Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Elife ; 122024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38752723

RESUMO

A causal relationship exists among the aging process, organ decay and disfunction, and the occurrence of various diseases including cancer. A genetically engineered mouse model, termed Klf1K74R/K74R or Klf1(K74R), carrying mutation on the well-conserved sumoylation site of the hematopoietic transcription factor KLF1/EKLF has been generated that possesses extended lifespan and healthy characteristics, including cancer resistance. We show that the healthy longevity characteristics of the Klf1(K74R) mice, as exemplified by their higher anti-cancer capability, are likely gender-, age-, and genetic background-independent. Significantly, the anti-cancer capability, in particular that against melanoma as well as hepatocellular carcinoma, and lifespan-extending property of Klf1(K74R) mice, could be transferred to wild-type mice via transplantation of their bone marrow mononuclear cells at a young age of the latter. Furthermore, NK(K74R) cells carry higher in vitro cancer cell-killing ability than wild-type NK cells. Targeted/global gene expression profiling analysis has identified changes in the expression of specific proteins, including the immune checkpoint factors PDCD and CD274, and cellular pathways in the leukocytes of the Klf1(K74R) that are in the directions of anti-cancer and/or anti-aging. This study demonstrates the feasibility of developing a transferable hematopoietic/blood system for long-term anti-cancer and, potentially, for anti-aging.


Assuntos
Fatores de Transcrição Kruppel-Like , Longevidade , Animais , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Longevidade/genética , Células Matadoras Naturais/imunologia , Neoplasias/genética , Engenharia Genética , Transplante de Medula Óssea , Feminino , Perfilação da Expressão Gênica , Masculino , Camundongos Transgênicos
2.
Adv Sci (Weinh) ; 9(25): e2201409, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35822667

RESUMO

The quest for rejuvenation and prolonged lifespan through transfusion of young blood has been studied for decades with the hope of unlocking the mystery of the key substance(s) that exists in the circulating blood of juvenile organisms. However, a pivotal mediator has yet been identified. Here, atypical findings are presented that are observed in a knockin mouse model carrying a lysine to arginine substitution at residue 74 of Krüppel-like factor 1 (KLF1/EKLF), the SUMOylation-deficient Klf1K74R/K74R mouse, that displayed significant improvement in geriatric disorders and lifespan extension. Klf1K74R/K74R mice exhibit a marked delay in age-related physical performance decline and disease progression as evidenced by physiological and pathological examinations. Furthermore, the KLF1(K74R) knockin affects a subset of lymphoid lineage cells; the abundance of tumor infiltrating effector CD8+ T cells and NKT cells is increased resulting in antitumor immune enhancement in response to tumor cell administration. Significantly, infusion of hematopoietic stem cells (HSCs) from Klf1K74R/K74R mice extends the lifespan of the wild-type mice. The Klf1K74R/K74R mice appear to be an ideal animal model system for further understanding of the molecular/cellular basis of aging and development of new strategies for antiaging and prevention/treatment of age-related diseases thus extending the healthspan as well as lifespan.


Assuntos
Longevidade , Sumoilação , Animais , Linfócitos T CD8-Positivos , Células-Tronco Hematopoéticas , Longevidade/genética , Camundongos
3.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34360789

RESUMO

The erythroid Krüppel-like factor EKLF/KLF1 is a hematopoietic transcription factor binding to the CACCC DNA motif and participating in the regulation of erythroid differentiation. With combined use of microarray-based gene expression profiling and the promoter-based ChIP-chip assay of E14.5 fetal liver cells from wild type (WT) and EKLF-knockout (Eklf-/-) mouse embryos, we identified the pathways and direct target genes activated or repressed by EKLF. This genome-wide study together with the molecular/cellular analysis of the mouse erythroleukemic cells (MEL) indicate that among the downstream direct target genes of EKLF is Tal1/Scl. Tal1/Scl encodes another DNA-binding hematopoietic transcription factor TAL1/SCL, known to be an Eklf activator and essential for definitive erythroid differentiation. Further identification of the authentic Tal gene promoter in combination with the in vivo genomic footprinting approach and DNA reporter assay demonstrate that EKLF activates the Tal gene through binding to a specific CACCC motif located in its promoter. These data establish the existence of a previously unknow positive regulatory feedback loop between two DNA-binding hematopoietic transcription factors, which sustains mammalian erythropoiesis.


Assuntos
Eritropoese , Feto/embriologia , Hematopoese Extramedular , Fatores de Transcrição Kruppel-Like/metabolismo , Fígado/embriologia , Proteína 1 de Leucemia Linfocítica Aguda de Células T/metabolismo , Animais , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Camundongos Knockout , Elementos de Resposta , Proteína 1 de Leucemia Linfocítica Aguda de Células T/genética
4.
Int J Mol Sci ; 21(22)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182781

RESUMO

Erythroid Krüppel-like factor (EKLF/KLF1) was identified initially as a critical erythroid-specific transcription factor and was later found to be also expressed in other types of hematopoietic cells, including megakaryocytes and several progenitors. In this study, we have examined the regulatory effects of EKLF on hematopoiesis by comparative analysis of E14.5 fetal livers from wild-type and Eklf gene knockout (KO) mouse embryos. Depletion of EKLF expression greatly changes the populations of different types of hematopoietic cells, including, unexpectedly, the long-term hematopoietic stem cells Flk2- CD34- Lin- Sca1+ c-Kit+ (LSK)-HSC. In an interesting correlation, Eklf is expressed at a relatively high level in multipotent progenitor (MPP). Furthermore, EKLF appears to repress the expression of the colony-stimulating factor 2 receptor ß subunit (CSF2RB). As a result, Flk2- CD34- LSK-HSC gains increased differentiation capability upon depletion of EKLF, as demonstrated by the methylcellulose colony formation assay and by serial transplantation experiments in vivo. Together, these data demonstrate the regulation of hematopoiesis in vertebrates by EKLF through its negative regulatory effects on the differentiation of the hematopoietic stem and progenitor cells, including Flk2- CD34- LSK-HSCs.


Assuntos
Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Animais , Antígenos CD34/genética , Antígenos CD34/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem da Célula/genética , Linhagem da Célula/fisiologia , Células Cultivadas , Subunidade beta Comum dos Receptores de Citocinas/genética , Subunidade beta Comum dos Receptores de Citocinas/metabolismo , Hematopoese/genética , Hematopoese/fisiologia , Transplante de Células-Tronco Hematopoéticas , Homeostase , Fatores de Transcrição Kruppel-Like/deficiência , Fatores de Transcrição Kruppel-Like/genética , Fígado/citologia , Fígado/embriologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tirosina Quinase 3 Semelhante a fms/deficiência , Tirosina Quinase 3 Semelhante a fms/genética
5.
Chin J Physiol ; 60(6): 320-326, 2017 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-29241305

RESUMO

Few diagnostic biomarkers for sepsis after emergency peritonitis surgery are available to clinicians, and, thus, it is important to develop new biomarkers for patients undergoing this procedure. We investigated whether serum glutamine and selenium levels could be diagnostic biomarkers of sepsis in individuals recovering from emergency peritonitis surgery. From February 2012 to March 2013, patients who had peritonitis diagnosed at the emergency department and underwent emergency surgery were screened for eligibility. Serum glutamine and selenium levels were obtained at pre-operative, post-operative and recovery time points. The average level of pre-operation serum glutamine was significantly different from that on the recovery day (0.317 ± 0.168 vs. 0.532 ± 0.155 mM, P < 0.001); moreover, serum glutamine levels were unaffected by surgery. Selenium levels were significantly lower on the day of surgery than they were at recovery (106.6 ± 36.39 vs. 130.68 ± 56.98 ng/mL, P = 0.013); no significant difference was found between pre-operation and recovery selenium levels. Unlike selenium, glutamine could be a sepsis biomarker for individuals with peritonitis. We recommend including glutamine as a biomarker for sepsis severity assessment in addition to the commonly used clinical indicators.


Assuntos
Biomarcadores/sangue , Glutamina/sangue , Peritonite/complicações , Sepse/diagnóstico , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Peritonite/cirurgia , Complicações Pós-Operatórias/sangue , Complicações Pós-Operatórias/diagnóstico , Sepse/sangue
6.
J Transl Med ; 14(1): 200, 2016 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-27370270

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC), a primary liver malignancy, is the most common cancer in males and fourth common cancer in females in Taiwan. HCC patients usually have a poor prognosis due to late diagnosis. It has been classified as a complex disease because of the heterogeneous phenotypic and genetic traits of the patients and a wide range of risk factors. Micro (mi)RNAs regulate oncogenes and tumor suppressor genes that are known to be dysregulated in HCC. Several studies have found an association between downregulation of miR-122, a liver-specific miRNA, and upregulation of paternally expressed gene 10 (PEG10) in HCC; however, the correlation between low miR-122 and high PEG10 levels still remains to be defined and require more investigations to evaluate their performance as an effective prognostic biomarker for HCC. METHODS: An in silico approach was used to isolate PEG10, a potential miR-122 target implicated in HCC development. miR-122S binding sites in the PEG10 promoter were evaluated with a reporter assay. The regulation of PEG10 by miR-122S overexpression was examined by quantitative RT-PCR, western blotting, and immunohistochemistry in miR-122 knockout mice and liver tissue from HCC patients. The relationship between PEG10 expression and clinicopathologic features of HCC patients was also evaluated. RESULTS: miR-122 downregulated the expression of PEG10 protein through binding to 3'-untranslated region (UTR) of the PEG10 transcript. In miR-122 knockout mice and HCC patients, the deficiency of miR-122 was associated with HCC progression. The expression of PEG10 was increased in 57.3 % of HCC as compared to paired non-cancerous tissue samples. However, significant upregulation was detected in 56.5 % of patients and was correlated with Okuda stage (P = 0.05) and histological grade (P = 0.001). CONCLUSIONS: miR-122 suppresses PEG10 expression via direct binding to the 3'-UTR of the PEG10 transcript. Therefore, while PEG10 could not be an ideal diagnostic biomarker for HCC but its upregulation in HCC tissue still has predictive value for HCC prognosis.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , MicroRNAs/metabolismo , Biossíntese de Proteínas/genética , Proteínas/genética , Regiões 3' não Traduzidas/genética , Animais , Proteínas Reguladoras de Apoptose , Sequência de Bases , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proteínas de Ligação a DNA , Regulação para Baixo/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , Masculino , Camundongos Knockout , MicroRNAs/genética , Pessoa de Meia-Idade , Modelos Biológicos , Gradação de Tumores , Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA , Transcrição Gênica , Regulação para Cima/genética , alfa-Fetoproteínas/metabolismo
7.
Proc Natl Acad Sci U S A ; 107(1): 52-7, 2010 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-19966288

RESUMO

Regulation of the homeostatic concentrations of specific sets of transcription factors is essential for correct programming of cell proliferation and differentiation. We have characterized the signal transduction pathways regulating the catabolisis of p45/NF-E2, a bZIP factor activating the erythroid and megakaryocytic gene transcription. Through use of different approaches including nano-scale proteomics, we show that activated-JNK, or Phospho-JNK (P-JNK), physically interacts with p45/NF-E2 and phosphorylates its Ser157 residue. This reaction leads to the poly-ubiquitination of p45/NF-E2 at one or more of six Lys residues, one of which being also a sumoylation site, and its degradation through the proteasome pathway. Significantly, this regulatory pathway of p45/NF-E2 by P-JNK exists only in uninduced murine erythroleukemia (MEL) cells but not in differentiated MEL cells in which JNK is inactivated on DMSO induction. Based on the above data and analysis of the chromatin-binding kinetics of p45/NF-E2 and the erythroid gene repressor Bach1 during the early phase of MEL differentiation, we suggest a model for the regulation of erythroid maturation. In the model, the posttranslational modifications and turnover of p45/NF-E2, as mediated by P-JNK, contribute to the control of its homeostatic concentration and consequently, its regulatory functions in the progression of erythroid differentiation and erythroid gene expression.


Assuntos
Diferenciação Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Leucemia Eritroblástica Aguda/metabolismo , Subunidade p45 do Fator de Transcrição NF-E2/metabolismo , Transdução de Sinais/fisiologia , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Linhagem Celular Tumoral , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Regulação Leucêmica da Expressão Gênica , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Camundongos , Subunidade p45 do Fator de Transcrição NF-E2/genética , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
8.
Biochem Biophys Res Commun ; 375(3): 326-30, 2008 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-18718448

RESUMO

The hematopoietic-specific transcription factor p45/NF-E2 is an important transcriptional activator in the erythroid and megakaryocytic lineages. We describe the first in vivo evidence for the interaction between p45/NF-E2 and the E3 ubiquitin ligase Itch, and the subsequent ubiquitination of p45/NF-E2 by Itch. Interestingly, Itch suppressed the transactivation activity of p45/NF-E2 by adding a Lys63-linked polyubiquitin chain. Confocal microscopy revealed that ubiquitinated p45/NF-E2 became localized in the cytoplasm when Itch was over-expressed. Thus, Itch-mediated ubiquitination of p45/NF-E2 does not target the protein for proteasomal degradation, but instead retains p45/NF-E2 in the cytoplasm, where it cannot function as a transactivator. Finally, we suggest that this Itch-dependent p45/NF-E2 ubiquitination mechanism may regulate NF-E2 function during the development of hematopoietic cell lineages.


Assuntos
Citoplasma/metabolismo , Lisina/metabolismo , Subunidade p45 do Fator de Transcrição NF-E2/metabolismo , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Linhagem Celular , Humanos , Subunidade p45 do Fator de Transcrição NF-E2/genética , Poliubiquitina/metabolismo , Proteínas Repressoras/genética , Ativação Transcricional , Ubiquitina-Proteína Ligases/genética
9.
Mol Cell Biol ; 27(6): 2309-23, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17242208

RESUMO

Erythroid Krüppel-like factor (EKLF) is an essential transcription factor for mammalian beta-like globin gene switching, and it specifically activates transcription of the adult beta globin gene through binding of its zinc fingers to the promoter. It has been a puzzle that in the mouse, despite its expression throughout the erythroid development, EKLF activates the adult beta(maj) globin promoter only in erythroid cells beyond the stage of embryonic day 10.5 (E10.5) but not before. We show here that expression of the mouse beta(maj) globin gene in the aorta-gonad-mesonephros region of E10.5 embryos and in the E14.5 fetal liver is accompanied by predominantly nuclear localization of EKLF. In contrast, EKLF is mainly cytoplasmic in the erythroid cells of E9.5 blood islands in which beta(maj) is silenced. Remarkably, in a cultured mouse adult erythroleukemic (MEL) cell line, the activation of the beta(maj) globin gene by dimethyl sulfoxide (DMSO) or hexamethylene-bis-acetamide (HMBA) induction is also paralleled by a shift of the subcellular location of EKLF from the cytoplasm to the nucleus. Blockage of the nuclear import of EKLF in DMSO-induced MEL cells with a nuclear export inhibitor repressed the transcription of the beta(maj) globin gene. Transient transfection experiments further indicated that the full-sequence context of EKLF was required for the regulation of its subcellular locations in MEL cells during DMSO induction. Finally, in both the E14.5 fetal liver cells and induced MEL cells, the beta-like globin locus is colocalized the PML oncogene domain nuclear body, and concentrated with EKLF, RNA polymerase II, and the splicing factor SC35. These data together provide the first evidence that developmental stage- and differentiation state-specific regulation of the nuclear transport of EKLF might be one of the steps necessary for the switch-on of the mammalian adult beta globin gene transcription.


Assuntos
Envelhecimento/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Globinas/genética , Globinas/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Transcrição Gênica/genética , Animais , Núcleo Celular/metabolismo , Células Cultivadas , Células Eritroides/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fígado/metabolismo , Camundongos , Regiões Promotoras Genéticas/genética , Transporte Proteico , RNA Polimerase II/metabolismo
10.
Cell Res ; 16(4): 347-55, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16617330

RESUMO

EKLF is an erythroid-specific, zinc finger-containing transcription factor essential for the activation of the mammalian beta globin gene in erythroid cells of definitive lineage. We have prepared a polyclonal anti-mouse EKLF antibody suitable for Western blotting and immunoprecipitation (IP) qualities, and used it to define the expression patterns of the EKLF protein during mouse erythroid development. We have also used this antibody for the chromatin-immunoprecipitation (ChIP) assay. EKLF was found to bind in vivo at both the mouse beta-major-globin promoter and the HS2 site of beta-LCR in the mouse erythroleukemia cells (MEL) in a DMSO-inducible manner. The DMSO-induced bindings of EKLF as well as three other proteins, namely, RNA polymerase II, acetylated histone H3, and methylated histone H3, were not abolished but significantly lowered in CB3, a MEL-derived cell line with null-expression of p45/NF-E2, an erythroid-enriched factor needed for activation of the mammalian globin loci. Interestingly, binding of EKLF in vivo was also detected in the mouse alpha-like globin locus, at the adult alpha globin promoter and its far upstream regulatory element alpha-MRE (HS26). This study provides direct evidence for EKLF-binding in vivo at the major regulatory elements of the mouse beta-like globin gene clusters the data also have interesting implications with respect to the role of EKLF-chromatin interaction in mammalian globin gene regulation.


Assuntos
Globinas/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Região de Controle de Locus Gênico/genética , Animais , Células Cultivadas , Imunoprecipitação da Cromatina , Células Eritroides/imunologia , Expressão Gênica , Regulação da Expressão Gênica , Globinas/genética , Humanos , Fatores de Transcrição Kruppel-Like/imunologia , Leucemia Eritroblástica Aguda , Camundongos , Família Multigênica , Subunidade p45 do Fator de Transcrição NF-E2/genética
11.
Mol Cell Biol ; 25(23): 10365-78, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16287851

RESUMO

NF-E2 is a transcription activator for the regulation of a number of erythroid- and megakaryocytic lineage-specific genes. Here we present evidence that the large subunit of mammalian NF-E2, p45, is sumoylated in vivo in human erythroid K562 cells and in mouse fetal liver. By in vitro sumoylation reaction and DNA transfection experiments, we show that the sumoylation occurs at lysine 368 (K368) of human p45/NF-E2. Furthermore, p45 sumoylation enhances the transactivation capability of NF-E2, and this is accompanied by an increase of the NF-E2 DNA binding affinity. More interestingly, we have found that in K562 cells, the beta-globin gene loci in the euchromatin regions are predominantly colocalized with the nuclear bodies promyelocytic leukemia protein (PML) oncogenic domains that are enriched with the PML, SUMO-1, RNA polymerase II, and sumoylatable p45/NF-E2. Chromatin immunoprecipitation assays further showed that the intact sumoylation site of p45/NF-E2 is required for its binding to the DNase I-hypersensitive sites of the beta-globin locus control region. Finally, we demonstrated by stable transfection assay that only the wild-type p45, but not its mutant form p45 (K368R), could efficiently rescue beta-globin gene expression in the p45-null, erythroid cell line CB3. These data together point to a model of mammalian beta-like globin gene activation by sumoylated p45/NF-E2 in erythroid cells.


Assuntos
Núcleo Celular/metabolismo , Globinas/genética , Subunidade p45 do Fator de Transcrição NF-E2/metabolismo , Proteína SUMO-1/metabolismo , Ativação Transcricional/genética , Transporte Ativo do Núcleo Celular , Animais , Linhagem Celular Tumoral , Núcleo Celular/genética , DNA/metabolismo , Células Eritroides/metabolismo , Humanos , Hibridização in Situ Fluorescente , Lisina/genética , Lisina/metabolismo , Camundongos , Subunidade p45 do Fator de Transcrição NF-E2/genética , Ligação Proteica , RNA Polimerase II/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA