliferation and migration of VSMCs in vitro. DON simultaneously inhibited FBS- or PDGF-stimulated glycolysis and glutaminolysis as well as mammalian target of rapamycin complex I activity in growth factor-stimulated VSMCs, and thereby suppressed their proliferation and migration. Furthermore, a DON-derived prodrug, named JHU-083, significantly attenuated carotid artery ligation-induced neointima formation in mice. Our results suggest that treatment with a glutamine antagonist is a promising approach to prevent progression of atherosclerosis and restenosis.
Assuntos
Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Diazo-Oxo-Norleucina/farmacologia , Glutamina/antagonistas & inibidores , Glicólise/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Neointima/tratamento farmacológico , Fosforilação Oxidativa/efeitos dos fármacos , Animais , Antimetabólitos Antineoplásicos/farmacologia , Ciclo Celular/efeitos dos fármacos , Células Cultivadas , Diazo-Oxo-Norleucina/análogos & derivados , Glutamina/metabolismo , Imuno-Histoquímica , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Músculo Liso Vascular/metabolismo , Neointima/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Ratos , Ratos Sprague-Dawley , Soroalbumina Bovina/farmacologiaRESUMO
Rapidly proliferating cells such as vascular smooth muscle cells (VSMCs) require metabolic programs to support increased energy and biomass production. Thus, targeting glutamine metabolism by inhibiting glutamine transport could be a promising strategy for vascular disorders such as atherosclerosis, stenosis, and restenosis. V-9302, a competitive antagonist targeting the glutamine transporter, has been investigated in the context of cancer; however, its role in VSMCs is unclear. Here, we examined the effects of blocking glutamine transport in fetal bovine serum (FBS)- or platelet-derived growth factor (PDGF)-stimulated VSMCs using V-9302. We found that V-9302 inhibited mTORC1 activity and mitochondrial respiration, thereby suppressing FBS- or PDGF-stimulated proliferation and migration of VSMCs. Moreover, V-9302 attenuated carotid artery ligation-induced neointima in mice. Collectively, the data suggest that targeting glutamine transport using V-9302 is a promising therapeutic strategy to ameliorate occlusive vascular disease.