Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Rev ; 120(23): 12903-12993, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33050699

RESUMO

Bioelectrocatalysis is an interdisciplinary research field combining biocatalysis and electrocatalysis via the utilization of materials derived from biological systems as catalysts to catalyze the redox reactions occurring at an electrode. Bioelectrocatalysis synergistically couples the merits of both biocatalysis and electrocatalysis. The advantages of biocatalysis include high activity, high selectivity, wide substrate scope, and mild reaction conditions. The advantages of electrocatalysis include the possible utilization of renewable electricity as an electron source and high energy conversion efficiency. These properties are integrated to achieve selective biosensing, efficient energy conversion, and the production of diverse products. This review seeks to systematically and comprehensively detail the fundamentals, analyze the existing problems, summarize the development status and applications, and look toward the future development directions of bioelectrocatalysis. First, the structure, function, and modification of bioelectrocatalysts are discussed. Second, the essentials of bioelectrocatalytic systems, including electron transfer mechanisms, electrode materials, and reaction medium, are described. Third, the application of bioelectrocatalysis in the fields of biosensors, fuel cells, solar cells, catalytic mechanism studies, and bioelectrosyntheses of high-value chemicals are systematically summarized. Finally, future developments and a perspective on bioelectrocatalysis are suggested.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Catálise , Eletrodos , Oxirredução
2.
Biosens Bioelectron ; 165: 112427, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32729543

RESUMO

In the present work, direct electron transfer (DET) based biosensing system for the determination of glucose has been fabricated by utilizing gold binding peptide (GBP) fused flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH) from Burkholderia cepacia. The GBP fused FAD-GDH was immobilized on the working electrode surface of screen-printed electrode (SPE) which consists of gold working electrode, a silver pseudo-reference electrode and a platinum counter electrode, to develop the biosensing system with compact design and favorable sensing ability. The bioelectrochemical and mechanical properties of GBP fused FAD-GDH (GDH-GBP) immobilized SPE (GDH-GBP/Au) were investigated. Here, the binding affinity of GDH-GBP on Au surface, was highly increased after fusion of gold binding peptide and its uniform monolayer was formed on Au surface. In the cyclic voltammetry (CV), GDH-GBP/Au displayed significantly high oxidative peak currents corresponding to glucose oxidation which is almost c.a. 10-fold enhanced value compared with that from native GDH immobilized SPE (GDH/Au). As well, GDH-GBP/Au has shown 92.37% of current retention after successive potential scans. In the chronoamperometry, its steady-state catalytic current was monitored in various conditions. The dynamic range of GDH-GBP/Au was shown to be 3-30 mM at 30 °C and exhibits high selectivity toward glucose in whole human blood. Additionally, temperature dependency of GDH-GBP/Au on DET capability was also investigated at 30-70 °C. Considering this efficient and stable glucose sensing with simple and easy sensor fabrication, GDH-GBP based sensing platform can provide new insight for future biosensor in research fields that rely on DET.


Assuntos
Técnicas Biossensoriais , Glucose 1-Desidrogenase , Eletrodos , Transporte de Elétrons , Flavina-Adenina Dinucleotídeo/metabolismo , Glucose , Glucose 1-Desidrogenase/genética , Glucose 1-Desidrogenase/metabolismo , Ouro , Humanos , Peptídeos
3.
ACS Appl Mater Interfaces ; 10(34): 28615-28626, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30067023

RESUMO

Direct electron transfer (DET) between enzymes and electrodes is a key issue for practical use of bioelectrocatalytic devices as a bioenergy process, such as enzymatic electrosynthesis, biosensors, and enzyme biofuel cells. To date, based on the DET of bioelectrocatalysis, less than 1% of the calculated theoretical current was transferred to final electron acceptor due to energy loss at enzyme-electrode interface. This study describes the design and construction of a synthetic glucose dehydrogenase (GDH; α and γ subunits) combined with a gold-binding peptide at its amino or carboxy terminus for direct contact between enzyme and electrode. The fused gold-binding peptide facilitated stable immobilization of GDH and constructed uniform monolayer of GDH onto a Au electrode. Depending on the fused site of binding peptide to the enzyme complex, nine combinations of recombinant GDH proteins on the electrode show significantly different direct electron-transfer efficiency across the enzyme-electrode interface. The fusion of site-specific binding peptide to the catalytic subunit (α subunit, carboxy terminus) of the enzyme complex enabled apparent direct electron transfer (DET) across the enzyme-electrode interface even in the absence of the electron-transfer subunit (i.e., ß subunit having cytochrome domain). The catalytic glucose oxidation current at an onset potential of ca. (-)0.46 V vs Ag/AgCl was associated with the appearance of an flavin adenine dinucleotide (FAD)/FADH2 redox wave and a stabilized bioelectrocatalytic current of more than 100 µA, determined from chronoamperometric analysis. Electron recovery was 7.64%, and the catalytic current generation was 249 µA per GDH enzyme loading unit (U), several orders of magnitude higher than the values reported previously. These observations corroborated that the last electron donor facing to electrode was controlled to be in close proximity without electron-transfer intermediates and the native affinity for glucose was preserved. The design and construction of the site-specific "sticky-ended" proteins without loss of catalytic activity could be applied to other redox enzymes having a buried active site.


Assuntos
Eletrodos , Técnicas Biossensoriais , Transporte de Elétrons , Elétrons , Enzimas Imobilizadas , Glucose , Glucose 1-Desidrogenase , Ouro , Peptídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA