Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Science ; 379(6638): 1252-1264, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36952412

RESUMO

The Chilean soapbark tree (Quillaja saponaria) produces soap-like molecules called QS saponins that are important vaccine adjuvants. These highly valuable compounds are sourced by extraction from the bark, and their biosynthetic pathway is unknown. Here, we sequenced the Q. saponaria genome. Through genome mining and combinatorial expression in tobacco, we identified 16 pathway enzymes that together enable the production of advanced QS pathway intermediates that represent a bridgehead for adjuvant bioengineering. We further identified the enzymes needed to make QS-7, a saponin with excellent therapeutic properties and low toxicity that is present in low abundance in Q. saponaria bark extract. Our results enable the production of Q. saponaria vaccine adjuvants in tobacco and open the way for new routes to access and engineer natural and new-to-nature immunostimulants.


Assuntos
Adjuvantes de Vacinas , Vias Biossintéticas , Quillaja , Saponinas , Adjuvantes de Vacinas/biossíntese , Adjuvantes de Vacinas/química , Adjuvantes de Vacinas/genética , Quillaja/enzimologia , Quillaja/genética , Saponinas/biossíntese , Saponinas/química , Saponinas/genética , Análise de Sequência de DNA , Genoma de Planta , Vias Biossintéticas/genética , Nicotiana/genética , Nicotiana/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Nat Commun ; 9(1): 4580, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30389915

RESUMO

Sweetpotato [Ipomoea batatas (L.) Lam.] is a globally important staple food crop, especially for sub-Saharan Africa. Agronomic improvement of sweetpotato has lagged behind other major food crops due to a lack of genomic and genetic resources and inherent challenges in breeding a heterozygous, clonally propagated polyploid. Here, we report the genome sequences of its two diploid relatives, I. trifida and I. triloba, and show that these high-quality genome assemblies are robust references for hexaploid sweetpotato. Comparative and phylogenetic analyses reveal insights into the ancient whole-genome triplication history of Ipomoea and evolutionary relationships within the Batatas complex. Using resequencing data from 16 genotypes widely used in African breeding programs, genes and alleles associated with carotenoid biosynthesis in storage roots are identified, which may enable efficient breeding of varieties with high provitamin A content. These resources will facilitate genome-enabled breeding in this important food security crop.


Assuntos
Diploide , Genoma de Planta , Ipomoea batatas/genética , Melhoramento Vegetal , Sequência de Bases , Carotenoides/metabolismo , Ecótipo , Variação Genética , Genômica , Anotação de Sequência Molecular , Família Multigênica , Filogenia , Poliploidia , Sequências Repetitivas de Ácido Nucleico/genética
3.
G3 (Bethesda) ; 6(9): 2679-85, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27342737

RESUMO

Current phylogenetic sampling reveals that dioecy and an XY sex chromosome pair evolved once, or possibly twice, in the genus Asparagus Although there appear to be some lineage-specific polyploidization events, the base chromosome number of 2n = 2× = 20 is relatively conserved across the Asparagus genus. Regardless, dioecious species tend to have larger genomes than hermaphroditic species. Here, we test whether this genome size expansion in dioecious species is related to a polyploidization and subsequent chromosome fusion, or to retrotransposon proliferation in dioecious species. We first estimate genome sizes, or use published values, for four hermaphrodites and four dioecious species distributed across the phylogeny, and show that dioecious species typically have larger genomes than hermaphroditic species. Utilizing a phylogenomic approach, we find no evidence for ancient polyploidization contributing to increased genome sizes of sampled dioecious species. We do find support for an ancient whole genome duplication (WGD) event predating the diversification of the Asparagus genus. Repetitive DNA content of the four hermaphroditic and four dioecious species was characterized based on randomly sampled whole genome shotgun sequencing, and common elements were annotated. Across our broad phylogenetic sampling, Ty-1 Copia retroelements, in particular, have undergone a marked proliferation in dioecious species. In the absence of a detectable WGD event, retrotransposon proliferation is the most likely explanation for the precipitous increase in genome size in dioecious Asparagus species.


Assuntos
Asparagus/genética , Evolução Molecular , Filogenia , Retroelementos/genética , Tamanho do Genoma , Genoma de Planta , Organismos Hermafroditas/genética , Poliploidia , Cromossomos Sexuais/genética
4.
J Exp Bot ; 67(5): 1369-79, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26717954

RESUMO

While the majority of plants use the typical C3 carbon metabolic pathway, ~6% of angiosperms have adapted to carbon limitation as a result of water stress by employing a modified form of photosynthesis known as Crassulacean acid metabolism (CAM). CAM plants concentrate carbon in the cells by temporally separating atmospheric carbon acquisition from fixation into carbohydrates. CAM has been studied for decades, but the evolutionary progression from C3 to CAM remains obscure. In order to better understand the morphological and physiological characteristics associated with CAM photosynthesis, phenotypic variation was assessed in Yucca aloifolia, a CAM species, Yucca filamentosa, a C3 species, and Yucca gloriosa, a hybrid species derived from these two yuccas exhibiting intermediate C3-CAM characteristics. Gas exchange, titratable leaf acidity, and leaf anatomical traits of all three species were assayed in a common garden under well-watered and drought-stressed conditions. Yucca gloriosa showed intermediate phenotypes for nearly all traits measured, including the ability to acquire carbon at night. Using the variation found among individuals of all three species, correlations between traits were assessed to better understand how leaf anatomy and CAM physiology are related. Yucca gloriosa may be constrained by a number of traits which prevent it from using CAM to as high a degree as Y. aloifolia. The intermediate nature of Y. gloriosa makes it a promising system in which to study the evolution of CAM.


Assuntos
Gases/metabolismo , Hibridização Genética , Folhas de Planta/anatomia & histologia , Folhas de Planta/metabolismo , Yucca/anatomia & histologia , Yucca/metabolismo , Variação Genética , Genótipo , Concentração de Íons de Hidrogênio , Repetições de Microssatélites/genética , Análise de Componente Principal , Yucca/genética
5.
Mol Biol Evol ; 32(1): 193-210, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25349287

RESUMO

Unresolved questions about evolution of the large and diverse legume family include the timing of polyploidy (whole-genome duplication; WGDs) relative to the origin of the major lineages within the Fabaceae and to the origin of symbiotic nitrogen fixation. Previous work has established that a WGD affects most lineages in the Papilionoideae and occurred sometime after the divergence of the papilionoid and mimosoid clades, but the exact timing has been unknown. The history of WGD has also not been established for legume lineages outside the Papilionoideae. We investigated the presence and timing of WGDs in the legumes by querying thousands of phylogenetic trees constructed from transcriptome and genome data from 20 diverse legumes and 17 outgroup species. The timing of duplications in the gene trees indicates that the papilionoid WGD occurred in the common ancestor of all papilionoids. The earliest diverging lineages of the Papilionoideae include both nodulating taxa, such as the genistoids (e.g., lupin), dalbergioids (e.g., peanut), phaseoloids (e.g., beans), and galegoids (=Hologalegina, e.g., clovers), and clades with nonnodulating taxa including Xanthocercis and Cladrastis (evaluated in this study). We also found evidence for several independent WGDs near the base of other major legume lineages, including the Mimosoideae-Cassiinae-Caesalpinieae (MCC), Detarieae, and Cercideae clades. Nodulation is found in the MCC and papilionoid clades, both of which experienced ancestral WGDs. However, there are numerous nonnodulating lineages in both clades, making it unclear whether the phylogenetic distribution of nodulation is due to independent gains or a single origin followed by multiple losses.


Assuntos
Fabaceae/classificação , Fabaceae/genética , Tetraploidia , Evolução Molecular , Fabaceae/fisiologia , Genoma de Planta , Família Multigênica , Mutação , Fixação de Nitrogênio , Filogenia , Simbiose
6.
Am J Bot ; 99(2): 397-406, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22301890

RESUMO

PREMISE OF THE STUDY: The stability of the bimodal karyotype found in Agave and closely related species has long interested botanists. The origin of the bimodal karyotype has been attributed to allopolyploidy, but this hypothesis has not been tested. Next-generation transcriptome sequence data were used to test whether a paleopolyploid event occurred on the same branch of the Agavoideae phylogenetic tree as the origin of the Yucca-Agave bimodal karyotype. METHODS: Illumina RNA-seq data were generated for phylogenetically strategic species in Agavoideae. Paleopolyploidy was inferred in analyses of frequency plots for synonymous substitutions per synonymous site (K(s)) between Hosta, Agave, and Chlorophytum paralogous and orthologous gene pairs. Phylogenies of gene families including paralogous genes for these species and outgroup species were estimated to place inferred paleopolyploid events on a species tree. KEY RESULTS: K(s) frequency plots suggested paleopolyploid events in the history of the genera Agave, Hosta, and Chlorophytum. Phylogenetic analyses of gene families estimated from transcriptome data revealed two polyploid events: one predating the last common ancestor of Agave and Hosta and one within the lineage leading to Chlorophytum. CONCLUSIONS: We found that polyploidy and the origin of the Yucca-Agave bimodal karyotype co-occur on the same lineage consistent with the hypothesis that the bimodal karyotype is a consequence of allopolyploidy. We discuss this and alternative mechanisms for the formation of the Yucca-Agave bimodal karyotype. More generally, we illustrate how the use of next-generation sequencing technology is a cost-efficient means for assessing genome evolution in nonmodel species.


Assuntos
Cariotipagem , Liliaceae/genética , Filogenia , Poliploidia , Transcriptoma , Sequência de Bases , Cromossomos de Plantas/genética , Evolução Molecular , Duplicação Gênica , Genes de Plantas , Liliaceae/classificação , Família Multigênica , RNA de Plantas/genética , Análise de Sequência de RNA , Especificidade da Espécie
7.
Genome Biol ; 13(1): R3, 2012 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-22280555

RESUMO

BACKGROUND: Although it is agreed that a major polyploidy event, gamma, occurred within the eudicots, the phylogenetic placement of the event remains unclear. RESULTS: To determine when this polyploidization occurred relative to speciation events in angiosperm history, we employed a phylogenomic approach to investigate the timing of gene set duplications located on syntenic gamma blocks. We populated 769 putative gene families with large sets of homologs obtained from public transcriptomes of basal angiosperms, magnoliids, asterids, and more than 91.8 gigabases of new next-generation transcriptome sequences of non-grass monocots and basal eudicots. The overwhelming majority (95%) of well-resolved gamma duplications was placed before the separation of rosids and asterids and after the split of monocots and eudicots, providing strong evidence that the gamma polyploidy event occurred early in eudicot evolution. Further, the majority of gene duplications was placed after the divergence of the Ranunculales and core eudicots, indicating that the gamma appears to be restricted to core eudicots. Molecular dating estimates indicate that the duplication events were intensely concentrated around 117 million years ago. CONCLUSIONS: The rapid radiation of core eudicot lineages that gave rise to nearly 75% of angiosperm species appears to have occurred coincidentally or shortly following the gamma triplication event. Reconciliation of gene trees with a species phylogeny can elucidate the timing of major events in genome evolution, even when genome sequences are only available for a subset of species represented in the gene trees. Comprehensive transcriptome datasets are valuable complements to genome sequences for high-resolution phylogenomic analysis.


Assuntos
Duplicação Gênica , Magnoliopsida/genética , Proteínas de Plantas/genética , Poliploidia , Evolução Molecular , Perfilação da Expressão Gênica , Especiação Genética , Genoma de Planta , Filogenia
8.
Nature ; 473(7345): 97-100, 2011 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-21478875

RESUMO

Whole-genome duplication (WGD), or polyploidy, followed by gene loss and diploidization has long been recognized as an important evolutionary force in animals, fungi and other organisms, especially plants. The success of angiosperms has been attributed, in part, to innovations associated with gene or whole-genome duplications, but evidence for proposed ancient genome duplications pre-dating the divergence of monocots and eudicots remains equivocal in analyses of conserved gene order. Here we use comprehensive phylogenomic analyses of sequenced plant genomes and more than 12.6 million new expressed-sequence-tag sequences from phylogenetically pivotal lineages to elucidate two groups of ancient gene duplications-one in the common ancestor of extant seed plants and the other in the common ancestor of extant angiosperms. Gene duplication events were intensely concentrated around 319 and 192 million years ago, implicating two WGDs in ancestral lineages shortly before the diversification of extant seed plants and extant angiosperms, respectively. Significantly, these ancestral WGDs resulted in the diversification of regulatory genes important to seed and flower development, suggesting that they were involved in major innovations that ultimately contributed to the rise and eventual dominance of seed plants and angiosperms.


Assuntos
Evolução Molecular , Genoma de Planta/genética , Magnoliopsida/classificação , Magnoliopsida/genética , Poliploidia , Genômica , Filogenia
9.
BMC Evol Biol ; 10: 61, 2010 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-20181251

RESUMO

BACKGROUND: Although the overwhelming majority of genes found in angiosperms are members of gene families, and both gene- and genome-duplication are pervasive forces in plant genomes, some genes are sufficiently distinct from all other genes in a genome that they can be operationally defined as 'single copy'. Using the gene clustering algorithm MCL-tribe, we have identified a set of 959 single copy genes that are shared single copy genes in the genomes of Arabidopsis thaliana, Populus trichocarpa, Vitis vinifera and Oryza sativa. To characterize these genes, we have performed a number of analyses examining GO annotations, coding sequence length, number of exons, number of domains, presence in distant lineages, such as Selaginella and Physcomitrella, and phylogenetic analysis to estimate copy number in other seed plants and to demonstrate their phylogenetic utility. We then provide examples of how these genes may be used in phylogenetic analyses to reconstruct organismal history, both by using extant coverage in EST databases for seed plants and de novo amplification via RT-PCR in the family Brassicaceae. RESULTS: There are 959 single copy nuclear genes shared in Arabidopsis, Populus, Vitis and Oryza ["APVO SSC genes"]. The majority of these genes are also present in the Selaginella and Physcomitrella genomes. Public EST sets for 197 species suggest that most of these genes are present across a diverse collection of seed plants, and appear to exist as single or very low copy genes, though exceptions are seen in recently polyploid taxa and in lineages where there is significant evidence for a shared large-scale duplication event. Genes encoding proteins localized in organelles are more commonly single copy than expected by chance, but the evolutionary forces responsible for this bias are unknown.Regardless of the evolutionary mechanisms responsible for the large number of shared single copy genes in diverse flowering plant lineages, these genes are valuable for phylogenetic and comparative analyses. Eighteen of the APVO SSC single copy genes were amplified in the Brassicaceae using RT-PCR and directly sequenced. Alignments of these sequences provide improved resolution of Brassicaceae phylogeny compared to recent studies using plastid and ITS sequences. An analysis of sequences from 13 APVO SSC genes from 69 species of seed plants, derived mainly from public EST databases, yielded a phylogeny that was largely congruent with prior hypotheses based on multiple plastid sequences. Whereas single gene phylogenies that rely on EST sequences have limited bootstrap support as the result of limited sequence information, concatenated alignments result in phylogenetic trees with strong bootstrap support for already established relationships. Overall, these single copy nuclear genes are promising markers for phylogenetics, and contain a greater proportion of phylogenetically-informative sites than commonly used protein-coding sequences from the plastid or mitochondrial genomes. CONCLUSIONS: Putatively orthologous, shared single copy nuclear genes provide a vast source of new evidence for plant phylogenetics, genome mapping, and other applications, as well as a substantial class of genes for which functional characterization is needed. Preliminary evidence indicates that many of the shared single copy nuclear genes identified in this study may be well suited as markers for addressing phylogenetic hypotheses at a variety of taxonomic levels.


Assuntos
Arabidopsis/genética , Dosagem de Genes , Genes de Plantas , Oryza/genética , Populus/genética , Vitis/genética , Núcleo Celular/genética , Etiquetas de Sequências Expressas , Genoma de Planta , Magnoliopsida/genética , Filogenia
10.
Am J Bot ; 96(1): 336-48, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21628192

RESUMO

Polyploidy has long been recognized as a major force in angiosperm evolution. Recent genomic investigations not only indicate that polyploidy is ubiquitous among angiosperms, but also suggest several ancient genome-doubling events. These include ancient whole genome duplication (WGD) events in basal angiosperm lineages, as well as a proposed paleohexaploid event that may have occurred close to the eudicot divergence. However, there is currently no evidence for WGD in Amborella, the putative sister species to other extant angiosperms. The question is no longer "What proportion of angiosperms are polyploid?", but "How many episodes of polyploidy characterize any given lineage?" New algorithms provide promise that ancestral genomes can be reconstructed for deep divergences (e.g., it may be possible to reconstruct the ancestral eudicot or even the ancestral angiosperm genome). Comparisons of diversification rates suggest that genome doubling may have led to a dramatic increase in species richness in several angiosperm lineages, including Poaceae, Solanaceae, Fabaceae, and Brassicaceae. However, additional genomic studies are needed to pinpoint the exact phylogenetic placement of the ancient polyploidy events within these lineages and to determine when novel genes resulting from polyploidy have enabled adaptive radiations.

11.
BMC Genomics ; 9: 58, 2008 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-18234080

RESUMO

BACKGROUND: Musa species (Zingiberaceae, Zingiberales) including bananas and plantains are collectively the fourth most important crop in developing countries. Knowledge concerning Musa genome structure and the origin of distinct cultivars has greatly increased over the last few years. Until now, however, no large-scale analyses of Musa genomic sequence have been conducted. This study compares genomic sequence in two Musa species with orthologous regions in the rice genome. RESULTS: We produced 1.4 Mb of Musa sequence from 13 BAC clones, annotated and analyzed them along with 4 previously sequenced BACs. The 443 predicted genes revealed that Zingiberales genes share GC content and distribution characteristics with eudicot and Poaceae genomes. Comparison with rice revealed microsynteny regions that have persisted since the divergence of the Commelinid orders Poales and Zingiberales at least 117 Mya. The previously hypothesized large-scale duplication event in the common ancestor of major cereal lineages within the Poaceae was verified. The divergence time distributions for Musa-Zingiber (Zingiberaceae, Zingiberales) orthologs and paralogs provide strong evidence for a large-scale duplication event in the Musa lineage after its divergence from the Zingiberaceae approximately 61 Mya. Comparisons of genomic regions from M. acuminata and M. balbisiana revealed highly conserved genome structure, and indicated that these genomes diverged circa 4.6 Mya. CONCLUSION: These results point to the utility of comparative analyses between distantly-related monocot species such as rice and Musa for improving our understanding of monocot genome evolution. Sequencing the genome of M. acuminata would provide a strong foundation for comparative genomics in the monocots. In addition a genome sequence would aid genomic and genetic analyses of cultivated Musa polyploid genotypes in research aimed at localizing and cloning genes controlling important agronomic traits for breeding purposes.


Assuntos
Genoma de Planta/genética , Musa/classificação , Musa/genética , Oryza/genética , Sintenia/genética , Arabidopsis/genética , Composição de Bases , Cromossomos Artificiais Bacterianos , Elementos de DNA Transponíveis/genética , DNA Complementar/genética , Evolução Molecular , Etiquetas de Sequências Expressas , Duplicação Gênica , Genes de Plantas/genética , Musa/enzimologia , Oryza/enzimologia , Polimorfismo de Fragmento de Restrição , Sequências Repetitivas de Ácido Nucleico/genética , Sorghum/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA