Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 131(20)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34520398

RESUMO

Tumor-infiltrating myeloid cells contribute to the development of the immunosuppressive tumor microenvironment. Myeloid cell expression of arginase 1 (ARG1) promotes a protumor phenotype by inhibiting T cell function and depleting extracellular l-arginine, but the mechanism underlying this expression, especially in breast cancer, is poorly understood. In breast cancer clinical samples and in our mouse models, we identified tumor-derived GM-CSF as the primary regulator of myeloid cell ARG1 expression and local immune suppression through a gene-KO screen of breast tumor cell-produced factors. The induction of myeloid cell ARG1 required GM-CSF and a low pH environment. GM-CSF signaling through STAT3 and p38 MAPK and acid signaling through cAMP were required to activate myeloid cell ARG1 expression in a STAT6-independent manner. Importantly, breast tumor cell-derived GM-CSF promoted tumor progression by inhibiting host antitumor immunity, driving a significant accumulation of ARG1-expressing myeloid cells compared with lung and melanoma tumors with minimal GM-CSF expression. Blockade of tumoral GM-CSF enhanced the efficacy of tumor-specific adoptive T cell therapy and immune checkpoint blockade. Taken together, we show that breast tumor cell-derived GM-CSF contributes to the development of the immunosuppressive breast cancer microenvironment by regulating myeloid cell ARG1 expression and can be targeted to enhance breast cancer immunotherapy.


Assuntos
Arginase/fisiologia , Neoplasias da Mama/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/fisiologia , Tolerância Imunológica , Células Mieloides/enzimologia , Microambiente Tumoral , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , AMP Cíclico/fisiologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL
2.
Int J Mol Sci ; 22(9)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922657

RESUMO

BRCA mutation, one of the most common types of mutations in breast and ovarian cancer, has been suggested to be synthetically lethal with depletion of RAD52. Pharmacologically inhibiting RAD52 specifically eradicates BRCA-deficient cancer cells. In this study, we demonstrated that curcumin, a plant polyphenol, sensitizes BRCA2-deficient cells to CPT-11 by impairing RAD52 recombinase in MCF7 cells. More specifically, in MCF7-siBRCA2 cells, curcumin reduced homologous recombination, resulting in tumor growth suppression. Furthermore, a BRCA2-deficient cell line, Capan1, became resistant to CPT-11 when BRCA2 was reintroduced. In vivo, xenograft model studies showed that curcumin combined with CPT-11 reduced the growth of BRCA2-knockout MCF7 tumors but not MCF7 tumors. In conclusion, our data indicate that curcumin, which has RAD52 inhibitor activity, is a promising candidate for sensitizing BRCA2-deficient cells to DNA damage-based cancer therapies.


Assuntos
Proteína BRCA2/deficiência , Neoplasias da Mama/tratamento farmacológico , Curcumina/farmacologia , Dano ao DNA , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Recombinação Homóloga , Proteína Rad52 de Recombinação e Reparo de DNA/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Apoptose , Proteína BRCA2/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Reparo do DNA , Feminino , Humanos , Irinotecano/farmacologia , Camundongos , Camundongos Nus , Mutação , Inibidores da Topoisomerase I/farmacologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Cell Rep ; 32(10): 108108, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32905773

RESUMO

The metabolic program of osteoblasts, the chief bone-making cells, remains incompletely understood. Here in murine calvarial cells, we establish that osteoblast differentiation under aerobic conditions is coupled with a marked increase in glucose consumption and lactate production but reduced oxygen consumption. As a result, aerobic glycolysis accounts for approximately 80% of the ATP production in mature osteoblasts. In vivo tracing with 13C-labeled glucose in the mouse shows that glucose in bone is readily metabolized to lactate but not organic acids in the TCA cycle. Glucose tracing in osteoblast cultures reveals that pyruvate is carboxylated to form malate integral to the malate-aspartate shuttle. RNA sequencing (RNA-seq) identifies Me2, encoding the mitochondrial NAD-dependent isoform of malic enzyme, as being specifically upregulated during osteoblast differentiation. Knockdown of Me2 markedly reduces the glycolytic flux and impairs osteoblast proliferation and differentiation. Thus, the mitochondrial malic enzyme functionally couples the mitochondria with aerobic glycolysis in osteoblasts.


Assuntos
Mitocôndrias/metabolismo , Osteoblastos/metabolismo , Efeito Warburg em Oncologia , Animais , Humanos , Malatos , Camundongos
4.
Dev Biol ; 457(1): 9-12, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31550481

RESUMO

We describe a new methodology for genetically labeling single cell lineages in Drosophila called DMARCM. The system offers ultra-low frequency labeling, linear induction, consistent labeling among individuals and virtually no background signal. We compare this technique to an existing approach, which has been widely adopted. We demonstrate how application of DMARCM in the gastrointestinal epithelium permits the effects of labeling frequency on tumorigenic stem cell growth to be distinguished in an established tumor model.


Assuntos
Linhagem da Célula , Técnicas Citológicas/métodos , Drosophila/citologia , Animais , DNA Nucleotidiltransferases , Drosophila/crescimento & desenvolvimento , Trato Gastrointestinal/citologia , Resposta ao Choque Térmico , Microscopia Confocal , Coloração e Rotulagem/métodos
5.
FASEB J ; 33(7): 7810-7821, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30913395

RESUMO

Wingless/integrated (Wnt) signaling has emerged as a major mechanism for promoting bone formation and a target pathway for developing bone anabolic agents against osteoporosis. However, the downstream events mediating the potential therapeutic effect of Wnt proteins are not fully understood. Previous studies have indicated that increased glycolysis is associated with osteoblast differentiation in response to Wnt signaling, but direct genetic evidence for the importance of glucose metabolism in Wnt-induced bone formation is lacking. Here, we have generated compound transgenic mice to overexpress Wnt family member 7B (Wnt7b) transiently in the osteoblast lineage of postnatal mice, with or without concurrent deletion of the glucose transporter 1 (Glut1), also known as solute carrier family 2, facilitated glucose transporter member 1. Overexpression of Wnt7b in 1-mo-old mice for 1 wk markedly stimulated bone formation, but the effect was essentially abolished without Glut1, even though transient deletion of Glut1 itself did not affect normal bone accrual. Consistent with the in vivo results, Wnt7b increased Glut1 expression and glucose consumption in the primary culture of osteoblast lineage cells, and deletion of Glut1 diminished osteoblast differentiation in vitro. Thus, Wnt7b promotes bone formation in part through stimulating glucose metabolism in osteoblast lineage cells.-Chen, H., Ji, X., Lee, W.-C., Shi, Y., Li, B., Abel, E. D., Jiang, D., Huang, W., Long, F. Increased glycolysis mediates Wnt7b-induced bone formation.


Assuntos
Transportador de Glucose Tipo 1/fisiologia , Glucose/metabolismo , Glicólise , Osteoblastos/metabolismo , Osteogênese/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Wnt/fisiologia , Animais , Linhagem da Célula , Células Cultivadas , Fêmur/crescimento & desenvolvimento , Fêmur/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Genes Reporter , Transportador de Glucose Tipo 1/deficiência , Transportador de Glucose Tipo 1/genética , Camundongos , Camundongos Transgênicos , Osteogênese/efeitos dos fármacos , Proteínas Proto-Oncogênicas/genética , Proteínas Recombinantes/metabolismo , Tamoxifeno/farmacologia , Tíbia/crescimento & desenvolvimento , Tíbia/ultraestrutura , Proteínas Wnt/genética
6.
Nat Commun ; 8(1): 2043, 2017 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-29230039

RESUMO

Bone formation in mammals requires continuous production of osteoblasts throughout life. A common molecular marker for all osteogenic mesenchymal progenitors has not been identified. Here, by lineage-tracing experiments in fetal or postnatal mice, we discover that Gli1+ cells progressively produce osteoblasts in all skeletal sites. Most notably, in postnatal growing mice, the Gli1+ cells residing immediately beneath the growth plate, termed here "metaphyseal mesenchymal progenitors" (MMPs), are essential for cancellous bone formation. Besides osteoblasts, MMPs also give rise to bone marrow adipocytes and stromal cells in vivo. RNA-seq reveals that MMPs express a number of marker genes previously assigned to mesenchymal stem/progenitor cells, including CD146/Mcam, CD44, CD106/Vcam1, Pdgfra, and Lepr. Genetic disruption of Hh signaling impairs proliferation and osteoblast differentiation of MMPs. Removal of ß-catenin causes MMPs to favor adipogenesis, resulting in osteopenia coupled with increased marrow adiposity. Finally, postnatal Gli1+ cells contribute to both chondrocytes and osteoblasts during bone fracture healing. Thus Gli1 marks mesenchymal progenitors responsible for both normal bone formation and fracture repair.


Assuntos
Fraturas Ósseas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Osteogênese , Proteína GLI1 em Dedos de Zinco/metabolismo , Adipogenia , Animais , Condrócitos/citologia , Condrócitos/metabolismo , Consolidação da Fratura , Fraturas Ósseas/genética , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Osteoblastos/citologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , beta Catenina/genética , beta Catenina/metabolismo
7.
Bone ; 85: 1-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26780446

RESUMO

Wnt signaling has emerged as a major target pathway for the development of novel bone anabolic therapies. Neutralizing antibodies against the secreted Wnt antagonist sclerostin (Scl-Ab) increase bone mass in both animal models and humans. Because we have previously shown that Rictor-dependent mTORC2 activity contributes to Wnt signaling, we test here whether Rictor is required for Scl-Ab to promote bone anabolism. Mice with Rictor deleted in the early embryonic limb mesenchyme (Prx1-Cre;Rictor(f/f), hereafter RiCKO) were subjected to Scl-Ab treatment for 5weeks starting at 4months of age. In vivo micro-computed tomography (µCT) analyses before the treatment showed that the RiCKO mice displayed normal trabecular, but less cortical bone mass than the littermate controls. After 5weeks of treatment, Scl-Ab dose-dependently increased trabecular and cortical bone mass in both control and RiCKO mice, but the increase was significantly blunted in the latter. Dynamic histomorphometry revealed that the RiCKO mice formed less bone than the control in response to Scl-Ab. In addition, the RiCKO mice possessed fewer osteoclasts than normal under the basal condition and exhibited lesser suppression in osteoclast number by Scl-Ab. Consistent with the fewer osteoclasts in vivo, bone marrow stromal cells (BMSC) from the RiCKO mice expressed less Rankl but normal levels of Opg or M-CSF, and were less effective than the control cells in supporting osteoclastogenesis in vitro. The reliance of Rankl on Rictor appeared to be independent of Wnt-ß-catenin or Wnt-mTORC2 signaling as Wnt3a had no effect on Rankl expression by BMSC from either control or RICKO mice. Overall, Rictor in the limb mesenchymal lineage is required for the normal response to the anti-sclerostin therapy in both bone formation and resorption.


Assuntos
Anticorpos/uso terapêutico , Osso e Ossos/metabolismo , Proteínas de Transporte/metabolismo , Glicoproteínas/imunologia , Proteínas Adaptadoras de Transdução de Sinal , Envelhecimento , Animais , Anticorpos/farmacologia , Reabsorção Óssea/diagnóstico por imagem , Reabsorção Óssea/patologia , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/efeitos dos fármacos , Feminino , Deleção de Genes , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Camundongos Knockout , Tamanho do Órgão/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteoclastos/patologia , Osteogênese/efeitos dos fármacos , Ligante RANK/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina , Tíbia/diagnóstico por imagem , Tíbia/efeitos dos fármacos , Tíbia/metabolismo , Microtomografia por Raio-X
8.
Stem Cell Rev Rep ; 7(3): 722-35, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21305366

RESUMO

The derivation of induced pluripotent stem cells (iPSCs) requires not only efficient reprogramming methods, but also reliable markers for identification and purification of iPSCs. Here, we demonstrate that surface markers, epithelial cells adhesion molecule (EpCAM) and epithelial cadherin (E-cadherin) can be used for efficient identification and/or isolation of reprogrammed mouse iPSCs. By viral transduction of Oct4, Sox2, Klf4 and n- or c-Myc into mouse embryonic fibroblasts, we observed that the conventional mouse embryonic stem cell (mESC) markers, alkaline phosphatase (AP) and stage-specific embryonic antigen 1 (SSEA1), were expressed in incompletely reprogrammed cells that did not express all the exogenous reprogramming factors or failed to acquire pluripotent status even though exogenous reprogramming factors were expressed. EpCAM and E-cadherin, however, remained inactivated in these cells. Expression of EpCAM and E-cadherin correlated with the activation of Nanog and endogenous Oct4, and was only seen in the successfully reprogrammed iPSCs. Furthermore, purification of EpCAM-expressing cells at late reprogramming stage by FACS enriched the Nanog-expressing cell population suggesting the feasibility of selecting successful reprogrammed mouse iPSCs by EpCAM expression. We have thus identified new surface markers that can efficiently identify successfully reprogrammed iPSCs and provide an effective means for iPSC isolation.


Assuntos
Antígenos de Neoplasias/metabolismo , Biomarcadores/metabolismo , Caderinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Separação Celular/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Animais , Células Cultivadas , Reprogramação Celular , Molécula de Adesão da Célula Epitelial , Fibroblastos/citologia , Citometria de Fluxo/métodos , Células HEK293 , Proteínas de Homeodomínio/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteína Homeobox Nanog , Neoplasias Experimentais , Transgenes
9.
Development ; 136(13): 2255-64, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19502486

RESUMO

Adult stem cells define a cellular reserve with the unique capacity to replenish differentiated cells of a tissue throughout an organism's lifetime. Previous analysis has demonstrated that the adult Drosophila midgut is maintained by a population of multipotent intestinal stem cells (ISCs) that resides in epithelial niches. Adenomatous polyposis coli (Apc), a tumor suppressor gene conserved in both invertebrates and vertebrates, is known to play a role in multiple developmental processes in Drosophila. Here, we examine the consequences of eliminating Apc function on adult midgut homeostasis. Our analysis shows that loss of Apc results in the disruption of midgut homeostasis and is associated with hyperplasia and multilayering of the midgut epithelium. A mosaic analysis of marked ISC cell lineages demonstrates that Apc is required specifically in ISCs to regulate proliferation, but is not required for ISC self-renewal or the specification of cell fate within the lineage. Cell autonomous activation of Wnt signaling in the ISC lineage phenocopied Apc loss and Apc mutants were suppressed in an allele-specific manner by abrogating Wnt signaling, suggesting that the effects of Apc are mediated in part by the Wnt pathway. Together, these data underscore the essential requirement of Apc in exerting regulatory control over stem cell activity, as well as the consequences that disrupting this regulation can have on tissue homeostasis.


Assuntos
Proteína da Polipose Adenomatosa do Colo/metabolismo , Proliferação de Células , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Células-Tronco/fisiologia , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Diferenciação Celular , Linhagem da Célula , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Homeostase , Humanos , Intestinos/citologia , Intestinos/fisiologia , Transdução de Sinais/fisiologia , Células-Tronco/citologia , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
10.
High Alt Med Biol ; 7(3): 228-36, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16978135

RESUMO

Previous studies have reported that glucose tolerance can be improved by short-term altitude living and activity. However, not all literature agrees that insulin sensitivity is increased at altitude. The present study investigated the effect of a 25-day mountaineering activity on glucose tolerance and its relation to serum levels of dehydroepiandrosterone-sulfate (DHEA-S) and tumor necrosis factor-alpha (TNF-alpha) in 12 male subjects. On day 3 at altitude, we found that serum DHEAS was reduced in the subjects with initially greater DHEA-S value, whereas the subjects with initially lower DHEA-S remained unchanged. To further elucidate the role of DHEA-S in acclimatization to mountaineering activity, all subjects were then divided into lower and upper halves according to their sea-level DHEA-S concentrations: low DHEA-S (n = 6) and high DHEA-S groups (n = 6). Glucose tolerance, insulin level, and the normal physiologic responses to altitude exposure, including hematocrit, hemoglobin, erythropoietin (EPO), and cortisol were measured. We found that glucose and insulin concentrations on an oral glucose tolerance test were significantly lowered by the mountaineering activity only in the high DHEA-S group. Similarly, hematocrit and hemoglobin concentration in altitude were increased only in the high DHEA-S group. In contrast, the low DHEA-S subjects exhibited an EPO value at sea level and altitude greater than the high DHEA-S group, suggesting an EPO resistance. The findings of the study imply that DHEA-S is essential for physiologic acclimatization to mountaineering challenge.


Assuntos
Aclimatação/fisiologia , Desidroepiandrosterona/sangue , Montanhismo/fisiologia , Adulto , Eritropoetina/sangue , Teste de Tolerância a Glucose , Testes Hematológicos , Humanos , Hidrocortisona/sangue , Insulina/sangue , Resistência à Insulina/fisiologia , Masculino , Consumo de Oxigênio , Fator de Necrose Tumoral alfa/sangue
11.
Dev Biol ; 286(2): 377-90, 2005 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-16162335

RESUMO

Fushi-tarazu factor 1a (Ftz-F1a, Ff1a, Nr5a2) is a nuclear receptor with diverse functions in many tissues. Here, we report the function of ff1a in zebrafish muscle differentiation. In situ hybridization revealed that ff1a mRNA was present in the adaxial and migrating slow muscle precursors and was down-regulated when slow muscle cells matured. This expression was under the control of hedgehog genes, expanded when hedgehog was increased and missing in mutants defective in genes in the Hedgehog pathway like you-too (yot), sonic you (syu), and u-boot (ubo). Blocking ff1a activity by injecting a deleted form of ff1a or an antisense ff1a morpholino oligo into fish embryos caused thinner and disorganized fibers of both slow and fast properties. Transient expression of ff1a in syu, ubo, and yot embryos led to more fibril bundles, even when slow myoblasts were transfated into fast properties. We showed that ff1a and prox1 complemented each other in slow myofibril assembly, but they did not affect the expression of each other. These results demonstrate that ff1a functions in both slow and fast muscle morphogenesis in response to Hedgehog signaling, and this function parallels the activity of another slow muscle gene, prox1.


Assuntos
Proteínas de Homeodomínio/fisiologia , Morfogênese , Músculo Esquelético/crescimento & desenvolvimento , Receptores Citoplasmáticos e Nucleares/fisiologia , Fatores de Transcrição/fisiologia , Peixe-Zebra/embriologia , Animais , Embrião não Mamífero , Proteínas Hedgehog , Proteínas de Homeodomínio/genética , Fibras Musculares de Contração Rápida , Fibras Musculares de Contração Lenta , RNA Mensageiro/análise , Receptores Citoplasmáticos e Nucleares/genética , Fator Esteroidogênico 1 , Transativadores/fisiologia , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor , Peixe-Zebra/genética
12.
Chin J Physiol ; 48(1): 23-9, 2005 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-15973964

RESUMO

The present study determined the interactive effect of an acute bout of resistance exercise and dehydroepiandrosterone (DHEA) administration on glucose tolerance and serum lipids. Twenty middle-aged female subjects performed an acute bout of resistance exercise and were subsequently divided into two groups: placebo (age 40.7 +/- 2.0) and DHEA administered (age 39.0 +/- 2.7). Ten subjects who received DHEA (age 41.5 +/- 4.6) participated in a non-exercise control. DHEA (25 mg twice daily) or placebo was orally supplemented for 48 hours. Before exercise and 48 hours after the last exercise bout (14 hours after the last DHEA intake), an oral glucose tolerance test and an insulin concentration were determined. Levels of fasting serum cholesterol and triglyceride, tumor necrosis factor-alpha (TNF-alpha), creatine kinase (CK) were also measured. The DHEA administration significantly elevated the fasting dehydroepiandrosterone sulfate (DHEA-S) level by approximately 3-fold. Both acute resistance exercise and DHEA administration improved glucose tolerance, but no addictive effect was found. Furthermore, exercise and DHEA administration did not affect serum triglyceride and cholesterol levels, but both lipids were significantly lowered when DHEA was given following exercise. Resistance exercise induced elevations in serum CK and TNFalpha levels, but these increases were attenuated by the DHEA administration. The new finding of this study was that post-exercise DHEA administration decreased serum triglycerides and cholesterol. This effect appeared to be associated with its TNF-alpha lowering action.


Assuntos
Glicemia/metabolismo , Desidroepiandrosterona/farmacologia , Exercício Físico , Resistência à Insulina , Lipídeos/sangue , Adulto , Creatina Quinase/sangue , Teste de Tolerância a Glucose , Humanos , Insulina/sangue , Masculino , Pessoa de Meia-Idade , Fator de Necrose Tumoral alfa/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA