Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Cell Rep ; 43(3): 113912, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38446659

RESUMO

In this study, we explore the dynamic process of colorectal cancer progression, emphasizing the evolution toward a more metastatic phenotype. The term "evolution" as used in this study specifically denotes the phenotypic transition toward a higher metastatic potency from well-formed glandular structures to collective invasion, ultimately resulting in the development of cancer cell buddings at the invasive front. Our findings highlight the spatial correlation of this evolution with tumor cell senescence, revealing distinct types of senescent tumor cells (types I and II) that play different roles in the overall cancer progression. Type I senescent tumor cells (p16INK4A+/CXCL12+/LAMC2-/MMP7-) are identified in the collective invasion region, whereas type II senescent tumor cells (p16INK4A+/CXCL12+/LAMC2+/MMP7+), representing the final evolved form, are prominently located in the partial-EMT region. Importantly, type II senescent tumor cells associate with local invasion and lymph node metastasis in colorectal cancer, potentially affecting patient prognosis.


Assuntos
Neoplasias Colorretais , Metaloproteinase 7 da Matriz , Humanos , Metaloproteinase 7 da Matriz/genética , Senescência Celular/genética , Fenótipo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia
2.
Nat Commun ; 14(1): 7619, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993434

RESUMO

The biological process of aging is thought to result in part from accumulation of senescent cells in organs. However, the present study identified a subset of fibroblasts and smooth muscle cells which are the major constituents of organ stroma neither proliferative nor senescent in tissues of the elderly, which we termed "mid-old status" cells. Upregulation of pro-inflammatory genes (IL1B and SAA1) and downregulation of anti-inflammatory genes (SLIT2 and CXCL12) were detected in mid-old cells. In the stroma, SAA1 promotes development of the inflammatory microenvironment via upregulation of MMP9, which decreases the stability of epithelial cells present on the basement membrane, decreasing epithelial cell function. Remarkably, the microenvironmental change and the functional decline of mid-old cells could be reversed by a young cell-originated protein, SLIT2. Our data identify functional reversion of mid-old cells as a potential method to prevent or ameliorate aspects of aging-related tissue dysfunction.


Assuntos
Envelhecimento , Senescência Celular , Humanos , Idoso , Senescência Celular/genética , Envelhecimento/genética , Células Epiteliais/fisiologia , Fibroblastos , Miócitos de Músculo Liso
3.
Clin Lab ; 69(3)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36912312

RESUMO

BACKGROUND: We established reference intervals for research parameters of complete blood cell count and examined their usefulness for diagnosing certain diseases. METHODS: Reference intervals for 26 basic and 38 research parameters were established for 3,457 and 1,325 men and 2,742 and 830 women aged 20 - 59 and ≥ 60 years, respectively. Research parameter values for patients with iron deficiency anemia (IDA), appendicitis, sepsis, and myelodysplastic syndromes (MDS) were compared against gender- and age-matched reference values. RESULTS: Seven basic and 10 research parameters among men and one research parameter among women required partitioning by age. No partitioning by gender was required. Further, 67% patients with IDA showed micro red blood cell ratio values above the upper reference limits of their corresponding age and gender subgroups; 3% and 5% patients with appendicitis showed immature granulocyte percentages and counts above the upper reference limits, respectively; 12% - 42% of patients with sepsis showed numerous values exceeded their reference limits, and 67% and 100% patients with MDS showed neutrophil cell complexity and structural dispersion values outside their reference ranges, respectively. CONCLUSIONS: Overall, < 60% of research parameter values were outside their reference ranges among most patients, indicating their limited diagnostic usefulness.


Assuntos
Anemia Ferropriva , Apendicite , Hematologia , Síndromes Mielodisplásicas , Masculino , Humanos , Feminino , Contagem de Células Sanguíneas , Granulócitos , Valores de Referência
4.
Heliyon ; 9(2): e13170, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36785830

RESUMO

Senescent tumor cells are nonproliferating tumor cells which are closely related to cancer progression by secreting senescence-related molecules, called senescence-associated secreting phenotypes. Therefore, the presence of senescent tumor cells is considered a prognostic factor in various cancer types. Although senescence-associated ß-galactosidase staining is considered the best marker for detection of senescent tumor cells, it can only be performed in fresh-frozen tissues. p16INK4A, a cyclin-dependent inhibitor, has been used as an alternative marker to detect senescent tumor cells in formalin-fixed paraffin-embedded tissues. However, other reliable markers to detect senescent tumor cells is still lacking. In the present study, using public single-cell RNA-sequencing data, we found that p15INK4B, a cyclin-dependent kinase inhibitor, is a novel marker for detection of senescent tumor cells. Moreover, p15INK4B expression was positively correlated with that of p16INK4A in colorectal cancer tissues. In in vitro studies, mRNA expression of p15INK4B was increased together with that of p16INK4A in H2O2- and therapy-induced cancer senescence models. However, the mRNA level of p15INK4B did not increase in the oncogene-induced senescence model in primary colonic epithelial cells. In conclusion, p15INK4B is a potential alternative marker for detection of senescent tumor cells together with conventional markers in advanced stages of colorectal cancer.

5.
Cell Death Dis ; 12(11): 1076, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34772924

RESUMO

Deregulated mitochondrial energetics is a metabolic hallmark of cancer cells. However, the causative mechanism of the bioenergetic deregulation is not clear. In this study, we show that somatic copy number alteration (SCNA) of mitoribosomal protein (MRP) genes is a key mechanism of bioenergetic deregulation in hepatocellular carcinoma (HCC). Association analysis between the genomic and transcriptomic profiles of 82 MRPs using The Cancer Genome Atlas-Liver HCC database identified eight key SCNA-dependent MRPs: MRPS31, MRPL10, MRPL21, MRPL15, MRPL13, MRPL55, and DAP3. MRPS31 was the only downregulated MRP harboring a DNA copy number (DCN) loss. MRPS31 loss was associated specifically with the DCN losses of many genes on chromosome 13q. Survival analysis revealed a unique dependency of HCC on the MRPS31 deficiency, showing poor clinical outcome. Subclass prediction analysis using several public classifiers indicated that MRPS31 loss is linked to aggressive HCC phenotypes. By employing hepatoma cell lines with SCNA-dependent MRPS31 expression (JHH5, HepG2, Hep3B, and SNU449), we demonstrated that MRPS31 deficiency is the key mechanism, disturbing the whole mitoribosome assembly. MRPS31 suppression enhanced hepatoma cell invasiveness by augmenting MMP7 and COL1A1 expression. Unlike the action of MMP7 on extracellular matrix destruction, COL1A1 modulated invasiveness via the ZEB1-mediated epithelial-to-mesenchymal transition. Finally, MRPS31 expression further stratified the high COL1A1/DDR1-expressing HCC groups into high and low overall survival, indicating that MRPS31 loss is a promising prognostic marker. SIGNIFICANCE: Our results provide new mechanistic insight for mitochondrial deregulation in HCC and present MRPS31 as a novel biomarker of HCC malignancy.


Assuntos
Autoantígenos/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/genética , Genômica/métodos , Neoplasias Hepáticas/genética , Proteínas Ribossômicas/metabolismo , Carcinoma Hepatocelular/patologia , Humanos , Neoplasias Hepáticas/patologia , Transfecção
6.
Adv Sci (Weinh) ; 8(4): 2002497, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33643790

RESUMO

Cellular senescence can either support or inhibit cancer progression. Here, it is shown that intratumoral infiltration of CD8+ T cells is negatively associated with the proportion of senescent tumor cells in colorectal cancer (CRC). Gene expression analysis reveals increased expression of C-X-C motif chemokine ligand 12 (CXCL12) and colony stimulating factor 1 (CSF1) in senescent tumor cells. Senescent tumor cells inhibit CD8+ T cell infiltration by secreting a high concentration of CXCL12, which induces a loss of CXCR4 in T cells that result in impaired directional migration. CSF1 from senescent tumor cells enhance monocyte differentiation into M2 macrophages, which inhibit CD8+ T cell activation. Neutralization of CXCL12/CSF1 increases the effect of anti-PD1 antibody in allograft tumors. Furthermore, inhibition of CXCL12 from senescent tumor cells enhances T cell infiltration and results in reducing the number and size of tumors in azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced CRC. These findings suggest senescent tumor cells generate a cytokine barrier protecting nonsenescent tumor cells from immune attack and provide a new target for overcoming the immunotherapy resistance of CRC.

7.
Cancers (Basel) ; 12(9)2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32942643

RESUMO

Mitochondrial respiratory defects have been implicated in cancer progression and metastasis, but how they control tumor cell aggressiveness remains unclear. Here, we demonstrate that a mitochondrial respiratory defect induces nuclear factor-erythroid 2 like 1 (NFE2L1) expression at the transcriptional level via reactive oxygen species (ROS)-mediated STAT3 activation. We identified syntaxin 12 (STX12) as an effective downstream target of NFE2L1 by performing cDNA microarray analysis after the overexpression and depletion of NFE2L1 in hepatoma cells. Bioinformatics analysis of The Cancer Genome Atlas Liver Hepatocellular carcinoma (TCGA-LIHC) open database (n = 371) also revealed a significant positive association (r = 0.3, p = 2.49 × 10-9) between NFE2L1 and STX12 expression. We further demonstrated that STX12 is upregulated through the ROS/STAT3/NFE2L1 axis and is a key downstream effector of NFE2L1 in modulating hepatoma cell invasiveness. In addition, gene enrichment analysis of TCGA-LIHC also showed that epithelial-mesenchymal transition (EMT)-related core genes are significantly upregulated in tumors co-expressing NFE2L1 and STX12. The positive association between NFE2L1 and STX12 expression was validated by immunohistochemistry of the hepatocellular carcinoma tissue array. Finally, higher EMT gene enrichment and worse overall survival (p = 0.043) were observed in the NFE2L1 and STX12 co-expression group with mitochondrial defect, as indicated by low NDUFA9 expression. Collectively, our results indicate that NFE2L1 is a key mitochondrial retrograde signaling-mediated primary gene product enhancing hepatoma cell invasiveness via STX12 expression and promoting liver cancer progression.

8.
iScience ; 23(6): 101247, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32629612

RESUMO

Mitochondrial ribosomes (mitoribosomes), the specialized translational machinery for mitochondrial genes, exclusively encode the subunits of the oxidative phosphorylation (OXPHOS) system. Although OXPHOS dysfunctions are associated with hepatic disorders including hepatocellular carcinoma (HCC), their underlying mechanisms remain poorly elucidated. In this study, we aimed to investigate the effects of mitoribosome defects on OXPHOS and HCC progression. By generating a gene signature from HCC transcriptome data, we developed a scoring system, i.e., mitoribosome defect score (MDS), which represents the degree of mitoribosomal defects in cancers. The MDS showed close associations with the clinical outcomes of patients with HCC and with gene functions such as oxidative phosphorylation, cell-cycle activation, and epithelial-mesenchymal transition. By analyzing immune profiles, we observed that mitoribosomal defects are also associated with immunosuppression and evasion. Taken together, our results provide new insights into the roles of mitoribosome defects in HCC progression.

9.
J Biol Chem ; 294(19): 7810-7820, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-30923124

RESUMO

Aerobic glycolysis and mitochondrial dysfunction are key metabolic features of cancer cells, but their interplay during cancer development remains unclear. We previously reported that human hepatoma cells with mitochondrial defects exhibit down-regulated lactate dehydrogenase subunit B (LDHB) expression. Here, using several molecular and biochemical assays and informatics analyses, we investigated how LDHB suppression regulates mitochondrial respiratory activity and contributes to liver cancer progression. We found that transcriptional LDHB down-regulation is an upstream event during suppressed oxidative phosphorylation. We also observed that LDHB knockdown increases inhibitory phosphorylation of pyruvate dehydrogenase (PDH) via lactate-mediated PDH kinase (PDK) activation and thereby attenuates oxidative phosphorylation activity. Interestingly, monocarboxylate transporter 1 was the major lactate transporter in hepatoma cells, and its expression was essential for PDH phosphorylation by modulating intracellular lactate levels. Finally, bioinformatics analysis of the hepatocellular carcinoma cohort from The Cancer Genome Atlas revealed that a low LDHB/LDHA ratio is statistically significantly associated with poor prognostic outcomes. A low ratio was also associated with a significant enrichment in glycolysis genes and negatively correlated with PDK1 and 2 expression, supporting a close link between LDHB suppression and the PDK-PDH axis. These results suggest that LDHB suppression is a key mechanism that enhances glycolysis and is critically involved in the maintenance and propagation of mitochondrial dysfunction via lactate release in liver cancer progression.


Assuntos
Acidose Láctica/enzimologia , Carcinoma Hepatocelular/enzimologia , Regulação para Baixo , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Lactato Desidrogenases/biossíntese , Neoplasias Hepáticas/enzimologia , Mitocôndrias Hepáticas/enzimologia , Proteínas de Neoplasias/sangue , Fosforilação Oxidativa , Acidose Láctica/genética , Acidose Láctica/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Humanos , Lactato Desidrogenases/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Mitocôndrias Hepáticas/genética , Mitocôndrias Hepáticas/patologia , Proteínas de Neoplasias/genética
10.
BMB Rep ; 51(6): 296-301, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29580374

RESUMO

Mitochondrial DNA (mtDNA) mutations are often observed in various cancer types. Although the correlation between mitochondrial dysfunction and cancer malignancy has been demonstrated by several studies, further research is required to elucidate the molecular mechanisms underlying accelerated tumor development and progression due to mitochondrial mutations. We generated an mtDNA-depleted cell line, ρ°, via long-term ethidium bromide treatment to define the molecular mechanisms of tumor malignancy induced by mitochondrial dysfunction. Mitochondrial dysfunction in ρ° cells reduced drug-induced cell death and decreased the expression of pro-apoptotic proteins including p53. The p53 expression was reduced by activation of nuclear factor-κB that depended on elevated levels of free calcium in HCT116/ρ° cells. Overall, these data provide a novel mechanism for tumor development and drug resistance due to mitochondrial dysfunction. [BMB Reports 2018; 51(6): 296-301].


Assuntos
Cálcio/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , NF-kappa B/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/metabolismo , Sinalização do Cálcio , Neoplasias Colorretais/patologia , DNA Mitocondrial/genética , Genes p53 , Células HCT116 , Humanos , Potencial da Membrana Mitocondrial/fisiologia , Transdução de Sinais , Proteína Supressora de Tumor p53/biossíntese , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/fisiologia
11.
J Biol Chem ; 292(49): 20208-20217, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-28978646

RESUMO

Impaired mitochondrial oxidative phosphorylation (OXPHOS) capacity, accompanied by enhanced glycolysis, is a key metabolic feature of cancer cells, but its underlying mechanism remains unclear. Previously, we reported that human hepatoma cells that harbor OXPHOS defects exhibit high tumor cell invasiveness via elevated claudin-1 (CLN1). In the present study, we show that OXPHOS-defective hepatoma cells (SNU354 and SNU423 cell lines) exhibit reduced expression of mitochondrial ribosomal protein L13 (MRPL13), a mitochondrial ribosome (mitoribosome) subunit, suggesting a ribosomal defect. Specific inhibition of mitoribosomal translation by doxycycline, chloramphenicol, or siRNA-mediated MRPL13 knockdown decreased mitochondrial protein expression, reduced oxygen consumption rate, and increased CLN1-mediated tumor cell invasiveness in SNU387 cells, which have active mitochondria. Interestingly, we also found that exogenous lactate treatment suppressed MRPL13 expression and oxygen consumption rate and induced CLN1 expression. A bioinformatic analysis of the open RNA-Seq database from The Cancer Genome Atlas (TCGA) liver hepatocellular carcinoma (LIHC) cohort revealed a significant negative correlation between MRPL13 and CLN1 expression. Moreover, in patients with low MRPL13 expression, two oxidative metabolic indicators, pyruvate dehydrogenase B expression and the ratio of lactate dehydrogenase type B to type A, significantly and negatively correlated with CLN1 expression, indicating that the combination of elevated glycolysis and deficient MRPL13 activity was closely linked to CLN1-mediated tumor activity in LIHC. These results suggest that OXPHOS defects may be initiated and propagated by lactate-mediated mitoribosomal deficiencies and that these deficiencies are critically involved in LIHC development.


Assuntos
Carcinoma Hepatocelular/patologia , Ácido Láctico/farmacologia , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Neoplasias/metabolismo , Fosforilação Oxidativa , Proteínas Ribossômicas/metabolismo , Tioléster Hidrolases/metabolismo , Carcinoma Hepatocelular/ultraestrutura , Linhagem Celular Tumoral , Humanos , Invasividade Neoplásica , Fosforilação Oxidativa/efeitos dos fármacos , Consumo de Oxigênio , Ribossomos/efeitos dos fármacos , Ribossomos/patologia
12.
Vasc Specialist Int ; 32(4): 166-174, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28042556

RESUMO

PURPOSE: Deep venous thrombosis (DVT) and pulmonary embolism (PE) are considered as similar disease entities representing different clinical manifestations. The objectives of this study were: 1) to determine the prevalence and outcome of DVT in patients with PE; 2) to identify additional risk factors for PE-related unfavorable outcome and 30-day all-cause mortality; and 3) to establish the clinical importance of screening for concomitant DVT. MATERIALS AND METHODS: From January 2013 to December 2015, a total of 141 patients with confirmed PE were evaluated. The prevalence and outcome of DVT in patients with PE was determined. Furthermore, the potential risk factors for PE-related unfavorable outcome and 30-day all-cause mortality were also analyzed. RESULTS: The prevalence of concomitant DVT was 45.4%. PE-related unfavorable outcome was observed in 21.9% of all concomitant DVT, with all-cause mortality of 21.9%. There was no significant relationship between the presence of concomitant DVT and the development of PE-related unfavorable outcome or all-cause mortality. Our results indicated that heart rate >100/min and peripheral oxygen saturation <90% were independent predictors for PE-related unfavorable outcome. Regarding all-cause mortality, active malignancy and hypotension or shock were significant risk factors. CONCLUSION: Our findings demonstrate that approximately half of patients with PE possess DVT. However, this study failed to establish any clinical significance of concomitant DVT for PE-related unfavorable outcome and all-cause mortality. Tachycardia and hypoxemia were identified as significant predictors for PE-related unfavorable outcome along with active malignancy and hypotension or shock as significant risk factors of all-cause mortality.

13.
BMB Rep ; 48(11): 597-8, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26350749

RESUMO

Mitochondrial respiratory defect is a key bioenergetics feature of hepatocellular carcinoma (HCC) cells. However, their involvement and roles in HCC development and progression remain unclear. Recently, we identified 10 common mitochondrial defect (CMD) signature genes that may be induced by retrograde signaling-mediated transcriptional reprogramming in response to HCC mitochondrial defects. HCC patients with enriched expression of these genes had poor prognostic outcomes, such as shorter periods of overall survival and recurrence-free survival. Nuclear protein 1 (NUPR1), a key transcription regulator, was up-regulated by Ca++-mediated retrograde signaling. NUPR1-centric network analysis and a biochemical promoter-binding assay demonstrated that granulin (GRN) is a key downstream effector of NUPR1 for the regulation of HCC cell invasiveness; association analysis of the NUPR1-GRN pathway supported this conclusion. Mitochondrial respiratory defects and retrograde signaling thus play pivotal roles in HCC progression, highlighting the potential of the NUPR1-GRN axis as a novel diagnostic marker and therapeutic target for HCC.


Assuntos
Neoplasias Hepáticas/genética , Mitocôndrias Hepáticas/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias Hepáticas/metabolismo , Mitocôndrias Hepáticas/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Prognóstico , Progranulinas , Transdução de Sinais , Transcriptoma
14.
Hepatology ; 62(4): 1174-89, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26173068

RESUMO

UNLABELLED: Many cancer cells require more glycolytic adenosine triphosphate production due to a mitochondrial respiratory defect. However, the roles of mitochondrial defects in cancer development and progression remain unclear. To address the role of transcriptomic regulation by mitochondrial defects in liver cancer cells, we performed gene expression profiling for three different cell models of mitochondrial defects: cells with chemical respiratory inhibition (rotenone, thenoyltrifluoroacetone, antimycin A, and oligomycin), cells with mitochondrial DNA depletion (Rho0), and liver cancer cells harboring mitochondrial defects (SNU354 and SNU423). By comparing gene expression in the three models, we identified 10 common mitochondrial defect-related genes that may be responsible for retrograde signaling from cancer cell mitochondria to the intracellular transcriptome. The concomitant expression of the 10 common mitochondrial defect genes is significantly associated with poor prognostic outcomes in liver cancers, suggesting their functional and clinical relevance. Among the common mitochondrial defect genes, we found that nuclear protein 1 (NUPR1) is one of the key transcription regulators. Knockdown of NUPR1 suppressed liver cancer cell invasion, which was mediated in a Ca(2+) signaling-dependent manner. In addition, by performing an NUPR1-centric network analysis and promoter binding assay, granulin was identified as a key downstream effector of NUPR1. We also report association of the NUPR1-granulin pathway with mitochondrial defect-derived glycolytic activation in human liver cancer. CONCLUSION: Mitochondrial respiratory defects and subsequent retrograde signaling, particularly the NUPR1-granulin pathway, play pivotal roles in liver cancer progression.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Carcinoma Hepatocelular/genética , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Hepáticas/genética , Mitocôndrias/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiologia , Carcinoma Hepatocelular/patologia , Progressão da Doença , Humanos , Neoplasias Hepáticas/patologia , Células Tumorais Cultivadas
15.
J Biol Chem ; 290(35): 21421-31, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26157141

RESUMO

Although mitochondrial dysfunction has been implicated in tumor metastasis, it is unclear how it regulates tumor cell aggressiveness. We have reported previously that human hepatoma cells harboring mitochondrial defects have high tumor cell invasion activity via increased claudin-1 (Cln-1) expression. In this study, we demonstrated that mitochondrial respiratory defects induced Cln-1 transcription via reactive oxygen species (ROS)-mediated heat shock factor 1 (HSF1) activation, which contributed to hepatoma invasiveness. We first confirmed the inverse relationship between mitochondrial defects and Cln-1 induction in SNU hepatoma cells and hepatocellular carcinoma tissues. We then examined five different respiratory complex inhibitors, and complex I inhibition by rotenone most effectively induced Cln-1 at the transcriptional level. Rotenone increased both mitochondrial and cytosolic ROS. In addition, rotenone-induced Cln-1 expression was attenuated by N-acetylcysteine, an antioxidant, and exogenous H2O2 treatment was enough to increase Cln-1 transcription, implying the involvement of ROS. Next we found that ROS-mediated HSF1 activation via hyperphosphorylation was the key event for Cln-1 transcription. Moreover, the Cln-1 promoter region (from -529 to +53) possesses several HSF1 binding elements, and this region showed increased promoter activity and HSF1 binding affinity in response to rotenone treatment. Finally, we demonstrated that the invasion activity of SNU449 cells, which harbor mitochondrial defects, was blocked by siRNA-mediated HSF1 knockdown. Taken together, these results indicate that mitochondrial respiratory defects enhance Cln-1-mediated hepatoma cell invasiveness via mitochondrial ROS-mediated HSF1 activation, presenting a potential role for HSF1 as a novel mitochondrial retrograde signal-responsive transcription factor to control hepatoma cell invasiveness.


Assuntos
Carcinoma Hepatocelular/patologia , Claudina-1/genética , Proteínas de Ligação a DNA/metabolismo , Neoplasias Hepáticas/patologia , Mitocôndrias/patologia , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Bases , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Respiração Celular , Claudina-1/metabolismo , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição de Choque Térmico , Humanos , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Regiões Promotoras Genéticas
16.
BMB Rep ; 47(8): 463-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24355298

RESUMO

Osteoblasts are specialized mesenchymal cells that are responsible for bone formation. In this study, we examine the role of GATA4 in osteoblast differentiation. GATA4 was abundantly expressed in preosteoblast cells and gradually down-regulated during osteoblast differentiation. Overexpression of GATA4 in osteoblastic cells inhibited alkaline phosphatase activity and nodule formation in osteogenic conditioned cell culture system. In addition, overexpression of GATA4 attenuated expression of osteogenic marker genes, including Runx2, alkaline phosphatase, bone sialoprotein, and osteocalcin, all of which are important for osteoblast differentiation and function. Overexpression of GATA4 attenuated Runx2 promoter activity, whereas silencing of GATA4 increased Runx2 induction. We found that GATA4 interacted with Dlx5 and subsequently decreased Dlx5 binding activity to Runx2 promoter region. Our data suggest that GATA4 acts as a negative regulator in osteoblast differentiation by downregulation of Runx2.


Assuntos
Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Fator de Transcrição GATA4/metabolismo , Osteoblastos/citologia , Fosfatase Alcalina/metabolismo , Animais , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Regulação para Baixo , Fator de Transcrição GATA4/antagonistas & inibidores , Fator de Transcrição GATA4/genética , Células HEK293 , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , Osteocalcina/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Interferência de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo
17.
Mol Cells ; 35(6): 489-97, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23677377

RESUMO

Many solid tumor cells exhibit mitochondrial respiratory impairment; however, the mechanisms of such impairment in cancer development remain unclear. Here, we demonstrate that SNU human hepatoma cells with declined mitochondrial respiratory activity showed decreased expression of mitochondrial 8-oxoguanine DNA glycosylase/lyase (mtOGG1), a mitochondrial DNA repair enzyme; similar results were obtained with human hepatocellular carcinoma tissues. Among several OGG1-2 variants with a mitochondrial-targeting sequence (OGG1-2a, -2b, -2c, -2d, and -2e), OGG1-2a was the major mitochondrial isoform in all examined hepatoma cells. Interestingly, hepatoma cells with low mtOGG1 levels showed delayed cell growth and increased intracellular reactive oxygen species (ROS) levels. Knockdown of OGG1-2 isoforms in Chang-L cells, which have active mitochondrial respiration with high mtOGG1 levels, significantly decreased cellular respiration and cell growth, and increased intracellular ROS. Overexpression of OGG1-2a in SNU423 cells, which have low mtOGG1 levels, effectively recovered cellular respiration and cell growth activities, and decreased intracellular ROS. Taken together, our results suggest that mtOGG1 plays an important role in maintaining mitochondrial respiration, thereby contributing to cell growth of hepatoma cells.


Assuntos
Carcinoma Hepatocelular/patologia , DNA Glicosilases/metabolismo , Neoplasias Hepáticas/patologia , Mitocôndrias Hepáticas/metabolismo , Isoformas de Proteínas/metabolismo , Carcinoma Hepatocelular/metabolismo , Processos de Crescimento Celular/genética , Linhagem Celular Tumoral , Respiração Celular/genética , DNA Glicosilases/genética , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Hepáticas/metabolismo , Mitocôndrias Hepáticas/genética , Isoformas de Proteínas/genética , Espécies Reativas de Oxigênio/metabolismo , Transgenes/genética
18.
J Nucl Med ; 53(9): 1462-70, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22859859

RESUMO

UNLABELLED: The attachment of specific ligands to the surfaces of nanoparticles is important for medical and biologic imaging. However, covalent modification of nanoparticles has inherent problems in reproducibility because of many factors such as temperature, pH, concentration, and reaction time. Thus, we developed a method for modifying nanoparticles by encapsulation with specific ligand-conjugated amphiphiles. METHODS: We synthesized special amphiphiles with a hydrophilic head and a long single-alkyl chain, such as arginine-glycine-aspartic acid-C(18), mannose-C(18), lactose-C(18), and 2-(p-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid-C(18). And then we produced stable quantum dots (QDs) encapsulated with polysorbate 60 (a branched polyethylene glycol head with a C(18) tail) and the synthesized special amphiphiles. The prepared encapsulated QDs were subject to in vitro and in vivo animal biodistribution studies and small-animal PET studies to confirm their specific binding. RESULTS: The encapsulated QDs could specifically bind to target cells in vitro and in vivo and could be labeled with (68)Ga (a positron emitter) easily and with high efficiency. CONCLUSION: The nanoparticles encapsulated with special amphiphiles could provide a straightforward and novel imaging solution with multimodality and multispecificity.


Assuntos
Imagem Molecular/métodos , Nanopartículas/química , Animais , Cápsulas , Linhagem Celular Tumoral , Feminino , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lactose/química , Ligantes , Fígado/irrigação sanguínea , Fígado/diagnóstico por imagem , Fígado/metabolismo , Manose/química , Camundongos , Neovascularização Patológica/diagnóstico por imagem , Neovascularização Patológica/metabolismo , Oligopeptídeos/química , Polissorbatos/química , Pontos Quânticos , Cintilografia , Baço/irrigação sanguínea , Baço/diagnóstico por imagem , Baço/metabolismo
19.
Exp Cell Res ; 318(15): 1808-19, 2012 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-22652454

RESUMO

Transforming growth factor ß1 (TGF ß1) induces Mv1Lu cell senescence by persistently producing mitochondrial reactive oxygen species (ROS) through decreased complex IV activity. Here, we investigated the molecular mechanism underlying the effect of TGF ß1 on mitochondrial complex IV activity. TGF ß1 progressively phosphorylated the negative regulatory sites of both glycogen synthase kinase 3 (GSK3) α and ß, corresponding well to the intracellular ROS generation profile. Pre-treatment of N-acetyl cysteine, an antioxidant, did not alter this GSK3 phosphorylation (inactivation), whereas pharmacological inhibition of GSK3 by SB415286 significantly increased mitochondrial ROS, implying that GSK3 phosphorylation is an upstream event of the ROS generation. GSK3 inhibition by SB415286 decreased complex IV activity and cellular O(2) consumption rate and eventually induced senescence of Mv1Lu cell. Similar results were obtained with siRNA-mediated knockdown of GSK3. Moreover, we found that GSK3 not only exists in cytosol but also in mitochondria of Mv1Lu cell and the mitochondrial GSK3 binds complex IV subunit 6b which has no electron carrier and is topologically located in the mitochondrial intermembrane space. Involvement of subunit 6b in controlling complex IV activity and overall respiration rate was proved with siRNA-mediated knockdown of subunit 6b. Finally, TGF ß1 treatment decreased the binding of the subunit 6b to GSK3 and subunit 6b phosphorylation. Taken together, our results suggest that GSK3 inactivation is importantly involved in TGF ß1-induced complex IV defects through decreasing phosphorylation of the subunit 6b, thereby contributing to senescence-associated mitochondrial ROS generation.


Assuntos
Senescência Celular/efeitos dos fármacos , Senescência Celular/fisiologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Fator de Crescimento Transformador beta1/farmacologia , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Primers do DNA/genética , Complexo IV da Cadeia de Transporte de Elétrons/química , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Vison , Mitocôndrias/metabolismo , Modelos Biológicos , Fosforilação , Subunidades Proteicas , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo
20.
Autophagy ; 7(10): 1187-98, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21738012

RESUMO

Although mitochondrial impairment has often been implicated in carcinogenesis, the mechanisms of its development in cancer remain unknown. We report here that autophagy triggered by oncogenic K-Ras mediates functional loss of mitochondria during cell transformation to overcome an energy deficit resulting from glucose deficiency. When Rat2 cells were infected with a retrovirus harboring constitutively active K-Ras (V12) , mitochondrial respiration significantly declined in parallel with the acquisition of transformation characteristics. Decreased respiration was not related to mitochondrial biogenesis but was inversely associated with the increased formation of acidic vesicles enclosing mitochondria, during which autophagy-related proteins such as Beclin 1, Atg5, LC3-II and vacuolar ATPases were induced. Interestingly, blocking autophagy with conventional inhibitors (bafilomycin A, 3-methyladenin) and siRNA-mediated knockdown of autophagy-related genes recovered respiratory protein expression and respiratory activity; JNK was involved in these phenomena as an upstream regulator. The cells transformed by K-Ras (V12) maintained cellular ATP level mainly through glycolytic ATP production without induction of GLUT1, the low Km glucose transporter. Finally, K-Ras (V12) -triggered LC3-II formation was modulated by extracellular glucose levels, and LC3-II formation increased only in hepatocellular carcinoma tissues exhibiting low glucose uptake and increased K-Ras expression. Taken together, our observations suggest that mitochondrial functional loss may be mediated by oncogenic K-Ras-induced mitophagy during early tumorigenesis even in the absence of hypoxia, and that this mitophagic process may be an important strategy to overcome the cellular energy deficit triggered by insufficient glucose.


Assuntos
Genes ras , Glucose/metabolismo , Proteínas ras/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Adulto , Idoso , Animais , Autofagia , Transporte Biológico , Carcinoma Hepatocelular/metabolismo , Transformação Celular Neoplásica , Regulação Neoplásica da Expressão Gênica , Humanos , Hipóxia , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , RNA Interferente Pequeno/metabolismo , Ratos , Vacúolos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA