Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 336: 122288, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38007146

RESUMO

AIMS: Protectin DX (PDX), a specialized pro-resolving mediator, is an important pharmaceutical compound with potential antioxidant and inflammation-resolving effects. However, the fundamental mechanism by which PDX's ameliorate chronic inflammatory diseases has not yet been elucidated. This study aims to evaluate the anti-inflammatory properties and PPARγ-mediated mechanisms of PDX in phorbal-12-mysristate-13-acetate (PMA)-stimulated human promonocytic U937 cells. MAIN METHODS: We confirmed the effects of PDX on expressions of pro-inflammatory cytokines, mediators, and CD14 using conventional PCR, RT-qPCR, ELISA, and flow cytometry. Using western blotting, immunofluorescence, and reactive oxygen species (ROS) determination, we observed that PDX regulated PMA-induced signaling cascades. Molecular docking analysis and a cellular thermal shift assay were conducted to verify the interaction between PDX and the proliferator-activated receptor-γ (PPARγ) ligand binding domain. Western blotting was then employed to explore the alterations in PPARγ expression levels and validate PDX as a PPARγ full agonist. KEY FINDINGS: PDX attenuated protein and mRNA expression levels of interleukin-6, tumor necrosis factor-α, and cyclooxygenase-2 in PMA-treated U937 cells. PDX acts as a PPARγ agonist, exerting a modulating effect on the ROS/JNK/c-Fos signaling pathways. Furthermore, PDX reduced human monocyte differentiation antigen CD14 expression levels. SIGNIFICANCE: PPARγ exhibits pro-resolving effects to regulate the excessive inflammation. These results suggest that PDX demonstrates the resolution of inflammation, indicating the potential for therapeutic targeting of chronic inflammatory diseases.


Assuntos
Inflamação , PPAR gama , Humanos , Células U937 , Espécies Reativas de Oxigênio/metabolismo , Simulação de Acoplamento Molecular , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico
2.
Biotechnol Lett ; 44(9): 1027-1036, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35834094

RESUMO

PURPOSE: Peroxidation and reduction of 11S- and 13S-positions on C20 and C22 polyunsaturated fatty acids (PUFAs) by Escherichia coli expressing highly active arachidonate (ARA) 11S-lipoxygenase (11S-LOX) from Enhygromyxa salina with the reducing agent cysteine. RESULTS: The specific activity and catalytic efficiency of ARA 11S-LOX from E. salina were 4.1- and 91-fold higher than those of only reported ARA 11S-LOX from Myxococcus xanthus, respectively. The hydroxy fatty acids (HFAs) obtained by the biotransformation of ARA, eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and docosahexanoic acid (DHA) by Escherichia coli expressing 11S-LOX from E. salina in the presence of cysteine were identified as 11S-hydroxyeicosatetraenoic acid (11S-HETE), 11S-hydroxyeicosapentaenoic acid (11S-HEPE), 13S-hydroxydocosapentaenoic acid (13S-HDPA), and 13S-hydroxydocosahexaenoic acid (13S-HDHA), respectively. The recombinant cells converted 3 mM of ARA, EPA, DPA, and DHA into 2.9 mM of 11S-HETE, 2.4 mM 11S-HEPE, 1. 9 mM 13S-HDPA, and 2.2 mM 13S-HDHA in 60, 80, 120, and 120 min, corresponding to productivities of 72.5, 40.4, 18.5, and 22.4 µM min-1 and conversion yields of 96.7, 80.0, 62.3, and 74.6%, respectively. CONCLUSIONS: We report the highest concentrations, conversion yields, and productivities of 11S- and 13S-hydroxy fatty acids from C20- and C22-PUFAs achieved via E. coli expressing highly active E. salina 11S-LOX.


Assuntos
Escherichia coli , Lipoxigenase , Araquidonato Lipoxigenases/metabolismo , Biotransformação , Cisteína/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ácidos Graxos , Ácidos Graxos Insaturados/metabolismo , Ácidos Hidroxieicosatetraenoicos , Lipoxigenase/metabolismo , Myxococcales
3.
J Microbiol Biotechnol ; 28(3): 418-424, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29316745

RESUMO

D-Allose is a potential medical sugar because it has anticancer, antihypertensive, anti-inflammatory, antioxidative, and immunosuppressant activities. Allose production from fructose as a cheap substrate was performed by a one-pot reaction using Flavonifractor plautiiD-allulose 3-epimerase (FP-DAE) and Clostridium thermocellum ribose 5-phosphate isomerase (CT-RPI). The optimal reaction conditions for allose production were pH 7.5, 60°C, 0.1 g/l FP-DAE, 12 g/l CT-RPI, and 600 g/l fructose in the presence of 1 mM Co2+. Under these optimized conditions, FP-DAE and CT-RPI produced 79 g/l allose for 2 h, with a conversion yield of 13%. This is the first biotransformation of fructose to allose by a two-enzyme system. The production of allose by a one-pot reaction using FP-DAE and CT-RPI was 1.3-fold higher than that by a two-step reaction using the two enzymes.


Assuntos
Aldose-Cetose Isomerases/metabolismo , Carboidratos Epimerases/metabolismo , Clostridiales/enzimologia , Clostridium thermocellum/enzimologia , Frutose/metabolismo , Glucose/metabolismo , Aldose-Cetose Isomerases/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biotransformação , Carboidratos Epimerases/genética , Clostridiales/genética , Clostridium thermocellum/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Concentração de Íons de Hidrogênio , Proteínas Recombinantes/isolamento & purificação , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA