Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(46): 29166-29177, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33139576

RESUMO

Lignin has enabled plants to colonize land, grow tall, transport water within their bodies, and protect themselves against various stresses. Consequently, this polyphenolic polymer, impregnating cellulosic plant cell walls, is the second most abundant polymer on Earth. Yet, despite its great physiological, ecological, and economical importance, our knowledge of lignin biosynthesis in vivo, especially the polymerization steps within the cell wall, remains vague-specifically, the respective roles of the two polymerizing enzymes classes, laccases and peroxidases. One reason for this lies in the very high numbers of laccases and peroxidases encoded by 17 and 73 homologous genes, respectively, in Arabidopsis Here, we have focused on a specific lignin structure, the ring-like Casparian strips (CSs) within the root endodermis. By reducing candidate numbers using cellular resolution expression and localization data and by boosting stacking of mutants using CRISPR-Cas9, we mutated the majority of laccases in Arabidopsis in a nonuple mutant-essentially abolishing laccases with detectable endodermal expression. Yet, we were unable to detect even slight defects in CS formation. By contrast, we were able to induce a complete absence of CS formation in a quintuple peroxidase mutant. Our findings are in stark contrast to the strong requirement of xylem vessels for laccase action and indicate that lignin in different cell types can be polymerized in very distinct ways. We speculate that cells lignify differently depending on whether lignin is localized or ubiquitous and whether cells stay alive during and after lignification, as well as the composition of the cell wall.


Assuntos
Lacase/genética , Lacase/metabolismo , Peroxidases/genética , Peroxidases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Mutação , Fenótipo , Raízes de Plantas , Polimerização , Xilema/metabolismo
2.
Plant Cell ; 25(6): 2202-16, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23757398

RESUMO

Rapid stomatal closure is essential for water conservation in plants and is thus critical for survival under water deficiency. To close stomata rapidly, guard cells reduce their volume by converting a large central vacuole into a highly convoluted structure. However, the molecular mechanisms underlying this change are poorly understood. In this study, we used pH-indicator dyes to demonstrate that vacuolar convolution is accompanied by acidification of the vacuole in fava bean (Vicia faba) guard cells during abscisic acid (ABA)-induced stomatal closure. Vacuolar acidification is necessary for the rapid stomatal closure induced by ABA, since a double mutant of the vacuolar H(+)-ATPase vha-a2 vha-a3 and vacuolar H(+)-PPase mutant vhp1 showed delayed stomatal closure. Furthermore, we provide evidence for the critical role of phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P2] in changes in pH and morphology of the vacuole. Single and double Arabidopsis thaliana null mutants of phosphatidylinositol 3-phosphate 5-kinases (PI3P5Ks) exhibited slow stomatal closure upon ABA treatment compared with the wild type. Moreover, an inhibitor of PI3P5K reduced vacuolar acidification and convolution and delayed stomatal closure in response to ABA. Taken together, these results suggest that rapid ABA-induced stomatal closure requires PtdIns(3,5)P2, which is essential for vacuolar acidification and convolution.


Assuntos
Arabidopsis/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Estômatos de Plantas/metabolismo , Vacúolos/metabolismo , Ácido Abscísico/farmacologia , Aminopiridinas/farmacologia , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/antagonistas & inibidores , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Butiratos/farmacologia , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Compostos Heterocíclicos com 3 Anéis/farmacologia , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Pirofosfatase Inorgânica/genética , Pirofosfatase Inorgânica/metabolismo , Microscopia Confocal , Mutação , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/genética , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , Vacúolos/química , Vacúolos/efeitos dos fármacos , Vicia faba/citologia , Vicia faba/genética , Vicia faba/metabolismo
3.
Plant Cell Environ ; 31(3): 366-77, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18088331

RESUMO

Phosphatidylinositol 3-kinases (PtdIns 3-kinases) that produce phosphatidylinositol (3,4,5) triphosphate (PtdIns(3,4,5)P(3)) are considered to be important regulators of actin dynamics in animal cells. In plants, neither PtdIns(3,4,5)P(3) nor the enzyme that produces this lipid has been reported. However, a PtdIns 3-kinase that produces phosphatidylinositol 3-phosphate (PtdIns3P) has been identified, suggesting that PtdIns3P, instead of PtdIns(3,4,5)P(3), regulates actin dynamics in plant cells. Phosphatidylinositol 4-kinase (PtdIns 4-kinase) is closely associated with the actin cytoskeleton in plant cells, suggesting a role for this lipid kinase and its product phosphatidylinositol 4-phosphate (PtdIns4P) in actin-related processes. Here, we investigated whether or not PtdIns3P or PtdIns4P plays a role in actin reorganization induced by a plant hormone abscisic acid (ABA) in guard cells of day flower (Commelina communis). ABA-induced changes in actin filaments were inhibited by LY294002 (LY) and wortmannin (WM), inhibitors of PtdIns3P and PtdIns4P synthesis. Expression of PtdIns3P- and PtdIns4P-binding domains also inhibited ABA-induced actin reorganization in a manner similar to LY and WM. These results suggest that PtdIns3P and PtdIns4P regulate actin dynamics in guard cells. Furthermore, we demonstrate that PtdIns3P exerts its effect on actin dynamics, at least in part, via generation of reactive oxygen species (ROS) in response to ABA.


Assuntos
Actinas/metabolismo , Commelina/citologia , Commelina/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Estômatos de Plantas/citologia , 1-Fosfatidilinositol 4-Quinase/antagonistas & inibidores , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Androstadienos/farmacologia , Cromonas/farmacologia , Regulação da Expressão Gênica de Plantas/fisiologia , Morfolinas/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Estômatos de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Wortmanina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA