Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 7(1): 230-237, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38133569

RESUMO

This article describes a monolayer-coated gold nanoparticle-based transfection system for the delivery of microRNA (miRNA) into human osteosarcoma (HOS) cells. Two distinct ammonium-terminated adsorbates were used in this study, which provided a platform for ionic bonding of the miRNA onto gold nanoparticles (AuNPs). The custom-designed monolayer-coated gold nanoparticles were characterized by dynamic light scattering, gel mobility shift assay, transmission electron microscopy, ultraviolet-visible spectrometry, zeta potential, and X-ray photoelectron spectroscopy. The miRNA-loaded gold nanoparticles were transfected, and the level of intracellular miRNA delivered and taken up by cells was measured by Taqman qPCR. The overall analysis indicated a successful delivery of miRNA into the HOS cells at an ∼11,000-fold increase compared to nontreated cells.


Assuntos
Nanopartículas Metálicas , MicroRNAs , Humanos , Ouro/química , MicroRNAs/genética , Nanopartículas Metálicas/química , Transfecção , Técnicas de Transferência de Genes
2.
ACS Omega ; 7(19): 16746-16756, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35601338

RESUMO

Telomerase is essential for the immortality characteristics of most cancers. Telomerase-specific inhibitors should render cancer cells to replicative senescence without acute cytotoxicity. Perylene-based G-quadruplex (G4) ligands are widely studied as telomerase inhibitors. Most reported perylene-based G4 ligands are perylene diimides (PDIs), which often suffer from self-aggregation in aqueous solutions. Previously, we found that PM2, a perylene monoimide (PMI), exhibited better solubility, G4 binding affinity, and telomerase inhibition than PIPER, the prototypic PDI. However, the acute cytotoxicity of PM2 was about 20-30 times more than PIPER in cancer cells. In this report, we replaced the piperazine side chain of PM2 with ethylenediamine to yield PM3 and replaced the N,N-diethylethylenediamine side chain of PM2 with the 1-(2-aminoethyl) piperidine to yield PM5. We found that asymmetric PMIs with two basic side chains (PM2, PM3, and PM5) performed better than PIPER (the prototypic PDI), in terms of hydrosolubility, G4 binding, in vitro telomerase inhibition, and suppression of human telomerase reverse transcriptase (hTERT) expression and telomerase activity in A549 cells. However, PM5 was 7-10 times less toxic than PM2 and PM3 in three cancer cell lines. We conclude that replacing the N,N-diethylethylenediamine side chain with the 2-aminoethylpiperidine on PMIs reduces the cytotoxicity in cancer cells without impacting G4 binding and telomerase inhibition. This study paves the way for synthesizing new PMIs with drug-like properties for selective telomerase inhibition.

3.
Materials (Basel) ; 15(2)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35057223

RESUMO

Due to their good magnetic properties, excellent biocompatibility, and low price, magnetic iron oxide nanoparticles (IONPs) are the most commonly used magnetic nanomaterials and have been extensively explored in biomedical applications. Although magnetic IONPs can be used for a variety of applications in biomedicine, most practical applications require IONP-based platforms that can perform several tasks in parallel. Thus, appropriate engineering and integration of magnetic IONPs with different classes of organic and inorganic materials can produce multifunctional nanoplatforms that can perform several functions simultaneously, allowing their application in a broad spectrum of biomedical fields. This review article summarizes the fabrication of current composite nanoplatforms based on integration of magnetic IONPs with organic dyes, biomolecules (e.g., lipids, DNAs, aptamers, and antibodies), quantum dots, noble metal NPs, and stimuli-responsive polymers. We also highlight the recent technological advances achieved from such integrated multifunctional platforms and their potential use in biomedical applications, including dual-mode imaging for biomolecule detection, targeted drug delivery, photodynamic therapy, chemotherapy, and magnetic hyperthermia therapy.

4.
ACS Omega ; 5(46): 29733-29745, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33251409

RESUMO

Perylene diimide (PDI) derivatives have been studied as G-quadruplex ligands that suppress telomerase activity by facilitating G-quadruplex formation of telomeric DNA and the hTERT promoter. PIPER, the prototypical PDI, reduces telomerase activity in lung and prostate cancer cells, leading to telomere shortening and cellular senescence of these cells. However, PIPER suffers from poor hydrosolubility and the propensity to aggregate at neutral pH. In this report, we synthesized a new asymmetric PDI, aPDI-PHis, which maintains one N-ethyl piperidine side chain of PIPER and has histidine as another side chain. The results show that aPDI-PHis is superior to its symmetric counterparts, PIPER and PDI-His, in terms of hydrosolubility, G-quadruplex binding, cellular uptake, and telomerase inhibition in prostate cancer cells. These results suggest that one N-ethyl piperidine side chain of PDI is sufficient for G-quadruplex binding, while another side chain can be tuned to elicit desirable properties. These findings might lead to better PDIs for use as anticancer drugs.

5.
Biol Pharm Bull ; 42(6): 906-914, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30930403

RESUMO

Prostate cancer is the second most common cancer among men worldwide, and it is ranked first in the United States and Europe. Since prostate cancer is slow-growing, active surveillance for low-risk cancer has been increasingly supported by various guidelines. Most prostate cancers reactivate telomerase to circumvent the replicative senescence caused by the end replication problem; therefore, telomerase inhibition is potentially useful for the suppression of prostate cancer progression during this active surveillance or for the prevention of cancer recurrence after conventional therapies. In this study, we demonstrated that the perylene derivatives, PM2 and PIPER, could suppress human telomerase reverse transcriptase (hTERT) expression and telomerase activity in the short-term treatment of androgen-dependent prostate cancer cell line LNCaP and the androgen-independent prostate cancer cell line PC3 prostate cancer cells. Long-term treatment with subcytotoxic doses of these compounds in both prostate cancer cells showed telomere shortening and a significant increase in senescent cells. Although the acute cytotoxicity of PM2 was about 30 times higher than that of PIPER in both prostate cancer cells, the cellular uptake of both compounds was comparable as determined by flow cytometry and fluorescent microscopy.


Assuntos
Antineoplásicos/farmacologia , Perileno/análogos & derivados , Perileno/farmacologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Telomerase/antagonistas & inibidores , Encurtamento do Telômero/efeitos dos fármacos , Linhagem Celular Tumoral , Senescência Celular/efeitos dos fármacos , Humanos , Masculino , Células PC-3 , Perileno/química , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Telomerase/metabolismo
6.
ACS Omega ; 4(27): 22332-22344, 2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31909316

RESUMO

New ether-substituted poly(1,4-phenylene vinylene) (PPV) derivatives were synthesized via Horner-Emmons coupling. The structures of the monomers and the resultant oligomers were confirmed by 1H and 13C NMR spectroscopies. The molecular weights of the oligomers were characterized by gel permeation chromatography, giving the number-average and weight-average molecular weights and the corresponding polydispersity indices. Measurements of UV-vis absorption and fluorescence were used to characterize the optical properties of the oligomers. Estimation of the highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels and other electrochemical characteristics of the oligomers were investigated by cyclic voltammetry. Dialkyl and dialkoxy PPV oligomers were also prepared and characterized following the same instrumental methods used for the ether-substituted oligomers, providing a known reference system to judge the performance of the new conjugated oligomers. Devices were fabricated to analyze the electroluminescent characteristics of the oligomers in organic light-emitting diodes.

7.
ACS Omega ; 3(12): 18572-18581, 2018 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-32010796

RESUMO

Replicative senescence, which is caused by telomere shortening from the end replication problem, is considered one of the tumor-suppressor mechanisms in eukaryotes. However, most cancers escape this replicative senescence by reactivating telomerase, an enzyme that extends the 3'-ends of the telomeres. Previously, we reported the telomerase inhibitory effect of a crude Zingiber officinale extract (ZOE), which suppressed hTERT expression, leading to a reduction in hTERT protein and telomerase activity in A549 lung cancer cells. In the present study, we found that ZOE-induced telomere shortening and cellular senescence during the period of 60 days when these A549 cells were treated with subcytotoxic doses of ZOE. Using assay-guided fractionation and gas chromatography/mass spectrometry analysis, we found that the major compounds in the active subfractions were paradols and shogaols of various chain lengths. The results from studies of pure 6-paradol and 6-shogaol confirmed that these two compounds could suppress hTERT expression as well as telomerase activity in A549 cells. These results suggest that these paradols and shogaols are likely the active compounds in ZOE that suppress hTERT expression and telomerase activity in these cells. Furthermore, ZOE was found to be nontoxic and had an anticlastogenic effect against diethylnitrosamine-induced liver micronucleus formation in rats. These findings suggest that ginger extract can potentially be useful in dietary cancer prevention.

8.
ACS Appl Mater Interfaces ; 9(28): 23370-23378, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28636320

RESUMO

This Article describes the generation and study of surfaces modified with custom-crafted poly(l-lysine) (PLL) coatings for use in the loading and delivery of single-stranded DNA (ssDNA). The experimental strategy utilizes bidentate dithiol adsorbates to generate stably bound azide-terminated self-assembled monolayers (SAMs) on gold possessing an oligo(ethylene glycol) (OEG) spacer. Consequent to the molecular assembly on gold, the azide termini are covalently attached to a maleimide linker moiety via a copper-catalyzed azide-alkyne "click" reaction. Functionalization with maleimide provides a platform for the subsequent attachment of cysteine-terminated poly(l-lysine) (PLL), thus forming a suitable surface for the loading of ssDNA via electrostatic interactions. In efforts to maximize DNA loading, we generate SAMs containing mixtures of short and long PLL segments and explore the DNA-loading capability of the various PLL SAMs. We then use thermal increases to trigger the release of the ssDNA from the surface. By examining the loading and release of ssDNA using these new two-dimensional systems, we gain preliminary insight into the potential efficacy of this approach when using three-dimensional gold nanostructure systems in future gene-delivery and biosensing applications.


Assuntos
Polilisina/química , DNA , Ouro , Polietilenoglicóis , Propriedades de Superfície
9.
Langmuir ; 33(8): 1751-1762, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28107018

RESUMO

Organic thin-films on gold were prepared from a set of new, custom-designed bidentate alkanethiols possessing a mixture of normal alkane and methoxy-terminated tri(ethylene glycol) chains. The new unsymmetrical spiroalkanedithiol adsorbates were of the form [CH3O(CH2CH2O)3(CH2)5]-[CH3(CH2)n+1]C[CH2SH]2 where n = 3 and 14; designated EG3C7-C7 and EG3C7-C18, respectively. Their corresponding self-assembled monolayers (SAMs) on gold were characterized and compared with monothiol SAMs derived from an analogous normal alkanethiol (C18SH) and an alkanethiol terminated with an oligo(ethylene glycol) (OEG) moiety (i.e., EG3C7SH). Ellipsometric data revealed reduced film thicknesses for the double-chained dithiolate SAMs, which perhaps arose from the phase-incompatible merger of a hydrocarbon chain with an OEG moiety, contributing to disorder in the films and/or an increase in chain tilt. The comparable wettabilities of the SAMs derived from EG3C7SH and EG3C7-C7, using water as the contacting liquid, are consistent with exposure of the OEG moieties at both interfaces, whereas the lower wettability of the SAM derived from EG3C7-C18 is consistent with exposure of hydrocarbon chains at the interface. The data collected by X-ray photoelectron spectroscopy confirmed the formation of the new OEG-terminated dithiolate SAMs, and also revealed them as less densely packed monolayers due in part to the large molecular cross section of the OEG moieties and to their double-chained structure with dual surface bonds. Mixed SAMs formed from pairs of monothiols having chain compositions analogous to those of the chains of the new dithiols showed that an EG3C7SH/heptanethiol-mixed SAM and the EG3C7-C7 SAM produced almost identical characterization data, revealing the favorable film formation dynamics for adsorbate structures where the alkyl chains can assemble beneath the phase-incompatible OEG termini. For the mixed SAM formed from EG3C7SH/C18SH, the data indicate that the EG3C7SH component failed to incorporate in the film, demonstrating that the blending of phase-incompatible chains is sometimes best accomplished when both chains exist on a single adsorbate structure. Furthermore, the results of solution-phase thermal desorption tests revealed that the OEG-terminated films generated from the bidentate EG3C7-C7 and EG3C7-C18 adsorbates exhibit enhanced thermal stability when compared to the film generated from monodentate EG3C7SH. In a brief study of protein adsorption, the multicomponent SAMs showed a greater ability to resist the adsorption of fibrinogen on their surfaces when compared to the SAM derived from C18SH, but not better than the monolayer derived from EG3C7SH.

10.
Colloids Surf B Biointerfaces ; 145: 291-300, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27208443

RESUMO

Nanoparticles decorated with biocompatible coatings have received considerable attention in recent years for their potential biomedical applications. However, the desirable properties of nanoparticles for in vivo uses, such as colloidal stability, biodistribution, and pharmacokinetics, require further research. In this work, we report a bio-derived zwitterionic surface ligand, cysteine betaine (Cys-b) for the modification of hollow gold-silver nanoshells, giving rise to hyperthermia applications. Cys-b coatings on planar substrates and nanoshells were compared to conventional (11-mercaptoundecyl)tri(ethylene glycol) (OEG-thiol) to investigate their effects on the fouling resistance, colloidal stability, environmental tolerance, and photothermal properties. The results found that Cys-b and OEG-thiol coatings exhibited comparable antifouling properties against bacteria of gram-negative Pseudomonas aeruginosa (P. aeruginosa) and gram-positive Staphylococcus epidermidis (S. epidermidis), NIH-3T3 fibroblasts, and bovine serum albumin. However, when the modified nanoshells were suspended at a temperature of 50°C in aqueous 3M NaCl solutions, shifts in the extinction maximum of the OEG-capped nanoshells with time were observed, while the corresponding spectra of nanoshells capped with Cys-b generally remained unchanged. In addition, when the nanoshells were continuously exposed to NIR irradiation, the temperature of the solution containing nanoshells capped with Cys-b increased to a plateau of 54°C, while that of the OEG-capped nanoshells gradually decreased after reaching a peak temperature. Accordingly, the Cys-b nanoshells were conjugated with anti-HER2 antibodies for targeted delivery to HER2-positive MDA-MB-453 breast cancer cells for hyperthermia treatment. The results showed the selective delivery and effective photothermal cell ablation with the antibody-conjugated Cys-b nanoshells. Therefore, this work demonstrated the promise of bio-derived zwitterionic Cys-b as a stable and biocompatible surface coating for materials in nanomedicine.


Assuntos
Betaína/farmacologia , Cisteína/análogos & derivados , Hipertermia Induzida , Raios Infravermelhos , Nanoconchas/química , Compostos de Amônio Quaternário/farmacologia , Adsorção , Animais , Bovinos , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cisteína/farmacologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Ouro/farmacologia , Camundongos , Células NIH 3T3 , Espectroscopia Fotoeletrônica , Prata/farmacologia , Propriedades de Superfície , Fatores de Tempo
11.
ACS Appl Mater Interfaces ; 7(42): 23776-86, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26452141

RESUMO

Great care has been paid to the biointerface between a bulk material and the biological environment, which plays a key role in the optimized performance of medical devices. In this work, we report a new superhydrophilic adsorbate, called L-cysteine betaine (Cys-b), having branched zwitterionic groups that give rise to surfaces and nanoparticles with enhanced chemical stability, biofouling resistance, and inertness to environmental changes. Cys-b was synthesized from the amphoteric sulfur-containing amino acid, L-cysteine (Cys), by quaternization of its amino group. Gold surfaces modified with Cys-b exhibited prominent repellence against the nonspecific adsorption of proteins, bacteria, and fibroblast cells. In addition, Cys-b existed in zwitterionic form over a wide pH range (i.e., pH 3.4 to 10.8), and showed excellent suppression in photoinduced oxidation on gold substrates. Furthermore, the modification of hollow Ag@Au nanoshells with Cys-b gave rise to nanoparticles with excellent colloidal stability and resistance to coordinative interaction with Cu(2+). Taken together, the unique features of Cys-b offer a new nanoscale coating for use in a wide spectrum of applications.


Assuntos
Adsorção/efeitos dos fármacos , Betaína/farmacologia , Incrustação Biológica , Cisteína/farmacologia , Aminoácidos/química , Betaína/síntese química , Betaína/química , Cisteína/síntese química , Cisteína/química , Equipamentos e Provisões , Ouro/química , Interações Hidrofóbicas e Hidrofílicas , Polímeros/química , Soroalbumina Bovina/química , Soroalbumina Bovina/efeitos dos fármacos , Propriedades de Superfície/efeitos dos fármacos
12.
Langmuir ; 31(22): 6154-63, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-25961498

RESUMO

Surfaces modified with poly(L-lysine) can be used to immobilize selected biomolecules electrostatically. This report describes the preparation of a set of self-assembled monolayers (SAMs) from three different azide-terminated adsorbates as platforms for performing controlled surface attachments and as a means of determining the parameters that afford stable poly(L-lysine)-modified SAM surfaces having controlled packing densities. A maleimide-terminated alkyne linker was "clicked" to the azide-terminated surfaces via a copper-catalyzed cycloaddition reaction to produce the attachment sites for the polypeptides. A thiol-Michael addition was then used to immobilize cysteine-terminated poly(L-lysine) moieties on the gold surface, avoiding adsorbate self-reactions with this two-step procedure. Each step in this process was analyzed by ellipsometry, X-ray photoelectron spectroscopy, polarization modulation infrared reflection-absorption spectroscopy, and contact angle goniometry to determine which adsorbate structure most effectively produced the targeted polypeptide interface. Additionally, a series of mixed SAMs using an azidoalkanethiol in combination with a normal alkanethiol having an equivalent alkyl chain were prepared to provide data to determine how dilution of the azide reactive site on the SAM surface influences the initial click reaction. Overall, the collected data demonstrate the advantages of an appropriately designed bidentate absorbate and its potential to form effective platforms for biomolecule surface attachment via click reactions.


Assuntos
Química Click , Polilisina/química , Tolueno/análogos & derivados , Adsorção , Estrutura Molecular , Propriedades de Superfície , Tolueno/química
13.
ACS Appl Mater Interfaces ; 7(7): 3981-93, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25611157

RESUMO

Catheter-related infections (CRIs) are associated with the formation of pathogenic biofilms on the surfaces of silicone catheters, which are ubiquitous in medicine. These biofilms provide protection against antimicrobial agents and facilitate the development of bacterial resistance to antibiotics. The application of photothermal agents on catheter surfaces is an innovative approach to overcoming biofilm-generated CRIs. Gold nanoshells (AuNSs) represent a promising photothermal tool, because they can be used to generate heat upon exposure to near-infrared (NIR) radiation, are biologically inert at physiological temperatures, and can be engineered for the photothermal ablation of cells and tissue. In this study, AuNSs functionalized with carboxylate-terminated organosulfur ligands were attached to model catheter surfaces and tested for their effectiveness at killing adhered Enterococcus faecalis (E. faecalis) bacteria. The morphology of the AuNSs was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), while the elemental composition was characterized by energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). Furthermore, optical and photothermal properties were acquired by ultraviolet-visible (UV-vis) spectroscopy and thermographic imaging with an infrared camera, respectively. Bacterial survival studies on AuNS-modified surfaces irradiated with and without NIR light were evaluated using a colony-formation assay. These studies demonstrated that AuNS-modified surfaces, when illuminated with NIR light, can effectively kill E. faecalis on silicone surfaces.


Assuntos
Enterococcus faecalis/efeitos da radiação , Ouro/química , Nanoconchas/química , Silicones/química , Biofilmes/efeitos da radiação , Infecções Relacionadas a Cateter/microbiologia , Infecções Relacionadas a Cateter/prevenção & controle , Enterococcus faecalis/crescimento & desenvolvimento , Enterococcus faecalis/fisiologia , Humanos , Raios Infravermelhos , Temperatura
14.
ACS Appl Mater Interfaces ; 6(22): 19943-50, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25321928

RESUMO

Porous silica-coated hollow gold-silver nanoshells were successfully synthesized utilizing a procedure where the porous silica shell was produced prior to the transformation of the metallic core, providing enhanced control over the structure/composition of the bimetallic hollow core. By varying the reaction time and the precise amount of gold salt solution added to a porous silica-coated silver-core template solution, composite nanoparticles were tailored to reveal a readily tunable surface plasmon resonance that could be centered across the visible and near-IR spectral regions (∼445-800 nm). Characterization by X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, scanning electron microscopy, and transmission electron microscopy revealed that the synthetic methodology afforded particles having uniform composition, size, and shape. The optical properties were evaluated by absorption/extinction spectroscopy. The stability of colloidal solutions of our composite nanoparticles as a function of pH was also investigated, revealing that the nanoshells remain intact over a wide range of conditions (i.e., pH 2-10). The facile tunability, enhanced stability, and relatively small diameter of these composite particles (∼110 nm) makes them promising candidates for use in tumor ablation or as photothermal drug-delivery agents.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Nanoconchas/química , Prata/química , Coloides/química , Sistemas de Liberação de Medicamentos , Humanos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanoconchas/ultraestrutura , Tamanho da Partícula , Porosidade , Dióxido de Silício/química , Ressonância de Plasmônio de Superfície
15.
Bioorg Med Chem ; 21(4): 883-90, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23321015

RESUMO

Cancer cells evade replicative senescence by re-expressing telomerase, which maintains telomere length and hence chromosomal integrity. Telomerase inhibition would lead cancer cells to senesce and therefore prevent cancer cells from growing indefinitely. G-quadruplex ligands can attenuate telomerase activity by inducing G-quadruplex formation at the 3'-overhang of telomere and at the human telomerase reverse transcriptase (hTERT) promoter; the former prevents telomerase from accessing the telomere, and the latter acts as a transcriptional silencer. The present investigation found that perylene derivatives PM2 and PIPER induced G-quadruplex formation from both telomeric DNA and the hTERT promoter region in vitro. Further, TRAP assay showed that these compounds inhibited telomerase in a dose-dependent manner. When A549 human lung cancer cells were treated with these compounds, hTERT expression was down-regulated. Moreover, the crude protein extract from these treated cells exhibited less telomerase activity. In the long-term treatment of A549 lung cancer cells with sub-cytotoxic dose of these perylenes, telomere shortening, reduction of cell proliferation and tumorigenicity, and cell senescence were observed. The results of this study indicate that perylene derivatives warrant further consideration as effective agents for cancer therapy.


Assuntos
Imidas/química , Perileno/análogos & derivados , Telômero/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Quadruplex G , Humanos , Imidas/farmacologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Perileno/química , Perileno/farmacologia , Regiões Promotoras Genéticas , Telomerase/antagonistas & inibidores , Telomerase/genética , Telomerase/metabolismo , Encurtamento do Telômero/efeitos dos fármacos
16.
J Med Food ; 13(6): 1347-54, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21091248

RESUMO

The rhizome of ginger (Zingiber officinale Roscoe) has been reputed to have many curative properties in traditional medicine, and recent publications have also shown that many agents in ginger possess anticancer properties. Here we show that the ethyl acetate fraction of ginger extract can inhibit the expression of the two prominent molecular targets of cancer, the human telomerase reverse transcriptase (hTERT) and c-Myc, in A549 lung cancer cells in a time- and concentration-dependent manner. The treated cells exhibited diminished telomerase activity because of reduced protein production rather than direct inhibition of telomerase. The reduction of hTERT expression coincided with the reduction of c-Myc expression, which is one of the hTERT transcription factors; thus, the reduction in hTERT expression might be due in part to the decrease of c-Myc. As both telomerase inhibition and Myc inhibition are cancer-specific targets for cancer therapy, ginger extract might prove to be beneficial as a complementary agent in cancer prevention and maintenance therapy.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Telomerase/metabolismo , Zingiber officinale/química , Carcinoma/tratamento farmacológico , Carcinoma/metabolismo , Catecóis/análise , Catecóis/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Álcoois Graxos/análise , Álcoois Graxos/química , Humanos , Concentração Inibidora 50 , Neoplasias Pulmonares/metabolismo , Medicina Tradicional , Fitoterapia , Extratos Vegetais/química , RNA Mensageiro/metabolismo , Rizoma/química , Solventes , Fatores de Tempo
17.
J Chem Phys ; 128(1): 014713, 2008 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-18190218

RESUMO

The effect of mass on gas/organic-surface energy transfer is explored via investigation of the scattering dynamics of rare gases (Ne, Ar, and Kr) from regular (CH3-terminated) and omega-fluorinated (CF3-terminated) alkanethiol self-assembled monolayers (SAMs) at 60 kJmol collision energy. Molecular-beam scattering experiments carried out in ultrahigh vacuum and molecular-dynamics simulations based on high-accuracy potentials are used to obtain the rare-gases' translational-energy distributions after collision with the SAMs. Simulations indicate that mass is the most important factor in determining the changes in the energy exchange dynamics for Ne, Ar, and Kr collisions on CH3- and CF3-terminated SAMs at 60 kJmol collision energy. Other factors, such as changes in the gas-surface potential and intrasurface interactions, play only a minor role in determining the differential dynamics behavior for the systems studied.

18.
Cancer Chemother Pharmacol ; 57(3): 376-88, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16021489

RESUMO

Multidrug resistance is a major cause of chemotherapy failure in cancer patients. One of the resistance mechanisms is the overexpression of drug efflux pumps such as P-glycoprotein and multidrug resistance protein 1 (MRP1, (ABCC1)). In this study, curcumin mixture and three major curcuminoids purified from turmeric (curcumin I, II, and III) were tested for their ability to modulate the function of MRP1 using HEK293 cells stably transfected with MRP1-pcDNA3.1 and pcDNA3.1 vector alone. The IC(50) of curcuminoids in these cell lines ranged from 14.5-39.3 microM. Upon treating the cells with etoposide in the presence of 10 microM curcuminoids, the sensitivity of etoposide was increased by several folds only in MRP1 expressing and not in pcDNA3.1-HEK 293 cells. Western blot analysis showed that the total cellular level of MRP1 protein level was not affected by treatment with 10 microM curcuminoids for three days. The modulatory effect of curcuminoids on MRP1 function was confirmed by the inhibition of efflux of two fluorescent substrates, calcein-AM and fluo4-AM. Although all the three curcuminoids increased the accumulation of fluorescent substrates in a concentration-dependent manner, curcumin I was the most effective inhibitor. In addition, curcuminoids did not affect 8-azido[alpha-(32)P]ATP binding, however they did stimulate the basal ATPase activity and inhibited the quercetin-stimulated ATP hydrolysis of MRP1 indicating that these bioflavonoids interact most likely at the substrate-binding site(s). In summary, these results demonstrate that curcuminoids effectively inhibit MRP1-mediated transport and among curcuminoids, curcumin I, a major constituent of curcumin mixture, is the best modulator.


Assuntos
Curcuma/química , Curcumina/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/fisiologia , Trifosfato de Adenosina/metabolismo , Compostos de Anilina/química , Compostos de Anilina/farmacocinética , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Curcumina/análogos & derivados , Curcumina/isolamento & purificação , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Etoposídeo/farmacologia , Fluoresceínas/farmacologia , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacocinética , Vetores Genéticos/genética , Humanos , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Estrutura Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Marcadores de Fotoafinidade , Pós/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Transfecção , Vimblastina/farmacologia , Xantenos/química , Xantenos/farmacocinética
19.
Biomaterials ; 26(8): 883-9, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15353199

RESUMO

Patterned networks of hippocampal neurons were generated on peptide-coated gold substrates prepared by microscope projection photolithography and microcontact printing. A 19 amino acid peptide fragment of laminin A (PA22-2) that includes the IKVAV cell adhesion domain was used to direct patterns of cell adhesion in primary culture. Microscale grid patterns of peptide were deposited on gold-coated glass cover slips by soft lithography using "stamps" fashioned from polydimethylsiloxane. Strong coordination bonding between gold atoms on the surface and the sulfur atoms of the N-terminal cysteine residues supported stable adhesion of the peptide, which was confirmed by immunofluorescence using anti-IKVAV antiserum. Dispersed hippocampal cells isolated from neonatal mouse pups were grown on peptide-patterned gold substrates for 7 days. Neurons preferentially adhered to peptide-coated regions of the gold surface and restricted their processes to the peptide patterns. Whole cell recordings of neurons grown in patterned arrays revealed an average membrane potential of -50 mV, as well as the presence of voltage-gated ion conductances. Peptide-modified gold surfaces serve as convenient and effective substrates for growing ordered neural networks that are compatible with existing multi-electrode array recording technology.


Assuntos
Materiais Revestidos Biocompatíveis , Ouro , Hipocampo/fisiologia , Neurônios/fisiologia , Peptídeos , Animais , Eletrofisiologia , Hipocampo/citologia , Potenciais da Membrana/fisiologia , Camundongos , Microscopia de Força Atômica , Neurônios/citologia , Técnicas de Patch-Clamp
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA