Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Int Immunopharmacol ; 141: 112918, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39159558

RESUMO

Inflammatory pain is a chronic pain caused by peripheral tissue inflammation, seriously impacting the patient's life quality. Cinobufacini injection, as a traditional Chinese medicine injection preparation, shows excellent efficacy in anti-inflammatory and analgesic treatment in patients with advanced tumors. In this study, a novel analgesic peptide CI5 with anti-inflammatory and analgesic bio-functions that naturally presents in Cinobufacini injection and its regulatory mechanism are reported. Our results showed that the administration of CI5 significantly relieved the pain of mice in the acetic acid twisting analgesic model and formalin inflammatory pain model. Furthermore, CI5 effectively reduced the inflammatory cytokines (IL-6, TNF-α and IL-1ß) and inflammatory mediator (PGE2) expressions, and prevented the carrageenan-induced paw edema in mice. Further LC-MS/MS results showed the anti-inflammatory and analgesic bio-functions of CI5 depended on its interaction with the Rac-2 protein upstream of ERK1/2 and the inflammatory signaling pathway (ERK1/2/COX-2 axis). In summary, CI5, as a novel natural candidate identified from Cinobufacini injection, showed substantial clinical promise for inflammatory pain treatments.


Assuntos
Analgésicos , Anti-Inflamatórios , Ciclo-Oxigenase 2 , Edema , Inflamação , Dor , Animais , Analgésicos/uso terapêutico , Analgésicos/farmacologia , Analgésicos/administração & dosagem , Camundongos , Dor/tratamento farmacológico , Masculino , Inflamação/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Ciclo-Oxigenase 2/metabolismo , Edema/tratamento farmacológico , Edema/induzido quimicamente , Venenos de Anfíbios/uso terapêutico , Venenos de Anfíbios/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Citocinas/metabolismo , Peptídeos/uso terapêutico , Peptídeos/farmacologia , Peptídeos/administração & dosagem , Humanos , Modelos Animais de Doenças , Carragenina , Mediadores da Inflamação/metabolismo , Dinoprostona/metabolismo
3.
J Biol Chem ; 299(6): 104717, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37068610

RESUMO

Cell membranes form barriers for molecule exchange between the cytosol and the extracellular environments. ßγ-CAT, a complex of pore-forming protein BmALP1 (two ßγ-crystallin domains with an aerolysin pore-forming domain) and the trefoil factor BmTFF3, has been identified in toad Bombina maxima. It plays pivotal roles, via inducing channel formation in various intracellular or extracellular vesicles, as well as in nutrient acquisition, maintaining water balance, and antigen presentation. Thus, such a protein machine should be tightly regulated. Indeed, BmALP3 (a paralog of BmALP1) oxidizes BmALP1 to form a water-soluble polymer, leading to dissociation of the ßγ-CAT complex and loss of biological activity. Here, we found that the B. maxima IgG Fc-binding protein (FCGBP), a well-conserved vertebrate mucin-like protein with unknown functions, acted as a positive regulator for ßγ-CAT complex assembly. The interactions among FCGBP, BmALP1, and BmTFF3 were revealed by co-immunoprecipitation assays. Interestingly, FCGBP reversed the inhibitory effect of BmALP3 on the ßγ-CAT complex. Furthermore, FCGBP reduced BmALP1 polymers and facilitated the assembly of ßγ-CAT with the biological pore-forming activity in the presence of BmTFF3. Our findings define the role of FCGBP in mediating the assembly of a pore-forming protein machine evolved to drive cell vesicular delivery and transport.


Assuntos
Cristalinas , Peptídeos , Animais , Peptídeos/metabolismo , Pele/metabolismo , Anuros/metabolismo , Cristalinas/metabolismo , Porinas/metabolismo , Imunoglobulina G/metabolismo
4.
Toxins (Basel) ; 15(3)2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36977082

RESUMO

Toxin-like proteins and peptides of skin secretions from amphibians play important physiological and pathological roles in amphibians. ßγ-CAT is a Chinese red-belly toad-derived pore-forming toxin-like protein complex that consists of aerolysin domain, crystalline domain, and trefoil factor domain and induces various toxic effects via its membrane perforation process, including membrane binding, oligomerization, and endocytosis. Here, we observed the death of mouse hippocampal neuronal cells induced by ßγ-CAT at a concentration of 5 nM. Subsequent studies showed that the death of hippocampal neuronal cells was accompanied by the activation of Gasdermin E and caspase-1, suggesting that ßγ-CAT induces the pyroptosis of hippocampal neuronal cells. Further molecular mechanism studies revealed that the pyroptosis induced by ßγ-CAT is dependent on the oligomerization and endocytosis of ßγ-CAT. It is well known that the damage of hippocampal neuronal cells leads to the cognitive attenuation of animals. The impaired cognitive ability of mice was observed after intraperitoneal injection with 10 µg/kg ßγ-CAT in a water maze assay. Taken together, these findings reveal a previously unknown toxicological function of a vertebrate-derived pore-forming toxin-like protein in the nerve system, which triggers the pyroptosis of hippocampal neuronal cells, ultimately leading to hippocampal cognitive attenuation.


Assuntos
Proteínas de Anfíbios , Anuros , Neurônios , Piroptose , Animais , Camundongos , Anuros/metabolismo , Cognição , Peptídeos/química , Proteínas de Anfíbios/toxicidade , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Neurônios/efeitos dos fármacos
5.
J Immunol Methods ; 509: 113343, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36029800

RESUMO

Lipopolysaccharide (LPS) is a major pathogen-associated pattern molecule that can initiate lethal sepsis. Bioactive peptides in amphibian skin secretions, especially antimicrobial peptides, are essential components of the host immune system and help fight the microbial invasion. In this study, two peptides: peptide 1 (KINRKGPRPPG) and peptide 2 (INRKGPRPPG) were isolated, from skin secretions of the Chinese red belly frog (Bombina maxima). After stimulation with LPS, peptide 1 showed direct LPS-binding activity, low cytotoxicity, immunoregulatory functions in vitro, and neutralizing LPS effects in animal models. Thus, natural peptide 1 exhibits potential as an ideal candidate against LPS.


Assuntos
Anuros , Lipopolissacarídeos , Sequência de Aminoácidos , Animais , Anuros/genética , Sequência de Bases , Clonagem Molecular , Cininas , Lipopolissacarídeos/farmacologia , Neuropeptídeos , Peptídeos/química , Pele
6.
J Immunol Methods ; 508: 113322, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35843266

RESUMO

Elucidation of the function of gamma delta T cells (γδ T cells) requires robust models that show how γδ T cells are commonly involved in inflammation, since very little is known about the factors that promote and control their development and function. There are few studies of murine γδ T cells primarily because these cells have proven difficult to isolate, expand and characterize. Here, we describe a simple method that utilizes key expansion elements to isolate and expand murine CD4-CD8-CD3+ γδ T cells typically found in secondary lymphoid tissues. Expansion of γδ T cells reached 150-fold by day 8 of culture, depended on exogenous IL-2, αCD3, and αCD28, and supported efficient and reproducible in vitro differentiation. These studies showed high production of cytokines IFNγ and Granzyme B, with the novel finding of IL-24 upregulation as well. Expression analysis of expanded γδ T cells, after treatment with IL-2, revealed high levels of Granzyme B, Granzyme D, and IFNγ. Lactate dehydrogenase (LDH) cytotoxicity assays showed that expanded γδ T cells were effective at inducing >90% cytolysis of murine MC38 colon cancer, E0771 breast cancer, and B16 melanoma cells at 10:1 effector to target ratios. These findings indicated that murine γδ T cells can be successfully isolated, expanded, and used to perform preclinical therapy studies.


Assuntos
Interleucina-2 , Receptores de Antígenos de Linfócitos T gama-delta , Animais , Linhagem Celular Tumoral , Granzimas/metabolismo , Interleucina-2/farmacologia , Camundongos , Baço/metabolismo , Linfócitos T/metabolismo
7.
Int J Nanomedicine ; 16: 4769-4780, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34285482

RESUMO

BACKGROUND: The treatment of Staphylococcus aureus (S. aureus)-infected wounds is difficult. It causes extreme pain to tens of thousands of patients and increases the cost of medical care. The antimicrobial peptide OH-CATH30 (OH30) has a good killing activity against S. aureus and can play a role in accelerating wound healing and immune regulation. Therefore, it shows great potential for wound healing. PURPOSE: The aim of this study was to overcome the short half-life and easy enzymolysis of OH30 by using graphene oxide conjugated with polyethylene glycol to load OH30 (denoted as PGO-OH30), as well as to evaluate its effect on wounds infected by S. aureus. METHODS: PGO-OH30 nanoparticles were prepared by π-π conjugation and characterized. Their cell cytotoxicity, cell migration, infectious full-thickness dermotomy models, and histopathology were evaluated. RESULTS: Characterization and cytotoxicity experiments revealed that the PGO-OH30 drug-delivery system had good biocompatibility and excellent drug-delivery ability. Cell-migration experiments showed that PGO-OH30 could promote the migration of human immortalized keratinocytes (HaCaT) cells compared with the control group (P<0.05). In a mouse model of skin wound infection, PGO-OH30 accelerated skin-wound healing and reduced the amount of S. aureus in wounds compared with the control group (P<0.05). In particular, on day 7, the number of S. aureus was 100 times lower in the PGO-OH30 group than in the control group. CONCLUSION: The PGO-OH30 drug-delivery system had good biocompatibility and excellent drug-delivery ability, indicating its good therapeutic effect on a skin wound-infection model.


Assuntos
Staphylococcus aureus , Infecção dos Ferimentos , Animais , Grafite , Humanos , Camundongos , Peptídeos , Polietilenoglicóis , Pele , Cicatrização , Infecção dos Ferimentos/tratamento farmacológico
8.
Biochem Biophys Res Commun ; 550: 107-112, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33689880

RESUMO

Lipopolysaccharide (LPS) is a major pathogenic factor in endotoxin shock or sepsis. Most antibiotics have little clinical anti-endotoxin activity, but some antimicrobial peptides (AMPs) have been shown to be effective in blocking LPS. We identified a novel peptide from the skin secretions of Bombina maxima (B. _maxima) by challenging the skin of frogs with an LPS solution. Peptide 2 has an amino acid sequence of LVGKLLKGAVGDVCGLLPIC. Peptide 2 possesses low hemolytic activity, low cytotoxicity against RAW 264.7 cells, and strong anti-inflammatory activity. Moreover, peptide 2 plays an anti-inflammatory role by inhibiting inflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6). A biolayer interferometry (BLI) assay indicated that peptide 2 binds to LPS with strong affinity and that this interaction has an affinity constant (KD) value of 1.05 × 10-9 M. A survival study showed that peptide 2 possesses potent LPS-neutralizing activity to protect LPS-treated mice from death. In conclusion, we have identified a potent peptide with LPS neutralizing activity, which lays a foundation for future research and development.


Assuntos
Anuros/metabolismo , Lipopolissacarídeos/antagonistas & inibidores , Peptídeos/isolamento & purificação , Peptídeos/farmacologia , Sepse/tratamento farmacológico , Pele/química , Pele/metabolismo , Animais , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Anti-Infecciosos/toxicidade , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/toxicidade , Citocinas/biossíntese , Citocinas/genética , Citocinas/imunologia , Avaliação Pré-Clínica de Medicamentos , Hemólise/efeitos dos fármacos , Humanos , Lipopolissacarídeos/imunologia , Masculino , Camundongos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Peptídeos/toxicidade , Ligação Proteica , Células RAW 264.7 , RNA Mensageiro/genética , Taxa de Sobrevida
9.
Asian J Androl ; 23(1): 109-115, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32687069

RESUMO

The arachidonic acid (AA) metabolic pathway participates in various physiological processes as well as in the development of malignancies. We analyzed genomic alterations in AA metabolic enzymes in the Cancer Genome Atlas (TCGA) prostate cancer (PCa) dataset and found that the gene encoding soluble epoxide hydrolase (EPHX2) is frequently deleted in PCa. EPHX2 mRNA and protein expression in PCa was examined in multiple datasets by differential gene expression analysis and in a tissue microarray by immunohistochemistry. The expression data were analyzed in conjunction with clinicopathological variables. Both the mRNA and protein expression levels of EPHX2 were significantly decreased in tumors compared with normal prostate tissues and were inversely correlated with the Gleason grade and disease-free survival time. Furthermore, EPHX2 mRNA expression was significantly decreased in metastatic and recurrent PCa compared with localized and primary PCa, respectively. In addition, EPHX2 protein expression correlated negatively with Ki67 expression. In conclusion, EPHX2 deregulation is significantly correlated with the clinical characteristics of PCa progression and may serve as a prognostic marker for PCa.


Assuntos
Epóxido Hidrolases/metabolismo , Neoplasias da Próstata/patologia , Biomarcadores , Western Blotting , Linhagem Celular , Progressão da Doença , Intervalo Livre de Doença , Humanos , Masculino , Prognóstico , Próstata/enzimologia , Próstata/metabolismo , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/enzimologia , Reação em Cadeia da Polimerase em Tempo Real
10.
Onco Targets Ther ; 13: 12521-12538, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324071

RESUMO

INTRODUCTION: Bladder cancer (BC) is the fourth-commones cancer and the sixth-leading cause of cancer-related death among men. However, a lack of reliable biomarkers remains a problem forprognosis and treatment of BC. lncRNAs have been shown to play important roles in various cancers, and have emerged as promising biomarkers for cancer prognosis and treatment. METHODS: In this study, using univariate and multivariate Cox regression analysis, we examined the differential expression profiles of 1,651 lncRNAs in the TCGA BLCA cohort and created a prognostic gene signature composed of six lncRNAs (for SNHG12, MAFG- DT, ASMTL-AS1, LINC02321, LINC01322, and LINC00922), designed the SMALLL signature. RESULTS: The SMALLL signature displayed significant prognostic power for overall survival for BC patients in multiple cohorts. Gene Ontology analysis showed that genes coexpressed with the SMALLL signature were associated with the extracellular matrix network, and immune cell-infiltration analysis showed that activated naïve B cells, regulatory T cells, M0 macrophages, eosinophils, resting memory CD4 T cells and resting NK cells were significantly different in high- and low-risk groups. We also confirmed differential expression of the lncRNAs of the SMALLL signature in BC tissue and paracancer normal tissue by qRT-PCR analysis. Cell-invasion and -migration experiments showed that MAFG-AS1, ASMTL-AS1, LINC02321, and LINC00922 significantly affected cell invasion and migration. CONCLUSION: Our study revealed that the lncRNA signature is an important predictive factor of prognosis and provides a promising biomarker for BC.

11.
J Biol Chem ; 295(30): 10293-10306, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32499370

RESUMO

Endolysosomes are key players in cell physiology, including molecular exchange, immunity, and environmental adaptation. They are the molecular targets of some pore-forming aerolysin-like proteins (ALPs) that are widely distributed in animals and plants and are functionally related to bacterial toxin aerolysins. ßγ-CAT is a complex of an ALP (BmALP1) and a trefoil factor (BmTFF3) in the firebelly toad (Bombina maxima). It is the first example of a secreted endogenous pore-forming protein that modulates the biochemical properties of endolysosomes by inducing pore formation in these intracellular vesicles. Here, using a large array of biochemical and cell biology methods, we report the identification of BmALP3, a paralog of BmALP1 that lacks membrane pore-forming capacity. We noted that both BmALP3 and BmALP1 contain a conserved cysteine in their C-terminal regions. BmALP3 was readily oxidized to a disulfide bond-linked homodimer, and this homodimer then oxidized BmALP1 via disulfide bond exchange, resulting in the dissociation of ßγ-CAT subunits and the elimination of biological activity. Consistent with its behavior in vitro, BmALP3 sensed environmental oxygen tension in vivo, leading to modulation of ßγ-CAT activity. Interestingly, we found that this C-terminal cysteine site is well conserved in numerous vertebrate ALPs. These findings uncover the existence of a regulatory ALP (BmALP3) that modulates the activity of an active ALP (BmALP1) in a redox-dependent manner, a property that differs from those of bacterial toxin aerolysins.


Assuntos
Proteínas de Anfíbios/química , Dissulfetos/química , Proteínas Citotóxicas Formadoras de Poros/química , Multimerização Proteica , Animais , Anuros , Oxirredução , Domínios Proteicos
12.
Int J Mol Med ; 45(5): 1543-1553, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32323753

RESUMO

Osteoporosis (OP) is a chronic bone disease that affects individuals worldwide. Osteoporosis is primarily asymptomatic, and patients with OP suffer from pain, inconvenience, economic pressure and osteoporotic fracture (OPF). Osteoking, a Traditional Chinese Medicine compound that originates from the Yi ethnic group, has been used for a number of years to treat fractures. In our previous study, osteoking exhibited therapeutic effects on rats with OPF by promoting calcium deposition. Based on bioinformatics and network pharmacology analyses of a component­target­disease database, heat shock protein HSP 90­ß (HSP90­ß), also known as HSP90­ß, was identified to be a key target of osteoking in OP. High HSP90­ß expression levels were observed in osteoporotic rats and rat bone mesenchymal stem cells (rBMSCs) following osteoking treatment. After 12 weeks of administration in vivo, there was increased bone mineral density (BMD) (P<0.05), increased bone alkaline phosphatase (P<0.05), and improved bone microstructure in the osteoking group compared with those of the negative control group. In vitro, increased calcium deposition in rBMSCs was observed after 4 weeks of osteoking treatment. These results suggest that the mechanisms of osteoking are closely associated with HSP90­ß and activate the bone morphogenetic protein (BMP) signalling pathway, primarily through BMP­2. Osteoking treatment improves OP in rats by enhancing HSP90­ß expression.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Proteínas de Choque Térmico HSP90/metabolismo , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Densidade Óssea/efeitos dos fármacos , Linhagem Celular , Feminino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteogênese/efeitos dos fármacos , Fraturas por Osteoporose/tratamento farmacológico , Fraturas por Osteoporose/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
13.
Oncoimmunology ; 9(1): 1724052, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117587

RESUMO

While anti-CEA antibodies have no direct effect on CEA-positive tumors, they can be used to direct potent anti-tumor effects as an antibody-IL-2 fusion protein (immunocytokine, ICK), and at the same time reduce the toxicity of IL-2 as a single agent. Using a fusion protein of humanized anti-CEA with human IL-2 (M5A-IL-2) in a transgenic murine model expressing human CEA, we show high tumor uptake of the ICK to CEA-positive tumors with additional lymph node targeting. ICK treated CEA-positive tumors exhibit significant tumor eradication. Analysis of tumor-infiltrating lymphocytes shows a high frequency of both CD8+ and CD4+ T cells along with CD11b positive myeloid cells in ICK treated mice. The frequency of tumor-infiltrating FoxP3+ CD4+ T cells (Tregs) is significantly reduced vs anti-CEA antibody-treated controls, indicating that ICK did not preferentially stimulate migration or proliferation of Tregs to the tumor. Combination therapy with anti-PD-1 antibody did not improve tumor reduction over ICK therapy alone. Since stereotactic tumor irradiation (SRT), commonly used in cancer therapy has immunomodulatory effects, we tested combination SRT+ICK therapy in two tumor model systems. Use of fractionated vs single high dose SRT in combination with ICK resulted in greater tumor inhibition and immunity to tumor rechallenge. In particular, tumor microenvironment and myeloid cell composition appear to play a significant role in the response rate to ICK+SRT combination therapy.


Assuntos
Neoplasias , Radiocirurgia , Animais , Anticorpos Monoclonais , Interleucina-2 , Linfócitos do Interstício Tumoral , Camundongos , Microambiente Tumoral
14.
Zool Res ; 41(2): 138-147, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-31945809

RESUMO

As the oldest venomous animals, centipedes use their venom as a weapon to attack prey and for protection. Centipede venom, which contains many bioactive and pharmacologically active compounds, has been used for centuries in Chinese medicine, as shown by ancient records. Based on comparative analysis, we revealed the diversity of and differences in centipede toxin-like molecules between Scolopendra mojiangica, a substitute pharmaceutical material used in China, and S. subspinipes mutilans. More than 6 000 peptides isolated from the venom were identified by electrospray ionization-tandem mass spectrometry (ESI-MS/MS) and inferred from the transcriptome. As a result, in the proteome of S. mojiangica, 246 unique proteins were identified: one in five were toxin-like proteins or putative toxins with unknown function, accounting for a lower percentage of total proteins than that in S. mutilans. Transcriptome mining identified approximately 10 times more toxin-like proteins, which can characterize the precursor structures of mature toxin-like peptides. However, the constitution and quantity of the toxin transcripts in these two centipedes were similar. In toxicity assays, the crude venom showed strong insecticidal and hemolytic activity. These findings highlight the extensive diversity of toxin-like proteins in S. mojiangica and provide a new foundation for the medical-pharmaceutical use of centipede toxin-like proteins.


Assuntos
Venenos de Artrópodes/farmacologia , Artrópodes/química , Peptídeos/química , Animais , China , Peptídeos/farmacologia , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Transcriptoma
15.
BMC Cancer ; 19(1): 882, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31488104

RESUMO

BACKGROUND: Bispecific T-cell engaging antibodies (BiTES), comprising dual anti-CD3 and anti-tumor antigen scFv fragments, are important therapeutic agents for the treatment of cancer. The dual scFv construct for BiTES requires proper protein folding while their small molecular size leads to rapid kidney clearance. METHODS: An intact (150 kDa) anti-tumor antigen antibody to CEA was joined in high yield (ca. 30%) to intact (150 kDa) anti-murine and anti-human CD3 antibodies using hinge region specific Click chemistry to form dual-specific, bivalent BiTES (dbBiTES, 300 kDa). dbBiTEs were tested in vitro by EM, flow cytometry and cell cytoxicity and in vivo by PET tumor imaging and redirected T-cell therapy. RESULTS: The interlocked hinge regions are compatible with a structural model that fits the electron micrographs of 300 kDa particles. Compared to intact anti-CEA antibody, dbBiTES exhibit high in vitro cytotoxicity, high in vivo tumor targeting as demonstrated by PET imaging, and redirected dbBiTE coated T-cells (1 microgram/10 million cells) that kill CEA+ target cells in vivo in CEA transgenic mice. CONCLUSION: dbBiTE redirected T-cell therapy is a promising, efficient approach for targeting and killing cancer cells.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Antígeno Carcinoembrionário/imunologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Neoplasias do Colo/terapia , Imunoterapia/métodos , Linfócitos T/imunologia , Animais , Complexo CD3/imunologia , Antígeno Carcinoembrionário/genética , Linhagem Celular Tumoral , Neoplasias do Colo/diagnóstico por imagem , Citotoxicidade Imunológica , Humanos , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Simulação de Dinâmica Molecular , Tomografia por Emissão de Pósitrons , Dobramento de Proteína , Anticorpos de Cadeia Única/imunologia , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
16.
J Ethnopharmacol ; 244: 112045, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31260757

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Osteoking is a Traditional Chinese Medicine consisting of seven types of medicinal herbs originated from Yi nationality and has been used in clinic to treat bone diseases for thousands of years in China. Osteoking shows excellent clinical therapeutic effects on osteoporosis, but it is not clear whether Osteoking could exhibit beneficial effects against osteoporosis via reducing reactive oxygen species (ROS). AIM OF THE STUDY: To explore whether the protective effects of Osteoking on osteoporosis related to ROS, we investigated the effects of Osteoking on osteogenesis differentiation under oxidative stress. MATERIALS AND METHODS: The ovariectomized (OVX) osteoporosis model was established by ovarian surgery, and Osteoking was orally administrated for 84 days. Then the pathogenesis changes of femur were analyzed by Hematoxylin and eosin (H&E) and Masson's trichrome staining. The levels of ROS, malondialdehyde (MDA)and superoxide dismutase (SOD) from rats' serum were further measured. In vitro, mouse pre-osteoblastic MC3T3-E1 cells pre-treated with or without 0.25 mM tert-butyl hydroperoxide (t-BHP) for 2 h were cultured and treated with different dilutions of Osteoking or 20 µM N-Acetyl-L-cysteine for another 24 h, respectively. The intracellular ROS production and markers of oxidative damage of the MC3T3-E1 cells were determined using corresponding kits, respectively. The expressions of alkaline phosphatase (ALP), collagen type I, osteoprotegerin (OPG), TGF-ß1, ß-catenin, receptor activator of nuclear factor-κB ligand (RANKL) and interleukin-6 (IL-6) were further analyzed by qRT-PCR and western blotting upon treatment. RESULTS: Our results showed that Osteoking significantly improving trabecular microstructure by promoting collagen fiber repair and new bone or cartilage regeneration was demonstrated in OVX osteoporosis rat models by micro-CT analysis and histological staining results. Osteoking supplementation reduced the levels of ROS and MDA in OVX rat serum and increased SOD activities. In addition, Osteoking could also up-regulate the proteins expression levels of Runx2, osteocalcin (BGP) and osteoprotegerin (OPG) but reducing the expression of tartrate-resistant acid phosphatase (TRAP). In vitro, Osteoking could effectively inhibit the t-BHP-induced intracellular excessive ROS production and protect cells from oxidative stress in mouse pre-osteoblastic MC3T3-E1 cells. Meanwhile, the mRNA expressions of ALP, collagen type I, OPG, TGF-ß1 and ß-catenin were also up-regulated whereas the RANKL and IL-6 were down-regulated in Osteoking-treated MC3T3-E1 cells. CONCLUSIONS: A novel therapeutic mechanism of Osteoking on osteoporosis reveals by present investigation. Clinic effects of Osteoking to treat osteoporosis are closely related to its ability to reduce oxidative stress.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Osteoporose/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Linhagem Celular , Medicamentos de Ervas Chinesas/uso terapêutico , Feminino , Camundongos , Osteoporose/tratamento farmacológico , Ovariectomia , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley
17.
FASEB J ; 33(1): 782-795, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30063438

RESUMO

Tissue repair is a highly dynamic process, and the immediate onset of acute inflammation has been considered necessary for repair. Pore-forming proteins are important, both in pathogen invasion and host immunity. However, their roles in wound healing and tissue repair are unclear. ßγ-crystallin fused aerolysin-like protein (α-subunit) and trefoil factor (ß-subunit) complex (ßγ-CAT) is a complex of a bacterial pore-forming toxin aerolysin-like protein and trefoil factor identified in the frog Bombina maxima. In this study, we established mouse cutaneous wound models to explore the effects of ßγ-CAT on skin wound healing. ßγ-CAT accelerated the healing of full-thickness wounds by improving re-epithelialization. This complex relieved dermal edema and promoted scarless healing. ßγ-CAT treatment resulted in a rapid release of IL-1ß, which initiated an acute inflammation response in the early stage of healing. Meanwhile, the expression levels of TGF-ß1, VEGF, and bFGF and the recruitment of M2 macrophages around the wound significantly increased after ßγ-CAT treatment. ßγ-CAT protected skin wounds against methicillin-resistant Staphylococcus aureus by improving neutrophil recruitment at the site of the wound. Overall, our results suggest that ßγ-CAT can promote tissue repair and protect skin wounds against antibiotic-resistant bacterial infection by triggering the acute inflammatory response. This is the first example that aerolysin-like pore-forming proteins widely existing in plants and animals may act in wound healing and tissue repair.-Gao, Z.-H., Deng, C.-J., Xie, Y.-Y., Guo, X.-L., Wang, Q.-Q., Liu, L.-Z., Lee, W.-H., Li, S.-A., Zhang, Y. Pore-forming toxin-like protein complex expressed by frog promotes tissue repair.


Assuntos
Proteínas Citotóxicas Formadoras de Poros/metabolismo , Toxinas Biológicas/metabolismo , Cicatrização , Animais , Anuros , Linhagem Celular , Colágeno/metabolismo , Cristalinas/metabolismo , Células Epiteliais/citologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fibroblastos/citologia , Humanos , Interleucina-1beta/metabolismo , Macrófagos/citologia , Masculino , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Camundongos , Neutrófilos/citologia , Coelhos , Pele/lesões , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/prevenção & controle , Fator de Crescimento Transformador beta1/metabolismo , Fatores Trefoil/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
18.
Int J Nanomedicine ; 13: 5771-5786, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30310280

RESUMO

BACKGROUND: Nonscar wound healing is a desirable treatment for cutaneous wounds worldwide. Peptide OH-CATH30 (OH30) from king cobra can selectively regulate the innate immunity and create an anti-inflammatory micro-environment which might benefit nonscar wound healing. PURPOSE: To overcome the enzymatic digestion and control release of OH30, OH30 encapsulated in carboxymethyl chitosan nanoparticles (CMCS-OH30 NP) were prepared and their effects on wound healing were evaluated. METHODS: CMCS-OH30 NP were prepared by mild ionic gelation method and properties of the prepared CMCS-OH30 NP were determined by dynamic light scattering. Encapsulation efficiency, stability and release profile of OH30 from prepared CMCS-OH30 NP were determined by HPLC. Cytotoxicity, cell migration and cellular uptake of CMCS-OH30 NP were determined by conventional methods. The effects of prepared CMCS-OH30 NP on the wound healing was investigated by full-thickness excision animal models. RESULTS: The release of encapsulated OH30 from prepared CMCS-OH30 NP was maintained for at least 24 h in a controlled manner. CMCSOH30 NP enhanced the cell migration but had no effects on the metabolism and proliferation of keratinocytes. In the full-thickness excision animal models, the CMCS-OH30 NP treatment significantly accelerated the wound healing compared with CMCS or OH30 administration alone. Histopathological examination suggested that CMCS-OH30 NP promoted wound healing by enhancing the granulation tissue formation through the re-epithelialized and neovascularized composition. CMCS-OH30 NP induced a steady anti-inflammatory cytokine IL10 expression but downregulated the expressions of several pro-inflammatory cytokines. CONCLUSION: The prepared biodegradable drug delivery system accelerates the healing and shows better prognosis because of the combined effects of OH30 released from the nanoparticles.


Assuntos
Quitosana/análogos & derivados , Cicatriz/patologia , Nanopartículas/química , Peptídeos/uso terapêutico , Cicatrização/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Movimento Celular/efeitos dos fármacos , Quitosana/química , Colágeno/metabolismo , Citocinas/metabolismo , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Difusão Dinâmica da Luz , Endocitose , Feminino , Humanos , Queratinócitos/efeitos dos fármacos , Camundongos , Camundongos Nus , Testes de Sensibilidade Microbiana , Nanopartículas/ultraestrutura , Peptídeos/farmacologia , Células RAW 264.7
19.
Peptides ; 101: 124-134, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29341894

RESUMO

The unavoidable daily exposure of the skin to ultraviolet (UV) B radiation is proven to have deleterious effects. The action mechanism of antioxidin-RL, an antioxidant peptide purified from skin secretions of frog Odorrana livida with amino acid sequence of AMRLTYNRPCIYAT, is well characterized by NMR titration and mutation based on ABTS+ scavenging activities. In order to explore the protective effects of antioxidin-RL against UVB-irradiated skin photoaging, cell uptake assay was used to detect the location of antioxidin-RL molecules serving various biological functions in the cells. The protective effects of antioxidin-RL on UVB-induced response were examined in vitro and in vivo. Results showed that antioxidin-RL successfully penetrated the cell membrane and exerted a positive effect on cell migration. It also effectively inhibited the UVB-induced excessive production of ROS and prevented oxidative damage to DNAs and proteins. Moreover, the mRNA expressions of MMP-1, VEGF, COX-2, and pro-inflammatory cytokines, such as IL-6 and TNF-α in antioxidin-RL-treated HaCaT and HSF cells were significantly down-regulated whereas those of FGF, procollagen type I and TGF-ß1 up-regulated. Antioxidin-RL effectively prevented UVB-induced erythema on mouse skin, thereby inhibiting UVB-induced skin thickening and inflammation and increasing collagen deposition as demonstrated by in vivo experiments. Hence, the novel antioxidant peptide antioxidin-RL can effectively reduce UVB-induced skin reactions in vivo and in vitro, providing potential molecules against UVB-induced inflammation and photoaging.


Assuntos
Proteínas de Anfíbios , Peptídeos , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação , Pele/metabolismo , Raios Ultravioleta/efeitos adversos , Proteínas de Anfíbios/química , Proteínas de Anfíbios/farmacologia , Animais , Linhagem Celular Transformada , Feminino , Humanos , Camundongos , Peptídeos/química , Peptídeos/farmacologia , Ranidae , Pele/patologia
20.
J Pept Sci ; 23(9): 707-715, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28608418

RESUMO

Insulinotropic peptide agents are regarded as potential candidates for anti-diabetic treatment. In the present study, a novel insulinotropic peptide, termed OA-A1, was purified from frog skin secretions of Odorrana andersonii. Mature OA-A1 was determined to be a 1965.049 Da peptide with an amino acid sequence of LVGKLLKGAVGDVCGLLPIC, in which an intramolecular disulfide bridge was formed by two cysteine residues. At the cellular level, OA-A1 exhibited potent proliferation promoting effects on mouse-derived pancreatic ß-TC-6 cells and significantly stimulated insulin release in ß-TC-6 cells at a minimum concentration of 1 nM. In the animal model, OA-A1 also showed a dose-dependent insulin-releasing role in mice. At concentrations ranging from 1 nmol/kg to 1 µmol/kg, OA-A1 had a significant acute hypoglycemic effect on streptozotocin (STZ)-induced diabetic mice. The pancreatic islet areas of diabetic mice increased dose-dependently after 21 days of OA-A1 treatment (1-100 nmol/kg) compared with those of the saline control group. Moreover, OA-A1 significantly improved the oral glucose tolerance of STZ-induced diabetic mice. Taken together, these results suggest that OA-A1 provides an excellent template for the development of novel anti-diabetic therapeutic agents. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.


Assuntos
Peptídeos/metabolismo , Pele/metabolismo , Animais , Anuros , Proliferação de Células/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Teste de Tolerância a Glucose , Hemólise/efeitos dos fármacos , Hipoglicemiantes/metabolismo , Hipoglicemiantes/uso terapêutico , Masculino , Camundongos , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Estreptozocina/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA