Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 42(7): 3801-13, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26133582

RESUMO

PURPOSE: Previous studies have demonstrated how imaging of the breast with patients lying prone using a supportive positioning device markedly facilitates longitudinal and/or multimodal image registration. In this contribution, the authors' primary objective was to determine if there are differences in the standardized uptake value (SUV) derived from [(18)F]fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) in breast tumors imaged in the standard supine position and in the prone position using a specialized positioning device. METHODS: A custom positioning device was constructed to allow for breast scanning in the prone position. Rigid and nonrigid phantom studies evaluated differences in prone and supine PET. Clinical studies comprised 18F-FDG-PET of 34 patients with locally advanced breast cancer imaged in the prone position (with the custom support) followed by imaging in the supine position (without the support). Mean and maximum values (SUVpeak and SUVmax, respectively) were obtained from tumor regions-of-interest for both positions. Prone and supine SUV were linearly corrected to account for the differences in 18F-FDG uptake time. Correlation, Bland-Altman, and nonparametric analyses were performed on uptake time-corrected and uncorrected data. RESULTS: SUV from the rigid PET breast phantom imaged in the prone position with the support device was 1.9% lower than without the support device. In the nonrigid PET breast phantom, prone SUV with the support device was 5.0% lower than supine SUV without the support device. In patients, the median (range) difference in uptake time between prone and supine scans was 16.4 min (13.4-30.9 min), which was significantly-but not completely-reduced by the linear correction method. SUVpeak and SUVmax from prone versus supine scans were highly correlated, with concordance correlation coefficients of 0.91 and 0.90, respectively. Prone SUVpeak and SUVmax were significantly lower than supine in both original and uptake time-adjusted data across a range of index times (P < < 0.0001, Wilcoxon signed rank test). Before correcting for uptake time differences, Bland-Altman analyses revealed proportional bias between prone and supine measurements (SUVpeak and SUVmax) that increased with higher levels of FDG uptake. After uptake time correction, this bias was significantly reduced (P < 0.01). Significant prone-supine differences, with regard to the spatial distribution of lesions relative to isocenter, were observed between the two scan positions, but this was poorly correlated with the residual (uptake time-corrected) prone-supine SUVpeak difference (P = 0.78). CONCLUSIONS: Quantitative 18F-FDG-PET/CT of the breast in the prone position is not deleteriously affected by the support device but yields SUV that is consistently lower than those obtained in the standard supine position. SUV differences between scans arising from FDG uptake time differences can be substantially reduced, but not removed entirely, with the current correction method. SUV from the two scan orientations is quantitatively different and should not be assumed equivalent or interchangeable within the same subject. These findings have clinical relevance in that they underscore the importance of patient positioning while scanning as a clinical variable that must be accounted for with longitudinal PET measurement, for example, in the assessment of treatment response.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Posicionamento do Paciente/métodos , Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada por Raios X/métodos , Adulto , Idoso , Mama/diagnóstico por imagem , Mama/fisiopatologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/fisiopatologia , Desenho de Equipamento , Fluordesoxiglucose F18 , Humanos , Estudos Longitudinais , Mamografia/instrumentação , Mamografia/métodos , Pessoa de Meia-Idade , Modelos Biológicos , Imagem Multimodal/instrumentação , Imagem Multimodal/métodos , Posicionamento do Paciente/instrumentação , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/instrumentação , Decúbito Ventral , Estudos Prospectivos , Compostos Radiofarmacêuticos , Decúbito Dorsal , Tomografia Computadorizada por Raios X/instrumentação
2.
Med Phys ; 42(1): 110-20, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25563252

RESUMO

PURPOSE: Respiratory-correlated positron emission tomography (PET/CT) 4D PET/CT is used to mitigate errors from respiratory motion; however, the optimal CT attenuation correction (CTAC) method for 4D PET/CT is unknown. The authors performed a phantom study to evaluate the quantitative performance of CTAC methods for 4D PET/CT in the ground truth setting. METHODS: A programmable respiratory motion phantom with a custom movable insert designed to emulate a lung lesion and lung tissue was used for this study. The insert was driven by one of five waveforms: two sinusoidal waveforms or three patient-specific respiratory waveforms. 3DPET and 4DPET images of the phantom under motion were acquired and reconstructed with six CTAC methods: helical breath-hold (3DHEL), helical free-breathing (3DMOT), 4D phase-averaged (4DAVG), 4D maximum intensity projection (4DMIP), 4D phase-matched (4DMATCH), and 4D end-exhale (4DEXH) CTAC. Recovery of SUV(max), SUV(mean), SUV(peak), and segmented tumor volume was evaluated as RC(max), RC(mean), RC(peak), and RC(vol), representing percent difference relative to the static ground truth case. Paired Wilcoxon tests and Kruskal-Wallis ANOVA were used to test for significant differences. RESULTS: For 4DPET imaging, the maximum intensity projection CTAC produced significantly more accurate recovery coefficients than all other CTAC methods (p < 0.0001 over all metrics). Over all motion waveforms, ratios of 4DMIP CTAC recovery were 0.2 ± 5.4, -1.8 ± 6.5, -3.2 ± 5.0, and 3.0 ± 5.9 for RC(max), RC(peak), RC(mean), and RC(vol). In comparison, recovery coefficients for phase-matched CTAC were -8.4 ± 5.3, -10.5 ± 6.2, -7.6 ± 5.0, and -13.0 ± 7.7 for RC(max), RC(peak), RC(mean), and RC(vol). When testing differences between phases over all CTAC methods and waveforms, end-exhale phases were significantly more accurate (p = 0.005). However, these differences were driven by the patient-specific respiratory waveforms; when testing patient and sinusoidal waveforms separately, patient waveforms were significantly different between phases (p < 0.0001) while the sinusoidal waveforms were not significantly different (p = 0.98). When considering only the subset of 4DMATCH images that corresponded to the end-exhale image phase, 4DEXH, mean and interquartile range were similar to 4DMATCH but variability was considerably reduced. CONCLUSIONS: Comparative advantages in accuracy and precision of SUV metrics and segmented volumes were demonstrated with the use of the maximum intensity projection and end-exhale CT attenuation correction. While respiratory phase-matched CTAC should in theory provide optimal corrections, image artifacts and differences in implementation of 4DCT and 4DPET sorting can degrade the benefit of this approach. These results may be useful to guide the implementation, analysis, and development of respiratory-correlated thoracic PET/CT in the radiation oncology and diagnostic settings.


Assuntos
Tomografia Computadorizada Quadridimensional , Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons , Respiração , Artefatos , Humanos , Pneumopatias/diagnóstico por imagem , Pneumopatias/fisiopatologia , Imagens de Fantasmas
3.
Forensic Sci Int ; 156(2-3): 124-30, 2006 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-16410162

RESUMO

There are hundreds of millions of betel quid (BQ) lovers widely spreading around the world. Compositions in BQ may generate reactive oxygen species, which would induce DNA damage. However, oral epithelial cells as well as blood have often been used as reference samples in comparison with the mitochondrial DNA (mtDNA) sequence of hairs. The main purpose of this study was to investigate the extent of mtDNA sequence variation in regular BQ-chewers' oral epithelial cells, and thus to evaluate the forensic availability of the buccal cells from BQ-chewers using the mtDNA markers. The hypervariable segments I and II in the D-loop control region of mtDNA between paired samples of blood and buccal scrape cells from 75 non-BQ-chewers (to be a control group), 60 BQ-chewers, and 67 oral cancerous patients were DNA sequenced and compared. Among the three groups, the alteration rates of 1.3% (1 out of 75), 10% (6 out of 60), and 61% (41 out of 67) were identified from the control, BQ-chewers, and the cancerous group, respectively. In the cancerous group, as expected, high rate of DNA alteration between blood and buccal samples was found. In the BQ-chewers, one and five individuals had the length and point alterations, respectively. Interestingly, most of point alteration sites, e.g., mtDNA positions 153, 16189, 16093 identified from BQ-chewers, were also observed in previous literatures. As for the control subjects, one case with point alteration, and none with length alteration, was identified. For all the three groups, not only the oral cells but also the normal blood samples exhibited high frequency (>55%) of length heteroplasmy at poly-(C)n track. Statistical analyses revealed that significance was observed between the severity of mtDNA alteration in BQ-chewers' oral epithelial cells and the history of BQ-chewing (p = 0.02), with a tendency of positive association. Based on the guidelines by Carracedo et al., we suggest that the interpretation of mtDNA variations between criminal evidences and the oral epithelial cells (as a reference or known sample) from BQ-chewers should be performed with particular caution using the PCR-based mtDNA sequencing. Our findings would be valuable in mtDNA analysis of hair evidence, especially for those countries where the habit of BQ-chewing is popular.


Assuntos
Areca , DNA Mitocondrial/análise , Variação Genética , Mucosa Bucal/patologia , Neoplasias Bucais/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Análise Mutacional de DNA , Células Epiteliais/patologia , Medicina Legal , Marcadores Genéticos , Humanos , Pessoa de Meia-Idade , Neoplasias Bucais/patologia , Mutação Puntual , Reação em Cadeia da Polimerase , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA