Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Sci Immunol ; 9(97): eadn6509, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028827

RESUMO

Most patients treated with US Food and Drug Administration (FDA)-approved chimeric antigen receptor (CAR) T cells eventually experience disease progression. Furthermore, CAR T cells have not been curative against solid cancers and several hematological malignancies such as T cell lymphomas, which have very poor prognoses. One of the main barriers to the clinical success of adoptive T cell immunotherapies is CAR T cell dysfunction and lack of expansion and/or persistence after infusion. In this study, we found that CD5 inhibits CAR T cell activation and that knockout (KO) of CD5 using CRISPR-Cas9 enhances the antitumor effect of CAR T cells in multiple hematological and solid cancer models. Mechanistically, CD5 KO drives increased T cell effector function with enhanced cytotoxicity, in vivo expansion, and persistence, without apparent toxicity in preclinical models. These findings indicate that CD5 is a critical inhibitor of T cell function and a potential clinical target for enhancing T cell therapies.


Assuntos
Antígenos CD5 , Imunoterapia Adotiva , Linfócitos T , Animais , Imunoterapia Adotiva/métodos , Antígenos CD5/imunologia , Camundongos , Humanos , Linfócitos T/imunologia , Linfócitos T/transplante , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Linhagem Celular Tumoral , Sistemas CRISPR-Cas , Feminino
2.
Nat Immunol ; 25(6): 1020-1032, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38831106

RESUMO

The efficacy of T cell-based immunotherapies is limited by immunosuppressive pressures in the tumor microenvironment. Here we show a predominant role for the interaction between BTLA on effector T cells and HVEM (TNFRSF14) on immunosuppressive tumor microenvironment cells, namely regulatory T cells. High BTLA expression in chimeric antigen receptor (CAR) T cells correlated with poor clinical response to treatment. Therefore, we deleted BTLA in CAR T cells and show improved tumor control and persistence in models of lymphoma and solid malignancies. Mechanistically, BTLA inhibits CAR T cells via recruitment of tyrosine phosphatases SHP-1 and SHP-2, upon trans engagement with HVEM. BTLA knockout thus promotes CAR signaling and subsequently enhances effector function. Overall, these data indicate that the BTLA-HVEM axis is a crucial immune checkpoint in CAR T cell immunotherapy and warrants the use of strategies to overcome this barrier.


Assuntos
Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Receptores Imunológicos , Membro 14 de Receptores do Fator de Necrose Tumoral , Microambiente Tumoral , Animais , Humanos , Imunoterapia Adotiva/métodos , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Membro 14 de Receptores do Fator de Necrose Tumoral/imunologia , Membro 14 de Receptores do Fator de Necrose Tumoral/genética , Camundongos , Microambiente Tumoral/imunologia , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Linfócitos T Reguladores/imunologia , Transdução de Sinais , Linhagem Celular Tumoral , Neoplasias/imunologia , Neoplasias/terapia , Camundongos Knockout
3.
Cytotherapy ; 26(5): 506-511, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38483365

RESUMO

BACKGROUND AIMS: The successful development of CD19-targeted chimeric antigen receptor (CAR) T-cell therapies has led to an exponential increase in the number of patients recieving treatment and the advancement of novel CAR T products. Therefore, there is a strong need to develop streamlined platforms that allow rapid, cost-effective, and accurate measurement of the key characteristics of CAR T cells during manufacturing (i.e., cell number, cell size, viability, and basic phenotype). METHODS: In this study, we compared the novel benchtop cell analyzer Moxi GO II (ORFLO Technologies), which enables simultaneous evaluation of all the aforementioned parameters, with current gold standards in the field: the Multisizer Coulter Counter (cell counter) and the BD LSRFortessa (flow cytometer). RESULTS: Our results demonstrated that the Moxi GO II can accurately measure cell number and cell size (i.e., cell volume) while simultaneously assessing simple two-color flow cytometry parameters, such as CAR T-cell viability and CD4 or CAR expression. CONCLUSIONS: These measurements are comparable with those of gold standard instruments, demonstrating that the Moxi GO II is a promising platform for quickly monitoring CAR T-cell growth and phenotype in research-grade and clinical samples.


Assuntos
Sobrevivência Celular , Citometria de Fluxo , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Linfócitos T , Humanos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Citometria de Fluxo/métodos , Imunoterapia Adotiva/métodos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Antígenos CD19/imunologia , Antígenos CD19/metabolismo , Fenótipo , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Imunofenotipagem/métodos , Tamanho Celular
4.
Mol Cancer ; 22(1): 200, 2023 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-38066564

RESUMO

BACKGROUND: Commercial anti-CD19 chimeric antigen receptor T-cell therapies (CART19) are efficacious against advanced B-cell non-Hodgkin lymphoma (NHL); however, most patients ultimately relapse. Several mechanisms contribute to this failure, including CD19-negative escape and CAR T dysfunction. All four commercial CART19 products utilize the FMC63 single-chain variable fragment (scFv) specific to a CD19 membrane-distal epitope and characterized by slow association (on) and dissociation (off) rates. We hypothesized that a novel anti-CD19 scFv that engages an alternative CD19 membrane-proximal epitope independent of FMC63 and that is characterized by faster on- and off-rates could mitigate CART19 failure and improve clinical efficacy. METHODS: We developed an autologous CART19 product with 4-1BB co-stimulation using a novel humanized chicken antibody (h1218). This antibody is specific to a membrane-proximal CD19 epitope and harbors faster on/off rates compared to FMC63. We tested h1218-CART19 in vitro and in vivo using FMC63-CART19-resistant models. We conducted a first-in-human multi-center phase I clinical trial to test AT101 (clinical-grade h1218-CART19) in patients with relapsed or refractory (r/r) NHL. RESULTS: Preclinically, h1218- but not FMC63-CART19 were able to effectively eradicate lymphomas expressing CD19 point mutations (L174V and R163L) or co-expressing FMC63-CAR19 as found in patients relapsing after FMC63-CART19. Furthermore, h1218-CART19 exhibited enhanced killing of B-cell malignancies in vitro and in vivo compared with FMC63-CART19. Mechanistically, we found that h1218-CART19 had reduced activation-induced cell death (AICD) and enhanced expansion compared to FMC63-CART19 owing to faster on- and off-rates. Based on these preclinical results, we performed a phase I dose-escalation trial, testing three dose levels (DL) of AT101 (the GMP version of h1218) using a 3 + 3 design. In 12 treated patients (7 DLBCL, 3 FL, 1 MCL, and 1 MZL), AT101 showed a promising safety profile with 8.3% grade 3 CRS (n = 1) and 8.3% grade 4 ICANS (n = 1). In the whole cohort, the overall response rate was 91.7%, with a complete response rate of 75.0%, which improved to 100% in DL-2 and -3. AT101 expansion correlates with CR and B-cell aplasia. CONCLUSIONS: We developed a novel, safe, and potent CART19 product that recognizes a membrane-proximal domain of CD19 with fast on- and off-rates and showed significant efficacy and promising safety in patients with relapsed B-cell NHL. TRIAL REGISTRATION: NCT05338931; Date: 2022-04-01.


Assuntos
Linfoma não Hodgkin , Receptores de Antígenos de Linfócitos T , Receptores de Antígenos Quiméricos , Humanos , Anticorpos , Antígenos CD19 , Epitopos/metabolismo , Imunoterapia Adotiva/efeitos adversos , Linfoma não Hodgkin/terapia , Linfoma não Hodgkin/metabolismo , Recidiva Local de Neoplasia/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos de Linfócitos T/antagonistas & inibidores
5.
J Immunother Cancer ; 11(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37055217

RESUMO

Immunotherapy has revolutionized the treatment of cancer. In particular, immune checkpoint blockade, bispecific antibodies, and adoptive T-cell transfer have yielded unprecedented clinical results in hematological malignancies and solid cancers. While T cell-based immunotherapies have multiple mechanisms of action, their ultimate goal is achieving apoptosis of cancer cells. Unsurprisingly, apoptosis evasion is a key feature of cancer biology. Therefore, enhancing cancer cells' sensitivity to apoptosis represents a key strategy to improve clinical outcomes in cancer immunotherapy. Indeed, cancer cells are characterized by several intrinsic mechanisms to resist apoptosis, in addition to features to promote apoptosis in T cells and evade therapy. However, apoptosis is double-faced: when it occurs in T cells, it represents a critical mechanism of failure for immunotherapies. This review will summarize the recent efforts to enhance T cell-based immunotherapies by increasing apoptosis susceptibility in cancer cells and discuss the role of apoptosis in modulating the survival of cytotoxic T lymphocytes in the tumor microenvironment and potential strategies to overcome this issue.


Assuntos
Imunoterapia , Neoplasias , Humanos , Imunoterapia/métodos , Neoplasias/terapia , Imunoterapia Adotiva/métodos , Linfócitos T Citotóxicos , Apoptose , Microambiente Tumoral
6.
Mol Ther ; 31(3): 686-700, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36641624

RESUMO

Several studies have shown the influence of commensal microbes on T cell function, specifically in the setting of checkpoint immunotherapy for cancer. In this study, we investigated how vancomycin-induced gut microbiota dysbiosis affects chimeric antigen receptor (CAR) T immunotherapy using multiple preclinical models as well as clinical correlates. In two murine tumor models, hematopoietic CD19+-A20 lymphoma and CD19+-B16 melanoma, mice receiving vancomycin in combination with CD19-directed CAR T cell (CART-19) therapy displayed increased tumor control and tumor-associated antigens (TAAs) cross-presentation compared with CART-19 alone. Fecal microbiota transplant from human healthy donors to pre-conditioned mice recapitulated the results obtained in naive gut microbiota mice. Last, B cell acute lymphoblastic leukemia patients treated with CART-19 and exposed to oral vancomycin showed higher CART-19 peak expansion compared with unexposed patients. These results substantiate the role of the gut microbiota on CAR T cell therapy and suggest that modulation of the gut microbiota using vancomycin may improve outcomes after CAR T cell therapy across tumor types.


Assuntos
Microbioma Gastrointestinal , Receptores de Antígenos Quiméricos , Humanos , Camundongos , Animais , Receptores de Antígenos de Linfócitos T/genética , Apresentação Cruzada , Vancomicina/farmacologia , Imunoterapia , Linfócitos T , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/genética , Antígenos CD19
7.
Environ Pollut ; 313: 120138, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36089142

RESUMO

The adsorption of radioactive iodine, which is capable of presenting high mobility in aquatic ecosystems and generating undesirable health effects in humans (e.g., thyroid gland dysfunction), was comprehensively examined using pristine spent coffee ground biochar (SCGB) and bismuth-impregnated spent coffee ground biochar (Bi@SCGB) to provide valuable insights into the variations in the adsorption capacity and mechanisms after pretreatment with Bi(NO3)3. The greater adsorption of radioactive iodine toward Bi@SCGB (adsorption capacity (Qe) = 253.71 µg/g) compared to that for SCGB (Qe = 23.32 µg/g) and its reduced adsorption capability at higher pH values provide evidence that the adsorption of radioactive iodine with SCGB and Bi@SCGB is strongly influenced by the presence of bismuth materials and the electrostatic repulsion between their negatively charged surfaces and negatively charged radioactive iodine (IO3-). The calculated R2 values for the adsorption kinetics and isotherms support that chemisorption plays a crucial role in the adsorption of radioactive iodine by SCGB and Bi@SCGB in aqueous phases. The adsorption of radioactive iodine onto SCGB was linearly correlated with the contact time (h1/2), and the diffusion of intra-particle predominantly determined the adsorption rate of radioactive iodine onto Bi@SCGB (Cstage II (129.20) > Cstage I (42.33)). Thermodynamic studies revealed that the adsorption of radioactive iodine toward SCGB (ΔG° = -8.47 to -7.83 kJ/mol; ΔH° = -13.93 kJ/mol) occurred exothermically and that for Bi@SCGB (ΔG° = -15.90 to -13.89 kJ/mol; ΔH° = 5.88 kJ/mol) proceeded endothermically and spontaneously. The X-ray photoelectron spectroscopy (XPS) analysis of SCGB and Bi@SCGB before and after the adsorption of radioactive iodine suggest the conclusion that the change in the primary adsorption mechanism from electrostatic attraction to surface precipitation upon the impregnation of bismuth materials on the surfaces of spent coffee ground biochars is beneficial for the adsorption of radioactive iodine in aqueous phases.


Assuntos
Neoplasias da Glândula Tireoide , Poluentes Químicos da Água , Adsorção , Bismuto , Carvão Vegetal/química , Café/química , Ecossistema , Humanos , Radioisótopos do Iodo , Cinética , Água/química , Poluentes Químicos da Água/análise
8.
Cancer Discov ; 12(10): 2372-2391, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35904479

RESUMO

Chimeric antigen receptor T-cell (CART) immunotherapy led to unprecedented responses in patients with refractory/relapsed B-cell non-Hodgkin lymphoma (NHL); nevertheless, two thirds of patients experience treatment failure. Resistance to apoptosis is a key feature of cancer cells, and it is associated with treatment failure. In 87 patients with NHL treated with anti-CD19 CART, we found that chromosomal alteration of B-cell lymphoma 2 (BCL-2), a critical antiapoptotic regulator, in lymphoma cells was associated with reduced survival. Therefore, we combined CART19 with the FDA-approved BCL-2 inhibitor venetoclax and demonstrated in vivo synergy in venetoclax-sensitive NHL. However, higher venetoclax doses needed for venetoclax-resistant lymphomas resulted in CART toxicity. To overcome this limitation, we developed venetoclax-resistant CART by overexpressing mutated BCL-2(F104L), which is not recognized by venetoclax. Notably, BCL-2(F104L)-CART19 synergized with venetoclax in multiple lymphoma xenograft models. Furthermore, we uncovered that BCL-2 overexpression in T cells intrinsically enhanced CART antitumor activity in preclinical models and in patients by prolonging CART persistence. SIGNIFICANCE: This study highlights the role of BCL-2 in resistance to CART immunotherapy for cancer and introduces a novel concept for combination therapies-the engineering of CART cells to make them resistant to proapoptotic small molecules, thereby enhancing the therapeutic index of these combination therapies. This article is highlighted in the In This Issue feature, p. 2221.


Assuntos
Linfoma de Células B , Linfoma , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores de Antígenos Quiméricos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Humanos , Imunoterapia , Imunoterapia Adotiva/métodos , Linfoma/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Receptores de Antígenos de Linfócitos T , Sulfonamidas , Linfócitos T
9.
Front Immunol ; 13: 816761, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250995

RESUMO

Although CAR T cell therapies have proven to be effective in treating hematopoietic cancers, their abilities to regress solid tumors have been less encouraging. Mechanisms to explain these disparities have focused primarily on differences in cancer cell heterogeneity, barriers to CAR T cell penetration of solid tumors, and immunosuppressive microenvironments. To evaluate the contributions of immunosuppressive tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) on CAR T cell efficacies, we have exploited the ability of a folate-targeted Toll-like receptor 7 agonist (FA-TLR7-1A) to specifically reactivate TAMs and MDSCs from an immunosuppressive to pro-inflammatory phenotype without altering the properties of other immune cells. We report here that FA-TLR7-1A significantly augments standard CAR T cell therapies of 4T1 solid tumors in immune competent mice. We further show that co-administration of the FA-TLR7-1A with the CAR T cell therapy not only repolarizes TAMs and MDSCs from an M2-like anti-inflammatory to M1-like pro-inflammatory phenotype, but also enhances both CAR T cell and endogenous T cell accumulation in solid tumors while concurrently increasing their states of activation. Because analogous myeloid cells in healthy tissues ar not altered by administration of FA-TLR7-1A, no systemic activation of the immune system nor accompanying weight loss is observed. These data argue that immunosuppressive myeloid cells contribute prominently to the failure of CAR T cells to eradicate solid tumors and suggest that methods to reprogram tumor associated myeloid cells to a more inflammatory phenotype could significantly augment the potencies of CAR T cell therapies.


Assuntos
Células Supressoras Mieloides , Neoplasias , Animais , Imunoterapia Adotiva , Camundongos , Células Mieloides , Receptor 7 Toll-Like , Microambiente Tumoral
10.
J Cardiovasc Pharmacol ; 79(6): 808-814, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35170491

RESUMO

ABSTRACT: The use of amiodarone for postoperative atrial fibrillation (AF) is widespread; however, there is a paucity of data on the optimal duration of overlap when transitioning from intravenous (IV) to oral amiodarone. The objective of this study was to evaluate the safety and efficacy of varying durations of overlap when amiodarone IV infusion is transitioned to oral administration in cardiothoracic surgery patients. This retrospective, observational, single-center study included cardiothoracic surgery patients who were initiated on IV amiodarone for supraventricular arrhythmia and subsequently transitioned to oral amiodarone. The primary outcome was AF recurrence within 24 hours after IV amiodarone discontinuation. Safety outcomes include occurrence of bradycardia or hypotension while on amiodarone. A total of 184 patients were included for analysis. AF recurrence occurred in 24.5% of patients (n = 45). No significant association was found between various overlap durations and AF recurrence (odds ratio (OR) 1.00, 95% CI 1.00-1.01, P = 0.9). In addition, no significant association was found between duration of overlap and rates of bradycardia (OR 1.00, 95% confidence interval (CI) 0.99-1.00, P = 0.08) or hypotension (OR 1.00, 95% CI 0.99-1.00, P = 0.21), which occurred in 35.9% and 47.3% of patients, respectively. Our study suggests following conversion to normal sinus rhythm; cardiothoracic surgery patients can effectively and safely be transitioned from IV to oral amiodarone without the need for specific overlap duration or transition strategy.


Assuntos
Amiodarona , Fibrilação Atrial , Hipotensão , Administração Oral , Amiodarona/efeitos adversos , Antiarrítmicos , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/tratamento farmacológico , Bradicardia/induzido quimicamente , Bradicardia/diagnóstico , Humanos , Recidiva , Estudos Retrospectivos , Resultado do Tratamento
11.
Nat Med ; 27(5): 842-850, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33888899

RESUMO

While CD19-directed chimeric antigen receptor (CAR) T cells can induce remission in patients with B cell acute lymphoblastic leukemia (ALL), a large subset relapse with CD19- disease. Like CD19, CD22 is broadly expressed by B-lineage cells and thus serves as an alternative immunotherapy target in ALL. Here we present the composite outcomes of two pilot clinical trials ( NCT02588456 and NCT02650414 ) of T cells bearing a 4-1BB-based, CD22-targeting CAR in patients with relapsed or refractory ALL. The primary end point of these studies was to assess safety, and the secondary end point was antileukemic efficacy. We observed unexpectedly low response rates, prompting us to perform detailed interrogation of the responsible CAR biology. We found that shortening of the amino acid linker connecting the variable heavy and light chains of the CAR antigen-binding domain drove receptor homodimerization and antigen-independent signaling. In contrast to CD28-based CARs, autonomously signaling 4-1BB-based CARs demonstrated enhanced immune synapse formation, activation of pro-inflammatory genes and superior effector function. We validated this association between autonomous signaling and enhanced function in several CAR constructs and, on the basis of these observations, designed a new short-linker CD22 single-chain variable fragment for clinical evaluation. Our findings both suggest that tonic 4-1BB-based signaling is beneficial to CAR function and demonstrate the utility of bedside-to-bench-to-bedside translation in the design and implementation of CAR T cell therapies.


Assuntos
Ligante 4-1BB/metabolismo , Imunoterapia Adotiva/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos Quiméricos/metabolismo , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Linfócitos T/transplante , Adulto , Animais , Antígenos CD19/metabolismo , Linfócitos B/imunologia , Antígenos CD28/genética , Células Cultivadas , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Linfócitos T/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
12.
J Exp Med ; 218(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33601414

RESUMO

Immunotherapies such as immune checkpoint blockade and adoptive cell transfer have revolutionized cancer treatment, but further progress is hindered by our limited understanding of tumor resistance mechanisms. Emerging technologies now enable the study of tumors at the single-cell level, providing unprecedented high-resolution insights into the genetic makeup of the tumor microenvironment and immune system that bulk genomics cannot fully capture. Here, we highlight the recent key findings of the use of single-cell RNA sequencing to deconvolute heterogeneous tumors and immune populations during immunotherapy. Single-cell RNA sequencing has identified new crucial factors and cellular subpopulations that either promote tumor progression or leave tumors vulnerable to immunotherapy. We anticipate that the strategic use of single-cell analytics will promote the development of the next generation of successful, rationally designed immunotherapeutics.


Assuntos
Imunoterapia , Neoplasias/terapia , RNA-Seq , Análise de Célula Única , Humanos , Neoplasias/imunologia
13.
Environ Res ; 188: 109746, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32540570

RESUMO

This study investigated effects of the thermal hydrolysis pre-treatment on mechanical deep dewaterability of dewatered sludge to extend understanding of dewatering characteristics of thermally hydrolyzed sludge. Floc sizes of dewatered sludge were gradually reduced during the thermal hydrolysis pre-treatment at 170 °C and 185 °C with increasing retention time whereas longer retention time (>60 min) increased floc sizes of thermally hydrolyzed sludges at 200 °C due to formation of undesired refractory organic materials (ROMs), which might hinder the disintegration of dewatered sludge flocs. Similar trends were found for thermal hydrolytic solubilization of dewatered sludge. This demonstrated that the efficiency of the thermal hydrolysis pre-treatment at a higher temperature (200 °C) with longer retention time (≥60 min) could be strongly influenced by the formation of ROMs associated with changes of solid fractions and some free amino acids (i.e., ß-aminobutyric acid, 4-hydroxyproline, and cysteine). Since the trade-off between the degradation of dewatered sludge and the formation of ROMs determined mechanical deep dewaterability of thermally hydrolyzed sludge, the lowest residual weight and moisture content were observed for thermally hydrolyzed sludges at 200 °C with retention time range of 60 min (residual weight = 0.165; moisture content = 55.38%) to 90 min (residual weight = 0.160; moisture content = 59.87%). These observations were intimately correlated to variations of extracellular polymeric substances during the thermal hydrolysis pre-treatment, but not in accordance with the change pattern of capillary suction time (CST) values. This is evident that the CST value was inadequate to estimate mechanical deep dewaterability of thermally hydrolyzed sludge.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Temperatura Alta , Hidrólise , Temperatura , Água
14.
Cancer Discov ; 10(4): 552-567, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32001516

RESUMO

Primary resistance to CD19-directed chimeric antigen receptor T-cell therapy (CART19) occurs in 10% to 20% of patients with acute lymphoblastic leukemia (ALL); however, the mechanisms of this resistance remain elusive. Using a genome-wide loss-of-function screen, we identified that impaired death receptor signaling in ALL led to rapidly progressive disease despite CART19 treatment. This was mediated by an inherent resistance to T-cell cytotoxicity that permitted antigen persistence and was subsequently magnified by the induction of CAR T-cell functional impairment. These findings were validated using samples from two CAR T-cell clinical trials in ALL, where we found that reduced expression of death receptor genes was associated with worse overall survival and reduced T-cell fitness. Our findings suggest that inherent dysregulation of death receptor signaling in ALL directly leads to CAR T-cell failure by impairing T-cell cytotoxicity and promoting progressive CAR T-cell dysfunction. SIGNIFICANCE: Resistance to CART19 is a significant barrier to efficacy in the treatment of B-cell malignancies. This work demonstrates that impaired death receptor signaling in tumor cells causes failed CART19 cytotoxicity and drives CART19 dysfunction, identifying a novel mechanism of antigen-independent resistance to CAR therapy.See related commentary by Green and Neelapu, p. 492.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Morte Celular/metabolismo , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Transdução de Sinais
15.
Nat Commun ; 10(1): 2681, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31213606

RESUMO

Although chimeric antigen receptor (CAR) T cell therapies have demonstrated considerable success in treating hematologic malignancies, they have simultaneously been plagued by a cytokine release syndrome (CRS) that can harm or even kill the cancer patient. We describe a CAR T cell strategy in which CAR T cell activation and cancer cell killing can be sensitively regulated by adjusting the dose of a low molecular weight adapter that must bridge between the CAR T cell and cancer cell to initiate tumor eradication. By controlling the concentration and dosing schedule of adapter administration, we document two methods that can rapidly terminate (<3 h) a pre-existing CRS-like toxicity and two unrelated methods that can pre-emptively prevent a CRS-like toxicity that would have otherwise occurred. Because all four methods concurrently enhance CAR T cell potency, we conclude that proper use of bispecific adapters could potentially avoid a life-threatening CRS while enhancing CAR T cell tumoricidal activity.


Assuntos
Doenças do Sistema Imunitário/prevenção & controle , Imunoterapia Adotiva/efeitos adversos , Neoplasias/terapia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Animais , Engenharia Celular/métodos , Linhagem Celular Tumoral , Citocinas/imunologia , Fluoresceína/metabolismo , Receptores de Folato com Âncoras de GPI/metabolismo , Ácido Fólico/metabolismo , Humanos , Doenças do Sistema Imunitário/etiologia , Imunoterapia Adotiva/métodos , Ativação Linfocitária/imunologia , Camundongos , Neoplasias/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/metabolismo , Síndrome , Linfócitos T/metabolismo , Linfócitos T/transplante , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Cancer Res ; 79(2): 387-396, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30482775

RESUMO

Most solid tumors are comprised of multiple clones that express orthogonal antigens, suggesting that novel strategies must be developed in order to adapt chimeric antigen receptor (CAR) T-cell therapies to treat heterogeneous solid tumors. Here, we utilized a cocktail of low-molecular-weight bispecific adapters, each comprised of fluorescein linked to a different tumor-specific ligand, to bridge between an antifluorescein CAR on the engineered T cell and a unique antigen on the cancer cell. This formation of an immunologic synapse between the CAR T cell and cancer cell enabled use of a single antifluorescein CAR T cell to eradicate a diversity of antigenically different solid tumors implanted concurrently in NSG mice. Based on these data, we suggest that a carefully designed cocktail of bispecific adapters in combination with antifluorescein CAR T cells can overcome tumor antigen escape mechanisms that lead to disease recurrence following many CAR T-cell therapies. SIGNIFICANCE: A cocktail of tumor-targeted bispecific adapters greatly augments CAR T-cell therapies against heterogeneous tumors, highlighting its potential for broader applicability against cancers where standard CAR T-cell therapy has failed.


Assuntos
Neoplasias da Mama/imunologia , Neoplasias da Mama/terapia , Imunoterapia Adotiva/métodos , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/imunologia , Animais , Antígenos de Neoplasias/imunologia , Engenharia Celular/métodos , Linhagem Celular Tumoral , Epitopos , Feminino , Células HEK293 , Humanos , Camundongos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Linfócitos T/imunologia , Linfócitos T/transplante , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Invest Dermatol ; 138(1): 179-188, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28864076

RESUMO

Fibroblast growth factor-binding protein 1 (FGFBP1) is a secreted chaperone that mobilizes paracrine-acting FGFs, stored in the extracellular matrix, and presents them to their cognate receptors. FGFBP1 enhances FGF signaling including angiogenesis during cancer progression and is upregulated in various cancers. Here we evaluated the contribution of endogenous FGFBP1 to a wide range of organ functions as well as to skin pathologies using Fgfbp1-knockout mice. Relative to wild-type littermates, knockout mice showed no gross pathologies. Still, in knockout mice a significant thickening of the epidermis associated with a decreased transepidermal water loss and increased proinflammatory gene expression in the skin was detected. Also, skin carcinogen challenge by 7,12-dimethylbenz[a]anthracene/12-O-tetradecanoyl-phorbol-13-acetate resulted in delayed and reduced papillomatosis in knockout mice. This was paralleled by delayed healing of skin wounds and reduced angiogenic sprouting in subcutaneous matrigel plugs. Heterozygous green fluorescent protein (GFP)-knock-in mice revealed rapid induction of gene expression during papilloma induction and during wound healing. Examination of wild-type skin grafted onto Fgfbp1 GFP-knock-in reporter hosts and bone marrow transplants from the GFP-reporter model into wild-type hosts revealed that circulating Fgfbp1-expressing cells migrate into healing wounds. We conclude that tissue-resident and circulating Fgfbp1-expressing cells modulate skin carcinogenesis and inflammation.


Assuntos
Carcinogênese/patologia , Proteínas de Transporte/metabolismo , Inflamação/patologia , Papiloma/patologia , Neoplasias Cutâneas/patologia , Animais , Medula Óssea/metabolismo , Transplante de Medula Óssea , Carcinógenos/toxicidade , Proteínas de Transporte/genética , Feminino , Humanos , Inflamação/genética , Peptídeos e Proteínas de Sinalização Intercelular , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias Experimentais/induzido quimicamente , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Papiloma/induzido quimicamente , Papiloma/genética , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/patologia , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/genética , Acetato de Tetradecanoilforbol/toxicidade , Regulação para Cima , Perda Insensível de Água , Cicatrização/fisiologia
18.
Biomed Opt Express ; 4(9): 1533-47, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24049675

RESUMO

In this paper, we demonstrate a new single-cell optoporation and transfection technique using a femtosecond Gaussian laser beam and optical tweezers. Tightly focused near-infrared (NIR) femtosecond laser pulse was employed to transiently perforate the cellular membrane at a single point in MCF-7 cancer cells. A distinct technique was developed by trapping the microparticle using optical tweezers to focus the femtosecond laser precisely on the cell membrane to puncture it. Subsequently, an external gene was introduced in the cell by trapping and inserting the same plasmid-coated microparticle into the optoporated cell using optical tweezers. Various experimental parameters such as femtosecond laser exposure power, exposure time, puncture hole size, exact focusing of the femtosecond laser on the cell membrane, and cell healing time were closely analyzed to create the optimal conditions for cell viability. Following the insertion of plasmid-coated microparticles in the cell, the targeted cells exhibited green fluorescent protein (GFP) under the fluorescent microscope, hence confirming successful transfection into the cell. This new optoporation and transfection technique maximizes the level of selectivity and control over the targeted cell, and this may be a breakthrough method through which to induce controllable genetic changes in the cell.

19.
Korean J Intern Med ; 25(1): 105-9, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20195412

RESUMO

The common causes of rhabdomyolysis include trauma, hypoxia, drugs, toxins, infections and hyperthermia. Operative insults, including direct trauma and ischemia, have the potential to cause the development of rhabdomyolysis. Pneumatic tourniquets used during arthroscopic knee surgery to prevent blood loss have led to many complications such as nerve paralysis and vascular injuries. Rhabdomyolysis can also be caused by prolonged pneumatic tourniquet application without a midapplication release, and also from an increased application pressure, but the actual incidence of this is low. In order to prevent rhabdomyolysis, the clinicians must be aware of such risks and follow strict guidelines for the application time, the midapplication release and also the inflation pressure. Vigorous hydration and postoperative patient surveillance are helpful to prevent rhabdomyolysis. We have recently experienced a case of rhabdomyolysis after the arthroscopic knee surgery, and the rhabdomyolysis could have been associated with the use of a pneumatic tourniquet.


Assuntos
Artroscopia , Articulação do Joelho/cirurgia , Rabdomiólise/etiologia , Torniquetes/efeitos adversos , Adulto , Ligamento Cruzado Anterior/cirurgia , Lesões do Ligamento Cruzado Anterior , Artroscopia/estatística & dados numéricos , Humanos , Masculino , Complicações Pós-Operatórias/diagnóstico por imagem , Complicações Pós-Operatórias/etiologia , Cintilografia , Insuficiência Renal/diagnóstico por imagem , Insuficiência Renal/etiologia , Rabdomiólise/diagnóstico por imagem , Ultrassonografia
20.
Opt Express ; 16(26): 21170-83, 2008 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-19104546

RESUMO

In this paper, a simplified mathematical ray-optics model for an oil immersion objective lens, considering Abbe's sine condition, is presented. Based on the given parameters of the objective lens, the proposed model utilizes an approach based on a paraxial thin lens formulation. This is done to simplify the complexity of the objective lens by avoiding the consideration of many lens elements inside a single objective lens. To demonstrate the performance of the proposed model, comparisons with exact ray tracing method, based on the specification of real objective lens, are presented in terms of several different criteria including the variation of shape of the light cone, the extent of vignetting and the focus displacement. From the exemplary simulations, it was demonstrated that the proposed model can describe the focusing of light through the objective lens precisely, even when the incident beam rotates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA