Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 12(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38540317

RESUMO

Mutationsin epidermal growth factor receptor (EGFR) are found in approximately 48% of Asian and 19% of Western patients with lung adenocarcinoma (LUAD), leading to aggressive tumor growth. While tyrosine kinase inhibitors (TKIs) like gefitinib and osimertinib target this mutation, treatments often face challenges such as metastasis and resistance. To address this, we developed physiologically based pharmacokinetic (PBPK) models for both drugs, simulating their distribution within the primary tumor and metastases following oral administration. These models, combined with a mechanistic knowledge-based disease model of EGFR-mutated LUAD, allow us to predict the tumor's behavior under treatment considering the diversity within the tumor cells due to different mutations. The combined model reproduces the drugs' distribution within the body, as well as the effects of both gefitinib and osimertinib on EGFR-activation-induced signaling pathways. In addition, the disease model encapsulates the heterogeneity within the tumor through the representation of various subclones. Each subclone is characterized by unique mutation profiles, allowing the model to accurately reproduce clinical outcomes, including patients' progression, aligning with RECIST criteria guidelines (version 1.1). Datasets used for calibration came from NEJ002 and FLAURA clinical trials. The quality of the fit was ensured with rigorous visual predictive checks and statistical tests (comparison metrics computed from bootstrapped, weighted log-rank tests: 98.4% (NEJ002) and 99.9% (FLAURA) similarity). In addition, the model was able to predict outcomes from an independent retrospective study comparing gefitinib and osimertinib which had not been used within the model development phase. This output validation underscores mechanistic models' potential in guiding future clinical trials by comparing treatment efficacies and identifying patients who would benefit most from specific TKIs. Our work is a step towards the design of a powerful tool enhancing personalized treatment in LUAD. It could support treatment strategy evaluations and potentially reduce trial sizes, promising more efficient and targeted therapeutic approaches. Following its consecutive prospective validations with the FLAURA2 and MARIPOSA trials (validation metrics computed from bootstrapped, weighted log-rank tests: 94.0% and 98.1%, respectively), the model could be used to generate a synthetic control arm.

2.
J Allergy Clin Immunol ; 152(5): 1261-1272, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37460023

RESUMO

BACKGROUND: Autoimmune diseases are leading causes of ill health and morbidity and have diverse etiology. Two signaling pathways are key drivers of autoimmune pathology, interferon and nuclear factor-κB (NF-κB)/RelA, defining the 2 broad labels of interferonopathies and relopathies. Prior work has established that genetic loss of function of the NF-κB subunit RelB leads to autoimmune and inflammatory pathology in mice and humans. OBJECTIVE: We sought to characterize RelB-deficient autoimmunity by unbiased profiling of the responses of immune sentinel cells to stimulus and to determine the functional role of dysregulated gene programs in the RelB-deficient pathology. METHODS: Transcriptomic profiling was performed on fibroblasts and dendritic cells derived from patients with RelB deficiency and knockout mice, and transcriptomic responses and pathology were assessed in mice deficient in both RelB and the type I interferon receptor. RESULTS: We found that loss of RelB in patient-derived fibroblasts and mouse myeloid cells results in elevated induction of hundreds of interferon-stimulated genes. Removing hyperexpression of the interferon-stimulated gene program did not ameliorate the autoimmune pathology of RelB knockout mice. Instead, we found that RelB suppresses a different set of inflammatory response genes in a manner that is independent of interferon signaling but associated with NF-κB binding motifs. CONCLUSION: Although transcriptomic profiling would describe RelB-deficient autoimmune disease as an interferonopathy, the genetic evidence indicates that the pathology in mice is interferon-independent.


Assuntos
Doenças Autoimunes , NF-kappa B , Animais , Humanos , Camundongos , Doenças Autoimunes/genética , Interferons/genética , Camundongos Knockout , NF-kappa B/metabolismo , Transdução de Sinais , Fator de Transcrição RelB/genética
3.
J Autoimmun ; 137: 102946, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36402602

RESUMO

BACKGROUND: Genetic aberrations in the NFκB pathway lead to primary immunodeficiencies with various degrees of severity. We previously demonstrated that complete ablation of the RelB transcription factor, a key component of the alternative pathway, results in an early manifested combined immunodeficiency requiring stem cell transplantation. OBJECTIVE: To study the molecular basis of a progressive severe autoimmunity and immunodeficiency in three patients. METHODS: Whole exome sequencing was performed to identify the genetic defect. Molecular and cellular techniques were utilized to assess the variant impact on NFκB signaling, canonical and alternative pathway crosstalk, as well as the resultant effects on immune function. RESULTS: Patients presented with multiple autoimmune progressive severe manifestations encompassing the liver, gut, lung, and skin, becoming debilitating in the second decade of life. This was accompanied by a deterioration of the immune system, demonstrating an age-related decline in naïve T cells and responses to mitogens, accompanied by a gradual loss of all circulating CD19+ cells. Whole exome sequencing identified a novel homozygous c. C1091T (P364L) transition in RELB. The P364L RelB protein was unstable, with extremely low expression, but retained some function and could be transiently and partially upregulated following Toll-like receptor stimulation. Stimulation of P364L patient fibroblasts resulted in a marked rise in a cluster of pro-inflammatory hyper-expressed transcripts consistent with the removal of RelB inhibitory effect on RelA function. This is likely the main driver of autoimmune manifestations in these patients. CONCLUSION: Incomplete loss of RelB provided a unique opportunity to gain insights into NFκB's pathway interactions as well as the pathogenesis of autoimmunity. The P364L RelB mutation leads to gradual decline in immune function with progression of severe debilitating autoimmunity.


Assuntos
Doenças Autoimunes , Fator de Transcrição RelB , Humanos , Fator de Transcrição RelB/genética , Fator de Transcrição RelB/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Regulação da Expressão Gênica , Doenças Autoimunes/genética
5.
Nature ; 604(7906): 534-540, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35418685

RESUMO

The ontogeny of human haematopoietic stem cells (HSCs) is poorly defined owing to the inability to identify HSCs as they emerge and mature at different haematopoietic sites1. Here we created a single-cell transcriptome map of human haematopoietic tissues from the first trimester to birth and found that the HSC signature RUNX1+HOXA9+MLLT3+MECOM+HLF+SPINK2+ distinguishes HSCs from progenitors throughout gestation. In addition to the aorta-gonad-mesonephros region, nascent HSCs populated the placenta and yolk sac before colonizing the liver at 6 weeks. A comparison of HSCs at different maturation stages revealed the establishment of HSC transcription factor machinery after the emergence of HSCs, whereas their surface phenotype evolved throughout development. The HSC transition to the liver marked a molecular shift evidenced by suppression of surface antigens reflecting nascent HSC identity, and acquisition of the HSC maturity markers CD133 (encoded by PROM1) and HLA-DR. HSC origin was tracked to ALDH1A1+KCNK17+ haemogenic endothelial cells, which arose from an IL33+ALDH1A1+ arterial endothelial subset termed pre-haemogenic endothelial cells. Using spatial transcriptomics and immunofluorescence, we visualized this process in ventrally located intra-aortic haematopoietic clusters. The in vivo map of human HSC ontogeny validated the generation of aorta-gonad-mesonephros-like definitive haematopoietic stem and progenitor cells from human pluripotent stem cells, and serves as a guide to improve their maturation to functional HSCs.


Assuntos
Células Endoteliais , Células-Tronco Hematopoéticas , Diferenciação Celular , Endotélio , Feminino , Hematopoese , Humanos , Mesonefro , Gravidez
6.
NPJ Syst Biol Appl ; 7(1): 42, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34853340

RESUMO

Inflammatory stimuli triggers the degradation of three inhibitory κB (IκB) proteins, allowing for nuclear translocation of nuclear factor-κB (NFκB) for transcriptional induction of its target genes. Of these three, IκBα is a well-known negative feedback regulator that limits the duration of NFκB activity. We sought to determine whether IκBα's role in enabling or limiting NFκB activation is important for tumor necrosis factor (TNF)-induced gene expression in human breast cancer cells (MCF-7). Contrary to our expectations, many more TNF-response genes showed reduced induction than enhanced induction in IκBα knockdown cells. Mathematical modeling was used to investigate the underlying mechanism. We found that the reduced activation of some NFκB target genes in IκBα-deficient cells could be explained by the incoherent feedforward loop (IFFL) model. In addition, for a subset of genes, prolonged NFκB activity due to loss of negative feedback control did not prolong their transient activation; this implied a multi-state transcription cycle control of gene induction. Genes encoding key inflammation-related transcription factors, such as JUNB and KLF10, were found to be best represented by a model that contained both the IFFL and the transcription cycle motif. Our analysis sheds light on the regulatory strategies that safeguard inflammatory gene expression from overproduction and repositions the function of IκBα not only as a negative feedback regulator of NFκB but also as an enabler of NFκB-regulated stimulus-responsive inflammatory gene expression. This study indicates the complex involvement of IκBα in the inflammatory response to TNF that is induced by radiation therapy in breast cancer.


Assuntos
Inibidor de NF-kappaB alfa , NF-kappa B , Fator de Necrose Tumoral alfa , Regulação da Expressão Gênica , Humanos , Células MCF-7 , Inibidor de NF-kappaB alfa/genética , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo
7.
PLoS Comput Biol ; 17(6): e1009095, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34166361

RESUMO

The effectiveness of immune responses depends on the precision of stimulus-responsive gene expression programs. Cells specify which genes to express by activating stimulus-specific combinations of stimulus-induced transcription factors (TFs). Their activities are decoded by a gene regulatory strategy (GRS) associated with each response gene. Here, we examined whether the GRSs of target genes may be inferred from stimulus-response (input-output) datasets, which remains an unresolved model-identifiability challenge. We developed a mechanistic modeling framework and computational workflow to determine the identifiability of all possible combinations of synergistic (AND) or non-synergistic (OR) GRSs involving three transcription factors. Considering different sets of perturbations for stimulus-response studies, we found that two thirds of GRSs are easily distinguishable but that substantially more quantitative data is required to distinguish the remaining third. To enhance the accuracy of the inference with timecourse experimental data, we developed an advanced error model that avoids error overestimates by distinguishing between value and temporal error. Incorporating this error model into a Bayesian framework, we show that GRS models can be identified for individual genes by considering multiple datasets. Our analysis rationalizes the allocation of experimental resources by identifying most informative TF stimulation conditions. Applying this computational workflow to experimental data of immune response genes in macrophages, we found that a much greater fraction of genes are combinatorially controlled than previously reported by considering compensation among transcription factors. Specifically, we revealed that a group of known NFκB target genes may also be regulated by IRF3, which is supported by chromatin immuno-precipitation analysis. Our study provides a computational workflow for designing and interpreting stimulus-response gene expression studies to identify underlying gene regulatory strategies and further a mechanistic understanding.


Assuntos
Redes Reguladoras de Genes , Modelos Biológicos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Teorema de Bayes , Células Cultivadas , Sequenciamento de Cromatina por Imunoprecipitação , Biologia Computacional , Simulação por Computador , Perfilação da Expressão Gênica , Imunidade/genética , Funções Verossimilhança , Macrófagos/metabolismo , Camundongos , Modelos Genéticos , RNA-Seq
9.
PLoS One ; 13(9): e0203874, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30240401

RESUMO

Oxidative stress is believed to be a major driver of inflammation in smoking asthmatics. The U-BIOPRED project recruited a cohort of Severe Asthma smokers/ex-smokers (SAs/ex) and non-smokers (SAn) with extensive clinical and biomarker information enabling characterization of these subjects. We investigated oxidative stress in severe asthma subjects by analysing urinary 8-iso-PGF2α and the mRNA-expression of the main pro-oxidant (NOX2; NOSs) and anti-oxidant (SODs; CAT; GPX1) enzymes in the airways of SAs/ex and SAn. All the severe asthma U-BIOPRED subjects were further divided into current smokers with severe asthma (CSA), ex-smokers with severe asthma (ESA) and non-smokers with severe asthma (NSA) to deepen the effect of active smoking. Clinical data, urine and sputum were obtained from severe asthma subjects. A bronchoscopy to obtain bronchial biopsy and brushing was performed in a subset of subjects. The main clinical data were analysed for each subset of subjects (urine-8-iso-PGF2α; IS-transcriptomics; BB-transcriptomics; BBr-transcriptomics). Urinary 8-iso-PGF2α was quantified using mass spectrometry. Sputum, bronchial biopsy and bronchial brushing were processed for mRNA expression microarray analysis. Urinary 8-iso-PGF2α was increased in SAs/ex, median (IQR) = 31.7 (24.5-44.7) ng/mmol creatinine, compared to SAn, median (IQR) = 26.6 (19.6-36.6) ng/mmol creatinine (p< 0.001), and in CSA, median (IQR) = 34.25 (24.4-47.7), vs. ESA, median (IQR) = 29.4 (22.3-40.5), and NSA, median (IQR) = 26.5 (19.6-16.6) ng/mmol creatinine (p = 0.004). Sputum mRNA expression of NOX2 was increased in SAs/ex compared to SAn (probe sets 203922_PM_s_at fold-change = 1.05 p = 0.006; 203923_PM_s_at fold-change = 1.06, p = 0.003; 233538_PM_s_at fold-change = 1.06, p = 0.014). The mRNA expression of antioxidant enzymes were similar between the two severe asthma cohorts in all airway samples. NOS2 mRNA expression was decreased in bronchial brushing of SAs/ex compared to SAn (fold-change = -1.10; p = 0.029). NOS2 mRNA expression in bronchial brushing correlated with FeNO (Kendal's Tau = 0.535; p< 0.001). From clinical and inflammatory analysis, FeNO was lower in CSA than in ESA in all the analysed subject subsets (p< 0.01) indicating an effect of active smoking. Results about FeNO suggest its clinical limitation, as inflammation biomarker, in severe asthma active smokers. These data provide evidence of greater systemic oxidative stress in severe asthma smokers as reflected by a significant changes of NOX2 mRNA expression in the airways, together with elevated urinary 8-iso-PGF2α in the smokers/ex-smokers group. Trial registration ClinicalTrials.gov-Identifier: NCT01976767.


Assuntos
Asma/metabolismo , Estresse Oxidativo/fisiologia , Fumar Tabaco/efeitos adversos , Adulto , Asma/patologia , Biomarcadores/metabolismo , Broncoscopia , Estudos de Coortes , Feminino , Humanos , Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Fumar/metabolismo , Escarro/metabolismo , Fumar Tabaco/metabolismo
10.
BMC Syst Biol ; 12(1): 60, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29843806

RESUMO

BACKGROUND: Multilevel data integration is becoming a major area of research in systems biology. Within this area, multi-'omics datasets on complex diseases are becoming more readily available and there is a need to set standards and good practices for integrated analysis of biological, clinical and environmental data. We present a framework to plan and generate single and multi-'omics signatures of disease states. METHODS: The framework is divided into four major steps: dataset subsetting, feature filtering, 'omics-based clustering and biomarker identification. RESULTS: We illustrate the usefulness of this framework by identifying potential patient clusters based on integrated multi-'omics signatures in a publicly available ovarian cystadenocarcinoma dataset. The analysis generated a higher number of stable and clinically relevant clusters than previously reported, and enabled the generation of predictive models of patient outcomes. CONCLUSIONS: This framework will help health researchers plan and perform multi-'omics big data analyses to generate hypotheses and make sense of their rich, diverse and ever growing datasets, to enable implementation of translational P4 medicine.


Assuntos
Doença/genética , Biologia de Sistemas/métodos , Biomarcadores/metabolismo , Análise por Conglomerados , Reações Falso-Positivas , Aprendizado de Máquina , Controle de Qualidade
11.
Eur Respir J ; 51(5)2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29650557

RESUMO

Severe asthma patients with a significant smoking history have airflow obstruction with reported neutrophilia. We hypothesise that multi-omic analysis will enable the definition of smoking and ex-smoking severe asthma molecular phenotypes.The U-BIOPRED cohort of severe asthma patients, containing current-smokers (CSA), ex-smokers (ESA), nonsmokers and healthy nonsmokers was examined. Blood and sputum cell counts, fractional exhaled nitric oxide and spirometry were obtained. Exploratory proteomic analysis of sputum supernatants and transcriptomic analysis of bronchial brushings, biopsies and sputum cells was performed.Colony-stimulating factor (CSF)2 protein levels were increased in CSA sputum supernatants, with azurocidin 1, neutrophil elastase and CXCL8 upregulated in ESA. Phagocytosis and innate immune pathways were associated with neutrophilic inflammation in ESA. Gene set variation analysis of bronchial epithelial cell transcriptome from CSA showed enrichment of xenobiotic metabolism, oxidative stress and endoplasmic reticulum stress compared to other groups. CXCL5 and matrix metallopeptidase 12 genes were upregulated in ESA and the epithelial protective genes, mucin 2 and cystatin SN, were downregulated.Despite little difference in clinical characteristics, CSA were distinguishable from ESA subjects at the sputum proteomic level, with CSA patients having increased CSF2 expression and ESA patients showing sustained loss of epithelial barrier processes.


Assuntos
Asma/metabolismo , Ex-Fumantes , Proteômica/métodos , Fumantes , Escarro/metabolismo , Adulto , Idoso , Asma/complicações , Biomarcadores/metabolismo , Brônquios/patologia , Eosinófilos/metabolismo , Expiração , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade , Óxido Nítrico/metabolismo , Fumar/metabolismo , Espirometria
12.
Am J Respir Crit Care Med ; 195(4): 443-455, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27580351

RESUMO

RATIONALE: Asthma is a heterogeneous disease driven by diverse immunologic and inflammatory mechanisms. OBJECTIVES: Using transcriptomic profiling of airway tissues, we sought to define the molecular phenotypes of severe asthma. METHODS: The transcriptome derived from bronchial biopsies and epithelial brushings of 107 subjects with moderate to severe asthma were annotated by gene set variation analysis using 42 gene signatures relevant to asthma, inflammation, and immune function. Topological data analysis of clinical and histologic data was performed to derive clusters, and the nearest shrunken centroid algorithm was used for signature refinement. MEASUREMENTS AND MAIN RESULTS: Nine gene set variation analysis signatures expressed in bronchial biopsies and airway epithelial brushings distinguished two distinct asthma subtypes associated with high expression of T-helper cell type 2 cytokines and lack of corticosteroid response (group 1 and group 3). Group 1 had the highest submucosal eosinophils, as well as high fractional exhaled nitric oxide levels, exacerbation rates, and oral corticosteroid use, whereas group 3 patients showed the highest levels of sputum eosinophils and had a high body mass index. In contrast, group 2 and group 4 patients had an 86% and 64% probability, respectively, of having noneosinophilic inflammation. Using machine learning tools, we describe an inference scheme using the currently available inflammatory biomarkers sputum eosinophilia and fractional exhaled nitric oxide levels, along with oral corticosteroid use, that could predict the subtypes of gene expression within bronchial biopsies and epithelial cells with good sensitivity and specificity. CONCLUSIONS: This analysis demonstrates the usefulness of a transcriptomics-driven approach to phenotyping that segments patients who may benefit the most from specific agents that target T-helper cell type 2-mediated inflammation and/or corticosteroid insensitivity.


Assuntos
Corticosteroides/imunologia , Asma/genética , Brônquios/patologia , Corticosteroides/farmacologia , Corticosteroides/uso terapêutico , Adulto , Asma/tratamento farmacológico , Asma/imunologia , Asma/patologia , Biomarcadores/análise , Biópsia , Testes Respiratórios , Broncoscopia/instrumentação , Broncoscopia/métodos , Estudos de Coortes , Resistência a Medicamentos/genética , Resistência a Medicamentos/imunologia , Eosinófilos/citologia , Eosinófilos/imunologia , Feminino , Perfilação da Expressão Gênica/instrumentação , Perfilação da Expressão Gênica/métodos , Humanos , Inflamação , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade , Fenótipo , Índice de Gravidade de Doença , Escarro/citologia , Escarro/imunologia , Células Th2/citologia , Células Th2/imunologia
13.
J Allergy Clin Immunol ; 139(6): 1797-1807, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27773852

RESUMO

BACKGROUND: Asthma is a heterogeneous disease in which there is a differential response to asthma treatments. This heterogeneity needs to be evaluated so that a personalized management approach can be provided. OBJECTIVES: We stratified patients with moderate-to-severe asthma based on clinicophysiologic parameters and performed an omics analysis of sputum. METHODS: Partition-around-medoids clustering was applied to a training set of 266 asthmatic participants from the European Unbiased Biomarkers for the Prediction of Respiratory Diseases Outcomes (U-BIOPRED) adult cohort using 8 prespecified clinic-physiologic variables. This was repeated in a separate validation set of 152 asthmatic patients. The clusters were compared based on sputum proteomics and transcriptomics data. RESULTS: Four reproducible and stable clusters of asthmatic patients were identified. The training set cluster T1 consists of patients with well-controlled moderate-to-severe asthma, whereas cluster T2 is a group of patients with late-onset severe asthma with a history of smoking and chronic airflow obstruction. Cluster T3 is similar to cluster T2 in terms of chronic airflow obstruction but is composed of nonsmokers. Cluster T4 is predominantly composed of obese female patients with uncontrolled severe asthma with increased exacerbations but with normal lung function. The validation set exhibited similar clusters, demonstrating reproducibility of the classification. There were significant differences in sputum proteomics and transcriptomics between the clusters. The severe asthma clusters (T2, T3, and T4) had higher sputum eosinophilia than cluster T1, with no differences in sputum neutrophil counts and exhaled nitric oxide and serum IgE levels. CONCLUSION: Clustering based on clinicophysiologic parameters yielded 4 stable and reproducible clusters that associate with different pathobiological pathways.


Assuntos
Asma , Escarro , Adulto , Idoso , Algoritmos , Asma/classificação , Asma/genética , Asma/metabolismo , Biomarcadores/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Proteômica , Índice de Gravidade de Doença , Escarro/citologia , Escarro/metabolismo
14.
Am J Respir Crit Care Med ; 195(10): 1311-1320, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27925796

RESUMO

RATIONALE: Stratification of asthma at the molecular level, especially using accessible biospecimens, could greatly enable patient selection for targeted therapy. OBJECTIVES: To determine the value of blood analysis to identify transcriptional differences between clinically defined asthma and nonasthma groups, identify potential patient subgroups based on gene expression, and explore biological pathways associated with identified differences. METHODS: Transcriptomic profiles were generated by microarray analysis of blood from 610 patients with asthma and control participants in the U-BIOPRED (Unbiased Biomarkers in Prediction of Respiratory Disease Outcomes) study. Differentially expressed genes (DEGs) were identified by analysis of variance, including covariates for RNA quality, sex, and clinical site, and Ingenuity Pathway Analysis was applied. Patient subgroups based on DEGs were created by hierarchical clustering and topological data analysis. MEASUREMENTS AND MAIN RESULTS: A total of 1,693 genes were differentially expressed between patients with severe asthma and participants without asthma. The differences from participants without asthma in the nonsmoking severe asthma and mild/moderate asthma subgroups were significantly related (r = 0.76), with a larger effect size in the severe asthma group. The majority of, but not all, differences were explained by differences in circulating immune cell populations. Pathway analysis showed an increase in chemotaxis, migration, and myeloid cell trafficking in patients with severe asthma, decreased B-lymphocyte development and hematopoietic progenitor cells, and lymphoid organ hypoplasia. Cluster analysis of DEGs led to the creation of subgroups among the patients with severe asthma who differed in molecular responses to oral corticosteroids. CONCLUSIONS: Blood gene expression differences between clinically defined subgroups of patients with asthma and individuals without asthma, as well as subgroups of patients with severe asthma defined by transcript profiles, show the value of blood analysis in stratifying patients with asthma and identifying molecular pathways for further study. Clinical trial registered with www.clinicaltrials.gov (NCT01982162).


Assuntos
Corticosteroides/uso terapêutico , Asma/sangue , Asma/tratamento farmacológico , Perfilação da Expressão Gênica/métodos , Corticosteroides/sangue , Adulto , Análise por Conglomerados , Estudos de Coortes , Europa (Continente) , Feminino , Humanos , Masculino , Análise em Microsséries/estatística & dados numéricos , Pessoa de Meia-Idade , Estudos Prospectivos , Índice de Gravidade de Doença , Transcriptoma/efeitos dos fármacos
15.
Eur Respir J ; 48(5): 1307-1319, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27799384

RESUMO

The U-BIOPRED study is a multicentre European study aimed at a better understanding of severe asthma. It included three steroid-treated adult asthma groups (severe nonsmokers (SAn group), severe current/ex-smokers (SAs/ex group) and those with mild-moderate disease (MMA group)) and healthy controls (HC group). The aim of this cross-sectional, bronchoscopy substudy was to compare bronchial immunopathology between these groups.In 158 participants, bronchial biopsies and bronchial epithelial brushings were collected for immunopathologic and transcriptomic analysis. Immunohistochemical analysis of glycol methacrylate resin-embedded biopsies showed there were more mast cells in submucosa of the HC group (33.6 mm-2) compared with both severe asthma groups (SAn: 17.4 mm-2, p<0.001; SAs/ex: 22.2 mm-2, p=0.01) and with the MMA group (21.2 mm-2, p=0.01). The number of CD4+ lymphocytes was decreased in the SAs/ex group (4.7 mm-2) compared with the SAn (11.6 mm-2, p=0.002), MMA (10.1 mm-2, p=0.008) and HC (10.6 mm-2, p<0.001) groups. No other differences were observed.Affymetrix microarray analysis identified seven probe sets in the bronchial brushing samples that had a positive relationship with submucosal eosinophils. These mapped to COX-2 (cyclo-oxygenase-2), ADAM-7 (disintegrin and metalloproteinase domain-containing protein 7), SLCO1A2 (solute carrier organic anion transporter family member 1A2), TMEFF2 (transmembrane protein with epidermal growth factor like and two follistatin like domains 2) and TRPM-1 (transient receptor potential cation channel subfamily M member 1); the remaining two are unnamed.We conclude that in nonsmoking and smoking patients on currently recommended therapy, severe asthma exists despite suppressed tissue inflammation within the proximal airway wall.


Assuntos
Asma/fisiopatologia , Asma/terapia , Brônquios/fisiopatologia , Inflamação/tratamento farmacológico , Resinas Acrílicas/química , Adulto , Biópsia , Brônquios/imunologia , Broncoscopia , Linfócitos T CD4-Positivos/citologia , Estudos de Casos e Controles , Estudos Transversais , Europa (Continente) , Feminino , Humanos , Imunoquímica , Masculino , Metacrilatos/química , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Fumar , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA