Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Diabetes Obes Metab ; 24(7): 1255-1266, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35293666

RESUMO

AIM: To establish if alpha-7 nicotinic acetylcholine receptor (α7nAChR) agonist GTS-21 exerts a blood glucose-lowering action in db/db mice, and to test if this action requires coordinate α7nAChR and GLP-1 receptor (GLP-1R) stimulation by GTS-21 and endogenous GLP-1, respectively. MATERIALS AND METHODS: Blood glucose levels were measured during an oral glucose tolerance test (OGTT) using db/db mice administered intraperitoneal GTS-21. Plasma GLP-1, peptide tyrosine tyrosine 1-36 (PYY1-36), glucose-dependent insulinotropic peptide (GIP), glucagon, and insulin levels were measured by ELISA. A GLP-1R-mediated action of GTS-21 that is secondary to α7nAChR stimulation was evaluated using α7nAChR and GLP-1R knockout (KO) mice, or by co-administration of GTS-21 with the dipeptidyl peptidase-4 inhibitor, sitagliptin, or the GLP-1R antagonist, exendin (9-39). Insulin sensitivity was assessed in an insulin tolerance test. RESULTS: Single or multiple dose GTS-21 (0.5-8.0 mg/kg) acted in a dose-dependent manner to lower levels of blood glucose in the OGTT using 10-14 week-old male and female db/db mice. This action of GTS-21 was reproduced by the α7nAChR agonist, PNU-282987, was enhanced by sitagliptin, was counteracted by exendin (9-39), and was absent in α7nAChR and GLP-1R KO mice. Plasma GLP-1, PYY1-36, GIP, glucagon, and insulin levels increased in response to GTS-21, but insulin sensitivity, body weight, and food intake were unchanged. CONCLUSIONS: α7nAChR agonists improve oral glucose tolerance in db/db mice. This action is contingent to coordinate α7nAChR and GLP-1R stimulation. Thus α7nAChR agonists administered in combination with sitagliptin might serve as a new treatment for type 2 diabetes.


Assuntos
Compostos de Benzilideno , Glicemia , Resistência à Insulina , Agonistas Nicotínicos , Piridinas , Receptor Nicotínico de Acetilcolina alfa7 , Animais , Compostos de Benzilideno/farmacologia , Glicemia/análise , Glicemia/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Feminino , Polipeptídeo Inibidor Gástrico/metabolismo , Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Teste de Tolerância a Glucose , Humanos , Incretinas/uso terapêutico , Insulina/uso terapêutico , Masculino , Camundongos , Camundongos Knockout , Agonistas Nicotínicos/farmacologia , Piridinas/farmacologia , Fosfato de Sitagliptina/uso terapêutico , Tirosina/uso terapêutico , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
2.
J Biol Chem ; 294(7): 2247-2248, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30765510

RESUMO

The activity of the archetypal protein kinase A (PKA) is typically thought of in regards to the catalytic subunit, which is inhibited by the regulatory subunits in the absence of cAMP. However, it is now reported that one of the regulatory subunit isoforms (PKA-RIα) takes on a function of its own upon binding to cAMP, acting independently of this canonical cAMP signaling mechanism. PKA-RIα instead binds to and stimulates the catalytic activity of a guanine nucleotide exchange factor (P-REX1) that itself promotes Rac1 GTPase activation. This newly discovered function of PKA-RIα adds an additional layer of complexity to our understanding of cAMP signal transduction.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Sistemas do Segundo Mensageiro , Proteínas Quinases Ativadas por AMP/genética , Animais , AMP Cíclico/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos
3.
J Biol Chem ; 294(10): 3514-3531, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30622136

RESUMO

G protein-coupled receptors (GPCRs) for glucagon (GluR) and glucagon-like peptide-1 (GLP-1R) are normally considered to be highly selective for glucagon and GLP-1, respectively. However, glucagon secreted from pancreatic α-cells may accumulate at high concentrations to exert promiscuous effects at the ß-cell GLP-1R, as may occur in the volume-restricted microenvironment of the islets of Langerhans. Furthermore, systemic administration of GluR or GLP-1R agonists and antagonists at high doses may lead to off-target effects at other receptors. Here, we used molecular modeling to evaluate data derived from FRET assays that detect cAMP as a read-out for GluR and GLP-1R activation. This analysis established that glucagon is a nonconventional GLP-1R agonist, an effect inhibited by the GLP-1R orthosteric antagonist exendin(9-39) (Ex(9-39)). The GluR allosteric inhibitors LY2409021 and MK 0893 antagonized glucagon and GLP-1 action at the GLP-1R, whereas des-His1-[Glu9]glucagon antagonized glucagon action at the GluR, while having minimal inhibitory action versus glucagon or GLP-1 at the GLP-1R. When testing Ex(9-39) in combination with des-His1-[Glu9]glucagon in INS-1 832/13 cells, we validated a dual agonist action of glucagon at the GluR and GLP-1R. Hybrid peptide GGP817 containing glucagon fused to a fragment of peptide YY (PYY) acted as a triagonist at the GluR, GLP-1R, and neuropeptide Y2 receptor (NPY2R). Collectively, these findings provide a new triagonist strategy with which to target the GluR, GLP-1R, and NPY2R. They also provide an impetus to reevaluate prior studies in which GluR and GLP-1R agonists and antagonists were assumed not to exert promiscuous actions at other GPCRs.


Assuntos
AMP Cíclico/metabolismo , Transferência Ressonante de Energia de Fluorescência , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/antagonistas & inibidores , Receptores de Glucagon/agonistas , Receptores de Glucagon/antagonistas & inibidores , Sequência de Aminoácidos , Descoberta de Drogas , Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/química , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacologia , Conformação Proteica , Receptores de Glucagon/química , Receptores de Glucagon/metabolismo
4.
Endocrinology ; 159(9): 3132-3142, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29992246

RESUMO

Enteroendocrine L cells secrete the incretin hormone glucagon-like peptide-1 (GLP-1), and they also express the α7 nicotinic acetylcholine receptor (α7nAChR), which may regulate GLP-1 secretion. Here, GTS-21, a selective α7nAChR agonist, was used to examine the effect of α7nAChR activation in L-cell lines, mouse intestinal primary cell cultures, and C57BL/6 mice. GTS-21 stimulated GLP-1 secretion in vitro, and this effect was attenuated by an α7nAChR antagonist or by α7nAChR-specific small interfering RNA. Under in vitro cell culture conditions of glucotoxicity, GTS-21 restored GLP-1 secretion and improved L-cell viability while also acting in vivo to raise levels of circulating GLP-1 in mice. To assess potential signaling mechanisms underlying these actions of GTS-21, we first monitored Ca2+, cAMP, and phosphatidylinositol 3-kinase (PI3K) activity. As expected for a GLP-1 secretagogue promoting Ca2+ influx through α7nAChR cation channels, [Ca2+]i increased in response to GTS-21, but [cAMP]i was unchanged. Surprisingly, pharmacological inhibition of growth factor signaling pathways revealed that GTS-21 also acts on the PI3K-protein kinase B-mammalian target of rapamycin pathway to promote L-cell viability. Moreover, the Ca2+ chelator BAPTA-AM counteracted GTS-21‒stimulated PI3K activity, thereby indicating unexpected crosstalk of L-cell Ca2+ and growth factor signaling pathways. Collectively, these data demonstrate that α7nAChR activation enhances GLP-1 secretion by increasing levels of cytosolic Ca2+ while also revealing Ca2+- and PI3K-dependent processes of α7nAChR activation that promote L-cell survival.


Assuntos
Cálcio/metabolismo , Sobrevivência Celular/fisiologia , Células Enteroendócrinas/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Compostos de Benzilideno/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Quelantes/farmacologia , AMP Cíclico/metabolismo , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Células Enteroendócrinas/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/efeitos dos fármacos , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinase/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piridinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/agonistas
5.
Diabetes ; 67(10): 1999-2011, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29986926

RESUMO

Glucose metabolism stimulates cell division control protein 42 homolog (Cdc42)-p21-activated kinase (Pak1) activity and initiates filamentous actin (F-actin) cytoskeleton remodeling in pancreatic ß-cells so that cytoplasmic secretory granules can translocate to the plasma membrane where insulin exocytosis occurs. Since glucose metabolism also generates cAMP in ß-cells, the cross talk of cAMP signaling with Cdc42-Pak1 activation might be of fundamental importance to glucose-stimulated insulin secretion (GSIS). Previously, the type-2 isoform of cAMP-regulated guanine nucleotide exchange factor 2 (Epac2) was established to mediate a potentiation of GSIS by cAMP-elevating agents. Here we report that nondiabetic human islets and INS-1 832/13 ß-cells treated with the selective Epac activator 8-pCPT-2'-O-Me-cAMP-AM exhibited Cdc42-Pak1 activation at 1 mmol/L glucose and that the magnitude of this effect was equivalent to that which was measured during stimulation with 20 mmol/L glucose in the absence of 8-pCPT-2'-O-Me-cAMP-AM. Conversely, the cAMP antagonist Rp-8-Br-cAMPS-pAB prevented glucose-stimulated Cdc42-Pak1 activation, thereby blocking GSIS while also increasing cellular F-actin content. Although islets from donors with type 2 diabetes had profound defects in glucose-stimulated Cdc42-Pak1 activation and insulin secretion, these defects were rescued by the Epac activator so that GSIS was restored. Collectively, these findings indicate an unexpected role for cAMP as a permissive or direct metabolic coupling factor in support of GSIS that is Epac2 and Cdc42-Pak1 regulated.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Glucose/farmacologia , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Quinases Ativadas por p21/metabolismo , 8-Bromo Monofosfato de Adenosina Cíclica/análogos & derivados , 8-Bromo Monofosfato de Adenosina Cíclica/química , 8-Bromo Monofosfato de Adenosina Cíclica/farmacologia , Animais , Linhagem Celular , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Ratos , Tionucleotídeos/química , Tionucleotídeos/farmacologia
6.
Int J Mol Sci ; 19(5)2018 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-29783744

RESUMO

Store-operated calcium entry (SOCE), a fundamentally important homeostatic and Ca2+ signaling pathway in many types of cells, is activated by the direct interaction of stromal interaction molecule 1 (STIM1), an endoplasmic reticulum (ER) Ca2+-binding protein, with Ca2+-selective Orai1 channels localized in the plasma membrane. While much is known about the regulation of SOCE by STIM1, the role of stromal interaction molecule 2 (STIM2) in SOCE remains incompletely understood. Here, using clustered regularly interspaced short palindromic repeats -CRISPR associated protein 9 (CRISPR-Cas9) genomic editing and molecular imaging, we investigated the function of STIM2 in NIH 3T3 fibroblast and αT3 cell SOCE. We found that deletion of Stim2 expression reduced SOCE by more than 90% in NIH 3T3 cells. STIM1 expression levels were unaffected in the Stim2 null cells. However, quantitative confocal fluorescence imaging demonstrated that in the absence of Stim2 expression, STIM1 did not translocate or form punctae in plasma membrane-associated ER membrane (PAM) junctions following ER Ca2+ store depletion. Fluorescence resonance energy transfer (FRET) imaging of intact, living cells revealed that the formation of STIM1 and Orai1 complexes in PAM nanodomains was significantly reduced in the Stim2 knockout cells. Our findings indicate that STIM2 plays an essential role in regulating SOCE in NIH 3T3 and αT3 cells and suggests that dynamic interplay between STIM1 and STIM2 induced by ER Ca2+ store discharge is necessary for STIM1 translocation, its interaction with Orai1, and activation of SOCE.


Assuntos
Sinalização do Cálcio , Proteínas de Neoplasias/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Molécula 2 de Interação Estromal/metabolismo , Células 3T3 , Animais , Cálcio/metabolismo , Transferência Ressonante de Energia de Fluorescência , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Microdomínios da Membrana/metabolismo , Camundongos , Proteínas de Neoplasias/genética , Proteína ORAI1/metabolismo , Ligação Proteica , Molécula 1 de Interação Estromal/genética , Molécula 2 de Interação Estromal/genética
7.
Sci Rep ; 8(1): 3749, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29491394

RESUMO

We report the design and target validation of chimeric peptide EP45, a novel 45 amino acid monomeric dual agonist peptide that contains amino acid sequence motifs present within the blood glucose-lowering agent exendin-4 (Ex-4) and the appetite-suppressing agent PYY(3-36). In a new high-throughput FRET assay that provides real-time kinetic information concerning levels of cAMP in living cells, EP45 recapitulates the action of Ex-4 to stimulate cAMP production via the glucagon-like peptide-1 receptor (GLP-1R), while also recapitulating the action of PYY(3-36) to inhibit cAMP production via the neuropeptide Y2 receptor (NPY2R). EP45 fails to activate glucagon or GIP receptors, whereas for cells that co-express NPY2R and adenosine A2B receptors, EP45 acts in an NPY2R-mediated manner to suppress stimulatory effects of adenosine on cAMP production. Collectively, such findings are remarkable in that they suggest a new strategy in which the co-existing metabolic disorders of type 2 diabetes and obesity will be treatable using a single peptide such as EP45 that lowers levels of blood glucose by virtue of its GLP-1R-mediated effect, while simultaneously suppressing appetite by virtue of its NPY2R-mediated effect.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/agonistas , Peptídeos/farmacologia , Receptores de Neuropeptídeo Y/agonistas , Sequência de Aminoácidos , Células HEK293 , Humanos , Peptídeos/química
8.
J Biol Chem ; 292(6): 2266-2277, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28003364

RESUMO

Stromal interaction molecule 1 (STIM1) regulates store-operated Ca2+ entry (SOCE) and other ion channels either as an endoplasmic reticulum Ca2+-sensing protein or when present in the plasma membrane. However, the role of STIM1 in insulin-secreting ß-cells is unresolved. We report that lowering expression of STIM1, the gene that encodes STIM1, in insulin-secreting MIN6 ß-cells with RNA interference inhibits SOCE and ATP-sensitive K+ (KATP) channel activation. The effects of STIM1 knockdown were reversed by transduction of MIN6 cells with an adenovirus gene shuttle vector that expressed human STIM1 Immunoprecipitation studies revealed that STIM1 binds to nucleotide binding fold-1 (NBF1) of the sulfonylurea receptor 1 (SUR1) subunit of the KATP channel. Binding of STIM1 to SUR1 was enhanced by poly-lysine. Our data indicate that SOCE and KATP channel activity are regulated by STIM1. This suggests that STIM1 is a multifunctional signaling effector that participates in the control of membrane excitability and Ca2+ signaling events in ß-cells.


Assuntos
Canais de Cálcio/fisiologia , Ilhotas Pancreáticas/metabolismo , Canais KATP/fisiologia , Proteínas de Neoplasias/fisiologia , Molécula 1 de Interação Estromal/fisiologia , Animais , Sinalização do Cálcio , Linhagem Celular , Técnicas de Silenciamento de Genes , Humanos , Transporte de Íons , Camundongos , Proteínas de Neoplasias/genética , Molécula 1 de Interação Estromal/genética
9.
Mol Endocrinol ; 30(6): 614-29, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27082897

RESUMO

GPR119 is a G protein-coupled receptor expressed on intestinal L cells that synthesize and secrete the blood glucose-lowering hormone glucagon-like peptide-1 (GLP-1). GPR119 agonists stimulate the release of GLP-1 from L cells, and for this reason there is interest in their potential use as a new treatment for type 2 diabetes mellitus. AS1269574 is one such GPR119 agonist, and it is the prototype of a series of 2,4,6 trisubstituted pyrimidines that exert positive glucoregulatory actions in mice. Here we report the unexpected finding that AS1269574 stimulates GLP-1 release from the STC-1 intestinal cell line by directly promoting Ca(2+) influx through transient receptor potential ankyrin 1 (TRPA1) cation channels. These GPR119-independent actions of AS1269574 are inhibited by TRPA1 channel blockers (AP-18, A967079, HC030031) and are not secondary to intracellular Ca(2+) release or cAMP production. Patch clamp studies reveal that AS1269574 activates an outwardly rectifying membrane current with properties expected of TRPA1 channels. However, the TRPA1 channel-mediated action of AS1269574 to increase intracellular free calcium concentration is not replicated by GPR119 agonists (AR231453, oleoylethanolamide) unrelated in structure to AS1269574. Using human embryonic kidney-293 cells expressing recombinant rat TRPA1 channels but not GPR119, direct TRPA1 channel activating properties of AS1269574 are validated. Because we find that AS1269574 also acts in a conventional GPR119-mediated manner to stimulate proglucagon gene promoter activity in the GLUTag intestinal L cell line, new findings reported here reveal the surprising capacity of AS1269574 to act as a dual agonist at two molecular targets (GPR119/TRPA1) important to the control of L-cell function and type 2 diabetes mellitus drug discovery research.


Assuntos
Etanolaminas/farmacologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Pirimidinas/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Canal de Cátion TRPA1/metabolismo , Animais , Cálcio/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Cimenos , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glucagon/metabolismo , Células HEK293 , Humanos , Isotiocianatos/farmacologia , Luciferases/metabolismo , Monoterpenos/farmacologia , Proteínas Mutantes/metabolismo , Proglucagon/genética , Proglucagon/metabolismo , Ratos , Proteínas Recombinantes/farmacologia , Transfecção
10.
Mol Endocrinol ; 29(7): 988-1005, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26061564

RESUMO

cAMP-elevating agents such as the incretin hormone glucagon-like peptide-1 potentiate glucose-stimulated insulin secretion (GSIS) from pancreatic ß-cells. However, a debate has existed since the 1970s concerning whether or not cAMP signaling is essential for glucose alone to stimulate insulin secretion. Here, we report that the first-phase kinetic component of GSIS is cAMP-dependent, as revealed through the use of a novel highly membrane permeable para-acetoxybenzyl (pAB) ester prodrug that is a bioactivatable derivative of the cAMP antagonist adenosine-3',5'-cyclic monophosphorothioate, Rp-isomer (Rp-cAMPS). In dynamic perifusion assays of human or rat islets, a step-wise increase of glucose concentration leads to biphasic insulin secretion, and under these conditions, 8-bromoadenosine-3',5'-cyclic monophosphorothioate, Rp-isomer, 4-acetoxybenzyl ester (Rp-8-Br-cAMPS-pAB) inhibits first-phase GSIS by up to 80%. Surprisingly, second-phase GSIS is inhibited to a much smaller extent (≤20%). Using luciferase, fluorescence resonance energy transfer, and bioluminescence resonance energy transfer assays performed in living cells, we validate that Rp-8-Br-cAMPS-pAB does in fact block cAMP-dependent protein kinase activation. Novel effects of Rp-8-Br-cAMPS-pAB to block the activation of cAMP-regulated guanine nucleotide exchange factors (Epac1, Epac2) are also validated using genetically encoded Epac biosensors, and are independently confirmed in an in vitro Rap1 activation assay using Rp-cAMPS and Rp-8-Br-cAMPS. Thus, in addition to revealing the cAMP dependence of first-phase GSIS from human and rat islets, these findings establish a pAB-based chemistry for the synthesis of highly membrane permeable prodrug derivatives of Rp-cAMPS that act with micromolar or even nanomolar potency to inhibit cAMP signaling in living cells.


Assuntos
8-Bromo Monofosfato de Adenosina Cíclica/análogos & derivados , AMP Cíclico/farmacologia , Glucose/farmacologia , Insulina/metabolismo , Pró-Fármacos/farmacologia , Tionucleotídeos/farmacologia , 8-Bromo Monofosfato de Adenosina Cíclica/farmacologia , Animais , Álcool Benzílico/farmacologia , Linhagem Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citosol/metabolismo , Ativação Enzimática/efeitos dos fármacos , Esterases/metabolismo , Feminino , Transferência Ressonante de Energia de Fluorescência , Regulação da Expressão Gênica/efeitos dos fármacos , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Holoenzimas/metabolismo , Humanos , Secreção de Insulina , Integrases/metabolismo , Luciferases/metabolismo , Masculino , Pessoa de Meia-Idade , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
11.
J Fluoresc ; 24(2): 279-84, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24151033

RESUMO

Resveratrol, a naturally occurring polyphenol found in some fruits and especially in grapes, has been reported to provide diverse health benefits. Resveratrol's mechanism of action is the subject of many investigations, and some studies using the ratiometric calcium indicator Fura-2 suggest that it modulates cellular calcium responses. In the current study, contradictory cellular calcium responses to resveratrol applied at concentrations exceeding 10 µM were observed during in vitro imaging studies depending on the calcium indicator used, with Fura-2 indicating an increase in intracellular calcium while Fluo-4 and the calcium biosensor YC3.60 indicated no response. When cells loaded with Fura-2 were treated with 100 µM resveratrol, excitation at 340 nm resulted in a large intensity increase at 510 nm, but the expected concurrent decline with 380 nm excitation was not observed. Pre-treatment of cells with the calcium chelator BAPTA-AM did not prevent a rise in the 340/380 ratio when resveratrol was present, but it did prevent an increase in 340/380 when ATP was applied, suggesting that the resveratrol response was an artifact. Cautious data interpretation is recommended from imaging experiments using Fura-2 concurrently with resveratrol in calcium imaging experiments.


Assuntos
Cálcio/metabolismo , Fura-2/química , Estilbenos/química , Linhagem Celular Tumoral , Humanos , Resveratrol , Espectrometria de Fluorescência
12.
Islets ; 5(5): 229-32, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24213304

RESUMO

Insulin secretion from pancreatic ß-cells is initiated by the closure of ATP-sensitive K+ channels (KATP) in response to high concentrations of glucose, and this action of glucose is counteracted by the hormone leptin, an adipokine that signals through the Ob-Rb receptor to increase KATP channel activity. Despite intensive investigations, the molecular basis for KATP channel regulation remains uncertain, particularly from the standpoint of whether fluctuations in plasma membrane KATP channel content underlie alterations of KATP channel activity in response to glucose or leptin. Surprisingly, newly published findings reveal that leptin stimulates AMP-activated protein kinase (AMPK) in order to promote trafficking of KATP channels from cytosolic vesicles to the plasma membrane of ß-cells. This action of leptin is mimicked by low concentrations of glucose that also activate AMPK and that inhibit insulin secretion. Thus, a new paradigm for ß-cell stimulus-secretion coupling is suggested in which leptin exerts a tonic inhibitory effect on ß-cell excitability by virtue of its ability to increase plasma membrane KATP channel density and whole-cell KATP channel current. One important issue that remains unresolved is whether high concentrations of glucose suppress AMPK activity in order to shift the balance of membrane cycling so that KATP channel endocytosis predominates over vesicular KATP channel insertion into the plasma membrane. If so, high concentrations of glucose might transiently reduce KATP channel density/current, thereby favoring ß-cell depolarization and insulin secretion. Such an AMPK-dependent action of glucose would complement its established ability to generate an increase of ATP/ADP concentration ratio that directly closes KATP channels in the plasma membrane.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Células Secretoras de Insulina/metabolismo , Leptina/metabolismo , Potenciais da Membrana/fisiologia , Transdução de Sinais/fisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais
13.
Mol Endocrinol ; 27(8): 1267-82, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23798572

RESUMO

GPR119 is a G protein-coupled receptor expressed on enteroendocrine L-cells that synthesize and secrete the incretin hormone glucagon-like peptide-1 (GLP-1). Although GPR119 agonists stimulate L-cell GLP-1 secretion, there is uncertainty concerning whether GLP-1 biosynthesis is under the control of GPR119. Here we report that GPR119 is functionally coupled to increased proglucagon (PG) gene expression that constitutes an essential first step in GLP-1 biosynthesis. Using a mouse L-cell line (GLUTag) that expresses endogenous GPR119, we demonstrate that PG gene promoter activity is stimulated by GPR119 agonist AS1269574. Surprisingly, transfection of GLUTag cells with recombinant human GPR119 (hGPR119) results in a constitutive and apparently ligand-independent increase of PG gene promoter activity and PG mRNA content. These constitutive actions of hGPR119 are mediated by cAMP-dependent protein kinase (PKA) but not cAMP sensor Epac2. Thus, the constitutive action of hGPR119 to stimulate PG gene promoter activity is diminished by: 1) a dominant-negative Gαs protein, 2) a dominant-negative PKA regulatory subunit, and 3) a dominant-negative A-CREB. Interestingly, PG gene promoter activity is stimulated by 6-Bn-cAMP-AM, a cAMP analog that selectively activates α and ß isoforms of type II, but not type I PKA regulatory subunits expressed in GLUTag cells. Finally, our analysis reveals that a specific inhibitor of Epac2 activation (ESI-05) fails to block the stimulatory action of 6-Bn-cAMP-AM at the PG gene promoter, nor is PG gene promoter activity stimulated by: 1) a constitutively active Epac2, or 2) cAMP analogs that selectively activate Epac proteins. Such findings are discussed within the context of ongoing controversies concerning the relative contributions of PKA and Epac2 to the control of PG gene expression.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proglucagon/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Linhagem Celular , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células Enteroendócrinas , Etanolaminas/farmacologia , Regulação da Expressão Gênica , Peptídeo 1 Semelhante ao Glucagon/biossíntese , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Fatores de Troca do Nucleotídeo Guanina/efeitos dos fármacos , Fatores de Troca do Nucleotídeo Guanina/genética , Células HEK293 , Humanos , Incretinas/biossíntese , Incretinas/metabolismo , Células L , Camundongos , Proglucagon/biossíntese , Proglucagon/genética , Regiões Promotoras Genéticas , Pirimidinas/farmacologia , RNA Mensageiro/biossíntese , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Proteínas Recombinantes de Fusão/metabolismo , Transfecção
14.
Proc Natl Acad Sci U S A ; 109(45): 18613-8, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23091014

RESUMO

The major physiological effects of cAMP in mammalian cells are transduced by two ubiquitously expressed intracellular cAMP receptors, protein kinase A (PKA) and exchange protein directly activated by cAMP (EPAC), as well as cyclic nucleotide-gated ion channels in certain tissues. Although a large number of PKA inhibitors are available, there are no reported EPAC-specific antagonists, despite extensive research efforts. Here we report the identification and characterization of noncyclic nucleotide EPAC antagonists that are exclusively specific for the EPAC2 isoform. These EAPC2-specific antagonists, designated as ESI-05 and ESI-07, inhibit Rap1 activation mediated by EAPC2, but not EPAC1, with high potency in vitro. Moreover, ESI-05 and ESI-07 are capable of suppressing the cAMP-mediated activation of EPAC2, but not EPAC1 and PKA, as monitored in living cells through the use of EPAC- and PKA-based FRET reporters, or by the use of Rap1-GTP pull-down assays. Deuterium exchange mass spectroscopy analysis further reveals that EPAC2-specific inhibitors exert their isoform selectivity through a unique mechanism by binding to a previously undescribed allosteric site: the interface of the two cAMP binding domains, which is not present in the EPAC1 isoform. Isoform-specific EPAC pharmacological probes are highly desired and will be valuable tools for dissecting the biological functions of EPAC proteins and their roles in various disease states.


Assuntos
Derivados de Benzeno/farmacologia , AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Sulfonas/farmacologia , Animais , AMP Cíclico/farmacologia , Medição da Troca de Deutério , Ativação Enzimática/efeitos dos fármacos , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HEK293 , Humanos , Camundongos , Isoformas de Proteínas/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo
15.
Islets ; 3(3): 121-8, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21478675

RESUMO

Glucose-stimulated insulin secretion (GSIS) from pancreatic ß-cells is potentiated by cAMP-elevating agents, such as the incretin hormone glucagon-like peptide-1 (GLP-1), and cAMP exerts its insulin secretagogue action by activating both protein kinase A (PKA) and the cAMP-regulated guanine nucleotide exchange factor designated as Epac2. Although prior studies of mouse islets demonstrated that Epac2 acts via Rap1 GTPase to potentiate GSIS, it is not understood which downstream targets of Rap1 promote the exocytosis of insulin. Here, we measured insulin secretion stimulated by a cAMP analog that is a selective activator of Epac proteins in order to demonstrate that a Rap1-regulated phospholipase C-epsilon (PLC-ε) links Epac2 activation to the potentiation of GSIS. Our analysis demonstrates that the Epac activator 8-pCPT-2'-O-Me-cAMP-AM potentiates GSIS from the islets of wild-type (WT) mice, whereas it has a greatly reduced insulin secretagogue action in the islets of Epac2 (-/-) and PLC-ε (-/-) knockout (KO) mice. Importantly, the insulin secretagogue action of 8-pCPT-2'-O-Me-cAMP-AM in WT mouse islets cannot be explained by an unexpected action of this cAMP analog to activate PKA, as verified through the use of a FRET-based A-kinase activity reporter (AKAR3) that reports PKA activation. Since the KO of PLC-ε disrupts the ability of 8-pCPT-2'-O-Me-cAMP-AM to potentiate GSIS, while also disrupting its ability to stimulate an increase of ß-cell [Ca2+]i, the available evidence indicates that it is a Rap1-regulated PLC-ε that links Epac2 activation to Ca2+-dependent exocytosis of insulin.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células Secretoras de Insulina/fisiologia , Insulina/fisiologia , Fosfoinositídeo Fosfolipase C/metabolismo , Animais , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacologia , Transferência Ressonante de Energia de Fluorescência , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/enzimologia , Células Secretoras de Insulina/metabolismo , Camundongos , Camundongos Knockout
16.
Vitam Horm ; 84: 279-302, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21094904

RESUMO

Glucagon-like peptide-1 (GLP-1) binds its Class II G protein-coupled receptor to stimulate cyclic adenosine monophosphate (cAMP) production and to potentiate the glucose metabolism-dependent secretion of insulin from pancreatic ß cells located within the islets of Langerhans. Prior clinical studies demonstrate that this cAMP-mediated action of GLP-1 to potentiate glucose-stimulated insulin secretion (GSIS) is of major therapeutic importance when evaluating the abilities of GLP-1 receptor (GLP-1R) agonists to lower levels of blood glucose in type 2 diabetic subjects. Surprisingly, recent in vitro studies of human or rodent islets of Langerhans provide evidence for the existence of a noncanonical mechanism of ß cell cAMP signal transduction, one that may explain how GLP-1R agonists potentiate GSIS. What these studies demonstrate is that a cAMP-regulated guanine nucleotide exchange factor designated as Epac2 couples ß cell cAMP production to the protein kinase A-independent stimulation of insulin exocytosis. Provided here is an overview of the Epac2 signal transduction system in ß cells, with special emphasis on Rap1, a Ras-related GTPase that is an established target of Epac2.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/fisiologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células Secretoras de Insulina/metabolismo , Receptores de Glucagon/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo , Animais , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1 , Humanos
17.
J Physiol ; 588(Pt 24): 4871-89, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21041529

RESUMO

Calcium can be mobilized in pancreatic ß-cells via a mechanism of Ca(2+)-induced Ca(2+) release (CICR), and cAMP-elevating agents such as exendin-4 facilitate CICR in ß-cells by activating both protein kinase A and Epac2. Here we provide the first report that a novel phosphoinositide-specific phospholipase C- (PLC-) is expressed in the islets of Langerhans, and that the knockout (KO) of PLC- gene expression in mice disrupts the action of exendin-4 to facilitate CICR in the ß-cells of these mice. Thus, in the present study, in which wild-type (WT) C57BL/6 mouse ß-cells were loaded with the photolabile Ca(2+) chelator NP-EGTA, the UV flash photolysis-catalysed uncaging of Ca(2+) generated CICR in only 9% of the ß-cells tested, whereas CICR was generated in 82% of the ß-cells pretreated with exendin-4. This action of exendin-4 to facilitate CICR was reproduced by cAMP analogues that activate protein kinase A (6-Bnz-cAMP-AM) or Epac2 (8-pCPT-2'-O-Me-cAMP-AM) selectively. However, in ß-cells of PLC- KO mice, and also Epac2 KO mice, these test substances exhibited differential efficacies in the CICR assay such that exendin-4 was partly effective, 6-Bnz-cAMP-AM was fully effective, and 8-pCPT-2'-O-Me-cAMP-AM was without significant effect. Importantly, transduction of PLC- KO ß-cells with recombinant PLC- rescued the action of 8-pCPT-2'-O-Me-cAMP-AM to facilitate CICR, whereas a K2150E PLC- with a mutated Ras association (RA) domain, or a H1640L PLC- that is catalytically dead, were both ineffective. Since 8-pCPT-2'-O-Me-cAMP-AM failed to facilitate CICR in WT ß-cells transduced with a GTPase activating protein (RapGAP) that downregulates Rap activity, the available evidence indicates that a signal transduction 'module' comprised of Epac2, Rap and PLC- exists in ß-cells, and that the activities of Epac2 and PLC- are key determinants of CICR in this cell type.


Assuntos
Cálcio/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Peptídeos/farmacologia , Fosfoinositídeo Fosfolipase C/metabolismo , Receptores de Glucagon/agonistas , Peçonhas/farmacologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Células Cultivadas , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacologia , Exenatida , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Receptor do Peptídeo Semelhante ao Glucagon 1 , Fatores de Troca do Nucleotídeo Guanina/genética , Células Secretoras de Insulina/metabolismo , Camundongos , Camundongos Knockout , Fosfoinositídeo Fosfolipase C/genética , Tapsigargina/farmacologia
18.
J Clin Invest ; 120(8): 2876-88, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20592469

RESUMO

Insufficient insulin secretion and reduced pancreatic beta cell mass are hallmarks of type 2 diabetes (T2DM). Here, we confirm that a previously identified polymorphism (rs2295490/Q84R) in exon 2 of the pseudokinase-encoding gene tribbles 3 (TRB3) is associated with an increased risk for T2DM in 2 populations of people of mixed European descent. Carriers of the 84R allele had substantially reduced plasma levels of C-peptide, the product of proinsulin processing to insulin, suggesting a role for TRB3 in beta cell function. Overexpression of TRB3 84R in mouse beta cells, human islet cells, and the murine beta cell line MIN6 revealed reduced insulin exocytosis, associated with a marked reduction in docked insulin granules visualized by electron microscopy. Conversely, knockdown of TRB3 in MIN6 cells restored insulin secretion and expression of exocytosis genes. Further analysis in MIN6 cells demonstrated that TRB3 interacted with the transcription factor ATF4 and that this complex acted as a competitive inhibitor of cAMP response element-binding (CREB) transcription factor in the regulation of key exocytosis genes. In addition, the 84R TRB3 variant exhibited greater protein stability than wild-type TRB3 and increased binding affinity to Akt. Mice overexpressing TRB3 84R in beta cells displayed decreased beta cell mass, associated with reduced proliferation and enhanced apoptosis rates. These data link a missense polymorphism in human TRB3 to impaired insulin exocytosis and thus increased risk for T2DM.


Assuntos
Fator 4 Ativador da Transcrição/fisiologia , Proteínas de Ciclo Celular/fisiologia , Exocitose , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Repressoras/fisiologia , Animais , Apoptose , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Diabetes Mellitus Tipo 2/etiologia , Gorduras na Dieta/administração & dosagem , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor de Insulina/fisiologia
19.
Islets ; 2(2): 72-81, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20428467

RESUMO

Clinical studies demonstrate that combined administration of sulfonylureas with exenatide can induce hypoglycemia in type 2 diabetic subjects. Whereas sulfonylureas inhibit ß-cell K(ATP) channels by binding to the sulfonylurea receptor-1 (SUR1), exenatide binds to the GLP-1 receptor, stimulates ß-cell cAMP production and activates both PKA and Epac. In this study, we hypothesized that the adverse in vivo interaction of sulfonylureas and exenatide to produce hypoglycemia might be explained by Epac-mediated facilitation of K(ATP) channel sulfonylurea sensitivity. We now report that the inhibitory action of a sulfonylurea (tolbutamide) at K(ATP) channels was facilitated by 2'-O-Me-cAMP, a selective activator of Epac. Thus, under conditions of excised patch recording, the dose-response relationship describing the inhibitory action of tolbutamide at human ß-cell or rat INS-1 cell K(ATP) channels was left-shifted in the presence of 2'-O-Me-cAMP, and this effect was abolished in INS-1 cells expressing a dominant-negative Epac2. Using an acetoxymethyl ester prodrug of an Epac-selective cAMP analog (8-pCP T-2'-O-Me-cAMP-AM), the synergistic interaction of an Epac activator and tolbutamide to depolarize INS-1 cells and to raise [Ca²(+)](i) was also measured. This effect of 8-pCP T-2'-O-Me-cAMP-AM correlated with its ability to stimulate phosphatidylinositol 4,5-bisphosphate hydrolysis that might contribute to the changes in K(ATP) channel sulfonylurea-sensitivity reported here. On the basis of such findings, we propose that the adverse interaction of sulfonylureas and exenatide to induce hypoglycemia involves at least in part, a functional interaction of these two compounds to close K(ATP) channels, to depolarize ß-cells and to promote insulin secretion.


Assuntos
AMP Cíclico/análogos & derivados , Fatores de Troca do Nucleotídeo Guanina/agonistas , Células Secretoras de Insulina/efeitos dos fármacos , Canais KATP/metabolismo , Compostos de Sulfonilureia/farmacologia , Animais , Células Cultivadas , AMP Cíclico/farmacologia , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Humanos , Hipoglicemiantes/farmacologia , Células Secretoras de Insulina/metabolismo , Canais KATP/efeitos dos fármacos , Ratos , Especificidade por Substrato/efeitos dos fármacos , Tolbutamida/farmacologia
20.
Am J Physiol Endocrinol Metab ; 298(3): E622-33, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20009023

RESUMO

Potential insulin secretagogue properties of an acetoxymethyl ester of a cAMP analog (8-pCPT-2'-O-Me-cAMP-AM) that activates the guanine nucleotide exchange factors Epac1 and Epac2 were assessed using isolated human islets of Langerhans. RT-QPCR demonstrated that the predominant variant of Epac expressed in human islets was Epac2, although Epac1 was detectable. Under conditions of islet perifusion, 8-pCPT-2'-O-Me-cAMP-AM (10 microM) potentiated first- and second-phase 10 mM glucose-stimulated insulin secretion (GSIS) while failing to influence insulin secretion measured in the presence of 3 mM glucose. The insulin secretagogue action of 8-pCPT-2'-O-Me-cAMP-AM was associated with depolarization and an increase of [Ca(2+)](i) that reflected both Ca(2+) influx and intracellular Ca(2+) mobilization in islet beta-cells. As expected for an Epac-selective cAMP analog, 8-pCPT-2'-O-Me-cAMP-AM (10 microM) failed to stimulate phosphorylation of PKA substrates CREB and Kemptide in human islets. Furthermore, 8-pCPT-2'-O-Me-cAMP-AM (10 microM) had no significant ability to activate AKAR3, a PKA-regulated biosensor expressed in human islet cells by viral transduction. Unexpectedly, treatment of human islets with an inhibitor of PKA activity (H-89) or treatment with a cAMP antagonist that blocks PKA activation (Rp-8-CPT-cAMPS) nearly abolished the action of 8-pCPT-2'-O-Me-cAMP-AM to potentiate GSIS. It is concluded that there exists a permissive role for PKA activity in support of human islet insulin secretion that is both glucose dependent and Epac regulated. This permissive action of PKA may be operative at the insulin secretory granule recruitment, priming, and/or postpriming steps of Ca(2+)-dependent exocytosis.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/análogos & derivados , Glucose/administração & dosagem , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Células Cultivadas , AMP Cíclico/administração & dosagem , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Humanos , Secreção de Insulina , Ilhotas Pancreáticas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA