Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Clin Chem Lab Med ; 62(8): 1626-1635, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-38332688

RESUMO

OBJECTIVES: Multiple myeloma (MM) is a plasma cell malignancy characterized by a monoclonal expansion of plasma cells that secrete a characteristic M-protein. This M-protein is crucial for diagnosis and monitoring of MM in the blood of patients. Recent evidence has emerged suggesting that N-glycosylation of the M-protein variable (Fab) region contributes to M-protein pathogenicity, and that it is a risk factor for disease progression of plasma cell disorders. Current methodologies lack the specificity to provide a site-specific glycoprofile of the Fab regions of M-proteins. Here, we introduce a novel glycoproteogenomics method that allows detailed M-protein glycoprofiling by integrating patient specific Fab region sequences (genomics) with glycoprofiling by glycoproteomics. METHODS: Glycoproteogenomics was used for the detailed analysis of de novo N-glycosylation sites of M-proteins. First, Genomic analysis of the M-protein variable region was used to identify de novo N-glycosylation sites. Subsequently glycopeptide analysis with LC-MS/MS was used for detailed analysis of the M-protein glycan sites. RESULTS: Genomic analysis uncovered a more than two-fold increase in the Fab Light Chain N-glycosylation of M-proteins of patients with Multiple Myeloma compared to Fab Light Chain N-glycosylation of polyclonal antibodies from healthy individuals. Subsequent glycoproteogenomics analysis of 41 patients enrolled in the IFM 2009 clinical trial revealed that the majority of the Fab N-glycosylation sites were fully occupied with complex type glycans, distinguishable from Fc region glycans due to high levels of sialylation, fucosylation and bisecting structures. CONCLUSIONS: Together, glycoproteogenomics is a powerful tool to study de novo Fab N-glycosylation in plasma cell dyscrasias.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/genética , Mieloma Múltiplo/diagnóstico , Glicosilação , Proteômica/métodos , Espectrometria de Massas em Tandem , Glicoproteínas/metabolismo , Cromatografia Líquida , Proteínas do Mieloma/metabolismo , Proteínas do Mieloma/análise
2.
J Inherit Metab Dis ; 46(5): 956-971, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37340906

RESUMO

NANS-CDG is a congenital disorder of glycosylation (CDG) caused by biallelic variants in NANS, encoding an essential enzyme in de novo sialic acid synthesis. It presents with intellectual developmental disorder (IDD), skeletal dysplasia, neurologic impairment, and gastrointestinal dysfunction. Some patients suffer progressive intellectual neurologic deterioration (PIND), emphasizing the need for a therapy. In a previous study, sialic acid supplementation in knockout nansa zebrafish partially rescued skeletal abnormalities. Here, we performed the first in-human pre- and postnatal sialic-acid study in NANS-CDG. In this open-label observational study, 5 patients with NANS-CDG (range 0-28 years) were treated with oral sialic acid for 15 months. The primary outcome was safety. Secondary outcomes were psychomotor/cognitive testing, height and weight, seizure control, bone health, gastrointestinal symptoms, and biochemical and hematological parameters. Sialic acid was well tolerated. In postnatally treated patients, there was no significant improvement. For the prenatally treated patient, psychomotor and neurologic development was better than two other genotypically identical patients (one treated postnatally, one untreated). The effect of sialic acid treatment may depend on the timing, with prenatal treatment potentially benefiting neurodevelopmental outcomes. Evidence is limited, however, and longer-term follow-up in a larger number of prenatally treated patients is required.


Assuntos
Defeitos Congênitos da Glicosilação , Ácido N-Acetilneuramínico , Animais , Humanos , Projetos Piloto , Peixe-Zebra , Defeitos Congênitos da Glicosilação/tratamento farmacológico , Defeitos Congênitos da Glicosilação/genética , Suplementos Nutricionais
3.
Nat Commun ; 13(1): 1847, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35422047

RESUMO

Ribitol-phosphate modification is crucial for the functional maturation of α-dystroglycan. Its dysfunction is associated with muscular dystrophy, cardiomyopathy, and central nervous system abnormalities; however, no effective treatments are currently available for diseases caused by ribitol-phosphate defects. In this study, we demonstrate that prodrug treatments can ameliorate muscular dystrophy caused by defects in isoprenoid synthase domain containing (ISPD), which encodes an enzyme that synthesizes CDP-ribitol, a donor substrate for ribitol-phosphate modification. We generated skeletal muscle-selective Ispd conditional knockout mice, leading to a pathogenic reduction in CDP-ribitol levels, abnormal glycosylation of α-dystroglycan, and severe muscular dystrophy. Adeno-associated virus-mediated gene replacement experiments suggested that the recovery of CDP-ribitol levels rescues the ISPD-deficient pathology. As a prodrug treatment strategy, we developed a series of membrane-permeable CDP-ribitol derivatives, among which tetraacetylated CDP-ribitol ameliorated the dystrophic pathology. In addition, the prodrug successfully rescued abnormal α-dystroglycan glycosylation in patient fibroblasts. Consequently, our findings provide proof-of-concept for supplementation therapy with CDP-ribitol and could accelerate the development of therapeutic agents for muscular dystrophy and other diseases caused by glycosylation defects.


Assuntos
Distrofias Musculares , Pró-Fármacos , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Distroglicanas , Músculo Esquelético , Distrofias Musculares/tratamento farmacológico , Distrofias Musculares/genética , Fosfatos , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Ribitol/uso terapêutico
4.
Cell Mol Gastroenterol Hepatol ; 13(2): 583-597, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34626841

RESUMO

BACKGROUND & AIMS: Recently, novel inborn errors of metabolism were identified because of mutations in V-ATPase assembly factors TMEM199 and CCDC115. Patients are characterized by generalized protein glycosylation defects, hypercholesterolemia, and fatty liver disease. Here, we set out to characterize the lipid and fatty liver phenotype in human plasma, cell models, and a mouse model. METHODS AND RESULTS: Patients with TMEM199 and CCDC115 mutations displayed hyperlipidemia, characterized by increased levels of lipoproteins in the very low density lipoprotein range. HepG2 hepatoma cells, in which the expression of TMEM199 and CCDC115 was silenced, and induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells from patients with TMEM199 mutations showed markedly increased secretion of apolipoprotein B (apoB) compared with controls. A mouse model for TMEM199 deficiency with a CRISPR/Cas9-mediated knock-in of the human A7E mutation had marked hepatic steatosis on chow diet. Plasma N-glycans were hypogalactosylated, consistent with the patient phenotype, but no clear plasma lipid abnormalities were observed in the mouse model. In the siTMEM199 and siCCDC115 HepG2 hepatocyte models, increased numbers and size of lipid droplets were observed, including abnormally large lipid droplets, which colocalized with lysosomes. Excessive de novo lipogenesis, failing oxidative capacity, and elevated lipid uptake were not observed. Further investigation of lysosomal function revealed impaired acidification combined with impaired autophagic capacity. CONCLUSIONS: Our data suggest that the hypercholesterolemia in TMEM199 and CCDC115 deficiency is due to increased secretion of apoB-containing particles. This may in turn be secondary to the hepatic steatosis observed in these patients as well as in the mouse model. Mechanistically, we observed impaired lysosomal function characterized by reduced acidification, autophagy, and increased lysosomal lipid accumulation. These findings could explain the hepatic steatosis seen in patients and highlight the importance of lipophagy in fatty liver disease. Because this pathway remains understudied and its regulation is largely untargeted, further exploration of this pathway may offer novel strategies for therapeutic interventions to reduce lipotoxicity in fatty liver disease.


Assuntos
Fígado Gorduroso , Gotículas Lipídicas , Animais , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Hepatócitos/metabolismo , Humanos , Gotículas Lipídicas/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Mutação/genética , Proteínas do Tecido Nervoso/genética
5.
Glycobiology ; 32(3): 239-250, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-34939087

RESUMO

Synthetic sugar analogs are widely applied in metabolic oligosaccharide engineering (MOE) and as novel drugs to interfere with glycoconjugate biosynthesis. However, mechanistic insights on their exact cellular metabolism over time are mostly lacking. We combined ion-pair ultrahigh performance liquid chromatography-triple quadrupole mass spectrometry mass spectrometry using tributyl- and triethylamine buffers for sensitive analysis of sugar metabolites in cells and organisms and identified low abundant nucleotide sugars, such as UDP-arabinose in human cell lines and CMP-sialic acid (CMP-NeuNAc) in Drosophila. Furthermore, MOE revealed that propargyloxycarbonyl (Poc)-labeled ManNPoc was metabolized to both CMP-NeuNPoc and UDP-GlcNPoc. Finally, time-course analysis of the effect of antitumor compound 3Fax-NeuNAc by incubation of B16-F10 melanoma cells with N-acetyl-D-[UL-13C6]glucosamine revealed full depletion of endogenous ManNAc 6-phosphate and CMP-NeuNAc within 24 h. Thus, dynamic tracing of sugar metabolic pathways provides a general approach to reveal time-dependent insights into the metabolism of synthetic sugars, which is important for the rational design of analogs with optimized effects.


Assuntos
Metabolismo dos Carboidratos , Ácido N-Acetilneuramínico do Monofosfato de Citidina , Cromatografia Líquida , Ácido N-Acetilneuramínico do Monofosfato de Citidina/metabolismo , Glucosamina/metabolismo , Açúcares
6.
Nat Commun ; 12(1): 7024, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34857733

RESUMO

The sugar fucose is expressed on mammalian cell membranes as part of glycoconjugates and mediates essential physiological processes. The aberrant expression of fucosylated glycans has been linked to pathologies such as cancer, inflammation, infection, and genetic disorders. Tools to modulate fucose expression on living cells are needed to elucidate the biological role of fucose sugars and the development of potential therapeutics. Herein, we report a class of fucosylation inhibitors directly targeting de novo GDP-fucose biosynthesis via competitive GMDS inhibition. We demonstrate that cell permeable fluorinated rhamnose 1-phosphate derivatives (Fucotrim I & II) are metabolic prodrugs that are metabolized to their respective GDP-mannose derivatives and efficiently inhibit cellular fucosylation.


Assuntos
Inibidores Enzimáticos/farmacologia , Fucose/química , Guanosina Difosfato Fucose/antagonistas & inibidores , Hidroliases/antagonistas & inibidores , Pró-Fármacos/farmacologia , Animais , Sequência de Carboidratos , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Expressão Gênica , Glicosilação/efeitos dos fármacos , Guanosina Difosfato Fucose/biossíntese , Halogenação , Humanos , Hidroliases/genética , Hidroliases/metabolismo , Células Jurkat , Linfócitos/citologia , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Camundongos , Pró-Fármacos/síntese química , Relação Estrutura-Atividade , Células THP-1
7.
Front Neurol ; 12: 668640, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34163424

RESUMO

Background: NANS-CDG is a recently described congenital disorder of glycosylation caused by biallelic genetic variants in NANS, encoding an essential enzyme in de novo sialic acid synthesis. Sialic acid at the end of glycoconjugates plays a key role in biological processes such as brain and skeletal development. Here, we present an observational cohort study to delineate the genetic, biochemical, and clinical phenotype and assess possible correlations. Methods: Medical and laboratory records were reviewed with retrospective extraction and analysis of genetic, biochemical, and clinical data (2016-2020). Results: Nine NANS-CDG patients (nine families, six countries) referred to the Radboudumc CDG Center of Expertise were included. Phenotyping confirmed the hallmark features including intellectual developmental disorder (IDD) (n = 9/9; 100%), facial dysmorphisms (n = 9/9; 100%), neurologic impairment (n = 9/9; 100%), short stature (n = 8/9; 89%), skeletal dysplasia (n = 8/9; 89%), and short limbs (n = 8/9; 89%). Newly identified features include ophthalmological abnormalities (n = 6/9; 67%), an abnormal septum pellucidum (n = 6/9; 67%), (progressive) cerebral atrophy and ventricular dilatation (n = 5/9; 56%), gastrointestinal dysfunction (n = 5/9; 56%), thrombocytopenia (n = 5/9; 56%), and hypo-low-density lipoprotein cholesterol (n = 4/9; 44%). Biochemically, elevated urinary excretion of N-acetylmannosamine (ManNAc) is pathognomonic, the concentrations of which show a significant correlation with clinical severity. Genotypically, eight novel NANS variants were identified. Three severely affected patients harbored identical compound heterozygous pathogenic variants, one of whom was initiated on experimental prenatal and postnatal treatment with oral sialic acid. This patient showed markedly better psychomotor development than the other two genotypically identical males. Conclusions: ManNAc screening should be considered in all patients with IDD, short stature with short limbs, facial dysmorphisms, neurologic impairment, and an abnormal septum pellucidum +/- congenital and neurodegenerative lesions on brain imaging, to establish a precise diagnosis and contribute to prognostication. Personalized management includes accurate genetic counseling and access to proper supports and tailored care for gastrointestinal symptoms, thrombocytopenia, and epilepsy, as well as rehabilitation services for cognitive and physical impairments. Motivated by the short-term positive effects of experimental treatment with oral sialic, we have initiated this intervention with protocolized follow-up of neurologic, systemic, and growth outcomes in four patients. Research is ongoing to unravel pathophysiology and identify novel therapeutic targets.

8.
Chemistry ; 27(12): 4022-4027, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33336886

RESUMO

Fucosylation of glycans impacts a myriad of physiological and pathological processes. Inhibition of fucose expression emerges as a potential therapeutic avenue for example in cancer, inflammation, and infection. In this study, we found that protected 2-fluorofucose 1-phosphate efficiently inhibits cellular fucosylation with a four to seven times higher potency than known inhibitor 2FF, independently of the anomeric stereochemistry. Nucleotide sugar analysis revealed that both the α- and ß-GDP-2FF anomers are formed inside the cell. In conclusion, we developed A2FF1P and B2FF1P as potent new tools for studying the role of fucosylation in health and disease and they are potential therapeutic candidates.


Assuntos
Fucose , Polissacarídeos , Linhagem Celular Tumoral , Glicosilação , Fosfatos
9.
Hepatology ; 72(6): 1968-1986, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32145091

RESUMO

BACKGROUND AND AIMS: Vacuolar H+-ATP complex (V-ATPase) is a multisubunit protein complex required for acidification of intracellular compartments. At least five different factors are known to be essential for its assembly in the endoplasmic reticulum (ER). Genetic defects in four of these V-ATPase assembly factors show overlapping clinical features, including steatotic liver disease and mild hypercholesterolemia. An exception is the assembly factor vacuolar ATPase assembly integral membrane protein (VMA21), whose X-linked mutations lead to autophagic myopathy. APPROACH AND RESULTS: Here, we report pathogenic variants in VMA21 in male patients with abnormal protein glycosylation that result in mild cholestasis, chronic elevation of aminotransferases, elevation of (low-density lipoprotein) cholesterol and steatosis in hepatocytes. We also show that the VMA21 variants lead to V-ATPase misassembly and dysfunction. As a consequence, lysosomal acidification and degradation of phagocytosed materials are impaired, causing lipid droplet (LD) accumulation in autolysosomes. Moreover, VMA21 deficiency triggers ER stress and sequestration of unesterified cholesterol in lysosomes, thereby activating the sterol response element-binding protein-mediated cholesterol synthesis pathways. CONCLUSIONS: Together, our data suggest that impaired lipophagy, ER stress, and increased cholesterol synthesis lead to LD accumulation and hepatic steatosis. V-ATPase assembly defects are thus a form of hereditary liver disease with implications for the pathogenesis of nonalcoholic fatty liver disease.


Assuntos
Autofagia/genética , Defeitos Congênitos da Glicosilação/genética , Hepatopatias/genética , ATPases Vacuolares Próton-Translocadoras/genética , Adulto , Biópsia , Células Cultivadas , Defeitos Congênitos da Glicosilação/sangue , Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/patologia , Análise Mutacional de DNA , Fibroblastos , Humanos , Fígado/citologia , Fígado/patologia , Hepatopatias/sangue , Hepatopatias/diagnóstico , Hepatopatias/patologia , Masculino , Mutação de Sentido Incorreto , Linhagem , Cultura Primária de Células
10.
Clin Genet ; 97(4): 556-566, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31957011

RESUMO

NGLY1 encodes the enzyme N-glycanase that is involved in the degradation of glycoproteins as part of the endoplasmatic reticulum-associated degradation pathway. Variants in this gene have been described to cause a multisystem disease characterized by neuromotor impairment, neuropathy, intellectual disability, and dysmorphic features. Here, we describe four patients with pathogenic variants in NGLY1. As the clinical features and laboratory results of the patients suggested a multisystem mitochondrial disease, a muscle biopsy had been performed. Biochemical analysis in muscle showed a strongly reduced ATP production rate in all patients, while individual OXPHOS enzyme activities varied from normal to reduced. No causative variants in any mitochondrial disease genes were found using mtDNA analysis and whole exome sequencing. In all four patients, variants in NGLY1 were identified, including two unreported variants (c.849T>G (p.(Cys283Trp)) and c.1067A>G (p.(Glu356Gly)). Western blot analysis of N-glycanase in muscle and fibroblasts showed a complete absence of N-glycanase. One patient showed a decreased basal and maximal oxygen consumption rates in fibroblasts. Mitochondrial morphofunction fibroblast analysis showed patient specific differences when compared to control cell lines. In conclusion, variants in NGLY1 affect mitochondrial energy metabolism which in turn might contribute to the clinical disease course.


Assuntos
Epilepsias Mioclônicas/genética , Deficiência Intelectual/genética , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/genética , Polineuropatias/genética , Criança , Pré-Escolar , Defeitos Congênitos da Glicosilação/diagnóstico por imagem , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/metabolismo , Defeitos Congênitos da Glicosilação/patologia , Epilepsias Mioclônicas/diagnóstico por imagem , Epilepsias Mioclônicas/patologia , Feminino , Humanos , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/patologia , Masculino , Mitocôndrias/genética , Mitocôndrias/patologia , Mutação/genética , Polineuropatias/diagnóstico por imagem , Polineuropatias/patologia
11.
J Inherit Metab Dis ; 42(5): 984-992, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30931530

RESUMO

The congenital disorders of glycosylation (CDG) are inborn errors of metabolism with a great genetic heterogeneity. Most CDG are caused by defects in the N-glycan biosynthesis, leading to multisystem phenotypes. However, the occurrence of tissue-restricted clinical symptoms in the various defects in dolichol-phosphate-mannose (DPM) synthesis remains unexplained. To deepen our understanding of the tissue-specific characteristics of defects in the DPM synthesis pathway, we investigated N-glycosylation and O-mannosylation in skeletal muscle of three DPM3-CDG patients presenting with muscle dystrophy and hypo-N-glycosylation of serum transferrin in only two of them. In the three patients, O-mannosylation of alpha-dystroglycan (αDG) was strongly reduced and western blot analysis of beta-dystroglycan (ßDG) N-glycosylation revealed a consistent lack of one N-glycan in skeletal muscle. Recently, defective N-glycosylation of ßDG has been reported in patients with mutations in guanosine-diphosphate-mannose pyrophosphorylase B (GMPPB). Thus, we suggest that aberrant O-glycosylation of αDG and N-glycosylation of ßDG in skeletal muscle is indicative of a defect in the DPM synthesis pathway. Further studies should address to what extent hypo-N-glycosylation of ßDG or other skeletal muscle proteins contribute to the phenotype of patients with defects in DPM synthesis. Our findings contribute to our understanding of the tissue-restricted phenotype of DPM3-CDG and other defects in the DPM synthesis pathway.


Assuntos
Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/genética , Manosiltransferases/genética , Proteínas de Membrana/genética , Distrofias Musculares/diagnóstico , Adulto , Biópsia , Criança , Distroglicanas/genética , Distroglicanas/metabolismo , Feminino , Glicosilação , Humanos , Masculino , Manosiltransferases/metabolismo , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Mutação , Fenótipo
12.
PLoS Pathog ; 15(3): e1007500, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30849118

RESUMO

Thrombocytopenia and platelet dysfunction are commonly observed in patients with dengue virus (DENV) infection and may contribute to complications such as bleeding and plasma leakage. The etiology of dengue-associated thrombocytopenia is multifactorial and includes increased platelet clearance. The binding of the coagulation protein von Willebrand factor (VWF) to the platelet membrane and removal of sialic acid (desialylation) are two well-known mechanisms of platelet clearance, but whether these conditions also contribute to thrombocytopenia in dengue infection is unknown. In two observational cohort studies in Bandung and Jepara, Indonesia, we show that adult patients with dengue not only had higher plasma concentrations of plasma VWF antigen and active VWF, but that circulating platelets had also bound more VWF to their membrane. The amount of platelet-VWF binding correlated well with platelet count. Furthermore, sialic acid levels in dengue patients were significantly reduced as assessed by the binding of Sambucus nigra lectin (SNA) and Maackia amurensis lectin II (MAL-II) to platelets. Sialic acid on the platelet membrane is neuraminidase-labile, but dengue virus has no known neuraminidase activity. Indeed, no detectable activity of neuraminidase was present in plasma of dengue patients and no desialylation was found of plasma transferrin. Platelet sialylation was also not altered by in vitro exposure of platelets to DENV nonstructural protein 1 or cultured DENV. In contrast, induction of binding of VWF to glycoprotein 1b on platelets using the VWF-activating protein ristocetin resulted in the removal of platelet sialic acid by translocation of platelet neuraminidase to the platelet surface. The neuraminidase inhibitor oseltamivir reduced VWF-induced platelet desialylation. Our data demonstrate that excessive binding of VWF to platelets in dengue results in neuraminidase-mediated platelet desialylation and platelet clearance. Oseltamivir might be a novel treatment option for severe thrombocytopenia in dengue infection.


Assuntos
Plaquetas/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Fator de von Willebrand/fisiologia , Adolescente , Adulto , Fatores de Coagulação Sanguínea , Plaquetas/fisiologia , Estudos de Coortes , Dengue/metabolismo , Feminino , Fibrinogênio , Humanos , Indonésia , Cinética , Masculino , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina , Neuraminidase/metabolismo , Lectinas de Plantas , Glicoproteínas da Membrana de Plaquetas/metabolismo , Proteínas Inativadoras de Ribossomos , Trombocitopenia , Adulto Jovem , Fator de von Willebrand/metabolismo
13.
Curr Opin Struct Biol ; 56: 107-118, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30708323

RESUMO

Over 100 human Congenital Disorders of Glycosylation (CDG) have been described. Of these, about 30% reside in the O-glycosylation pathway. O-glycosylation disorders are characterized by a high phenotypic variability, reflecting the large diversity of O-glycan structures. In contrast to N-glycosylation disorders, a generic biochemical screening test is lacking, which limits the identification of novel O-glycosylation disorders. The emergence of next generation sequencing (NGS) and O-glycoproteomics technologies have changed this situation, resulting in significant progress to link disease phenotypes with underlying biochemical mechanisms. Here, we review the current knowledge on O-glycosylation disorders, and discuss the biochemical lessons that we can learn on 1) novel glycosyltransferases and metabolic pathways, 2) tissue-specific O-glycosylation mechanisms, 3) O-glycosylation targets and 4) structure-function relationships. Additionally, we provide an outlook on how genetic disorders, O-glycoproteomics and biochemical methods can be combined to answer fundamental questions regarding O-glycan synthesis, structure and function.


Assuntos
Doenças Metabólicas/metabolismo , Glicosilação , Humanos , Programas de Rastreamento , Doenças Metabólicas/diagnóstico , Doenças Metabólicas/genética , Mutação
14.
J Biol Chem ; 294(12): 4437-4449, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30670592

RESUMO

Neuroblastoma cells highly express the disialoganglioside GD2, a tumor-associated carbohydrate antigen, which is only sparsely expressed on healthy tissue. GD2 is a primary target for the development of immunotherapy for neuroblastoma. Immunotherapy with monoclonal anti-GD2 antibodies has proven safety and efficacy in clinical trials and is included in the standard treatment for children with high-risk neuroblastoma. Strategies to modulate GD2 expression in neuroblastoma could further improve anti-GD2-targeted immunotherapy. Here, we report that the cellular sialylation pathway, as well as epigenetic reprogramming, strongly modulates GD2 expression in human and mouse neuroblastoma cell lines. Recognition of GD2 by the 14G2a antibody is sialic acid-dependent and was blocked with the fluorinated sialic acid mimetic Ac53FaxNeu5Ac. Interestingly, sialic acid supplementation using a cell-permeable sialic acid analogue (Ac5Neu5Ac) boosted GD2 expression without or with minor alterations in overall cell surface sialylation. Furthermore, sialic acid supplementation with Ac5Neu5Ac combined with various histone deacetylase (HDAC) inhibitors, including vorinostat, enhanced GD2 expression in neuroblastoma cells beyond their individual effects. Mechanistic studies revealed that Ac5Neu5Ac supplementation increased intracellular CMP-Neu5Ac concentrations, thereby providing higher substrate levels for sialyltransferases. Furthermore, HDAC inhibitor treatment increased mRNA expression of the sialyltransferases GM3 synthase (ST3GAL5) and GD3 synthase (ST8SIA1), both of which are involved in GD2 biosynthesis. Our findings reveal that sialic acid analogues and HDAC inhibitors enhance GD2 expression and could potentially be employed to boost anti-GD2 targeted immunotherapy in neuroblastoma patients.


Assuntos
Antígenos de Neoplasias/metabolismo , Gangliosídeos/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Ácido N-Acetilneuramínico/farmacologia , Neuroblastoma/imunologia , Regulação para Cima/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Imunoterapia , Camundongos , Neuroblastoma/enzimologia , Neuroblastoma/patologia , Neuroblastoma/terapia , Sialiltransferases/metabolismo
15.
JCI Insight ; 3(24)2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30568043

RESUMO

Sialic acids are important components of glycoproteins and glycolipids essential for cellular communication, infection, and metastasis. The importance of sialic acid biosynthesis in human physiology is well illustrated by the severe metabolic disorders in this pathway. However, the biological role of sialic acid catabolism in humans remains unclear. Here, we present evidence that sialic acid catabolism is important for heart and skeletal muscle function and development in humans and zebrafish. In two siblings, presenting with sialuria, exercise intolerance/muscle wasting, and cardiac symptoms in the brother, compound heterozygous mutations [chr1:182775324C>T (c.187C>T; p.Arg63Cys) and chr1:182772897A>G (c.133A>G; p.Asn45Asp)] were found in the N-acetylneuraminate pyruvate lyase gene (NPL). In vitro, NPL activity and sialic acid catabolism were affected, with a cell-type-specific reduction of N-acetyl mannosamine (ManNAc). A knockdown of NPL in zebrafish resulted in severe skeletal myopathy and cardiac edema, mimicking the human phenotype. The phenotype was rescued by expression of wild-type human NPL but not by the p.Arg63Cys or p.Asn45Asp mutants. Importantly, the myopathy phenotype in zebrafish embryos was rescued by treatment with the catabolic products of NPL: N-acetyl glucosamine (GlcNAc) and ManNAc; the latter also rescuing the cardiac phenotype. In conclusion, we provide the first report to our knowledge of a human defect in sialic acid catabolism, which implicates an important role of the sialic acid catabolic pathway in mammalian muscle physiology, and suggests opportunities for monosaccharide replacement therapy in human patients.


Assuntos
Músculo Esquelético/metabolismo , Doenças Musculares/genética , Doenças Musculares/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Oxo-Ácido-Liases/genética , Oxo-Ácido-Liases/metabolismo , Adulto , Animais , Modelos Animais de Doenças , Edema Cardíaco/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Células HEK293 , Hexosaminas/metabolismo , Humanos , Masculino , Músculo Esquelético/crescimento & desenvolvimento , Doenças Musculares/fisiopatologia , Mutação , Oxo-Ácido-Liases/uso terapêutico , Doença do Armazenamento de Ácido Siálico/metabolismo , Adulto Jovem , Peixe-Zebra/embriologia
16.
Hum Mol Genet ; 27(17): 3029-3045, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29878199

RESUMO

Genomics methodologies have significantly improved elucidation of Mendelian disorders. The combination with high-throughput functional-omics technologies potentiates the identification and confirmation of causative genetic variants, especially in singleton families of recessive inheritance. In a cohort of 99 individuals with abnormal Golgi glycosylation, 47 of which being unsolved, glycomics profiling was performed of total plasma glycoproteins. Combination with whole-exome sequencing in 31 cases revealed a known genetic defect in 15 individuals. To identify additional genetic factors, hierarchical clustering of the plasma glycomics data was done, which indicated a subgroup of four patients that shared a unique glycomics signature of hybrid type N-glycans. In two siblings, compound heterozygous mutations were found in SLC10A7, a gene of unknown function in human. These included a missense mutation that disrupted transmembrane domain 4 and a mutation in a splice acceptor site resulting in skipping of exon 9. The two other individuals showed a complete loss of SLC10A7 mRNA. The patients' phenotype consisted of amelogenesis imperfecta, skeletal dysplasia, and decreased bone mineral density compatible with osteoporosis. The patients' phenotype was mirrored in SLC10A7 deficient zebrafish. Furthermore, alizarin red staining of calcium deposits in zebrafish morphants showed a strong reduction in bone mineralization. Cell biology studies in fibroblasts of affected individuals showed intracellular mislocalization of glycoproteins and a defect in post-Golgi transport of glycoproteins to the cell membrane. In contrast to yeast, human SLC10A7 localized to the Golgi. Our combined data indicate an important role for SLC10A7 in bone mineralization and transport of glycoproteins to the extracellular matrix.


Assuntos
Doenças do Desenvolvimento Ósseo/etiologia , Calcificação Fisiológica , Defeitos Congênitos da Glicosilação/complicações , Genômica , Glicômica , Mutação , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/deficiência , Simportadores/genética , Adulto , Animais , Doenças do Desenvolvimento Ósseo/metabolismo , Doenças do Desenvolvimento Ósseo/patologia , Células Cultivadas , Estudos de Coortes , Exoma , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Glicosilação , Complexo de Golgi/metabolismo , Complexo de Golgi/patologia , Humanos , Lactente , Masculino , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Linhagem , Fenótipo , Transporte Proteico , Simportadores/metabolismo , Adulto Jovem , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo
18.
Eur J Med Genet ; 61(11): 643-663, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29079546

RESUMO

The survey summarizes in its first part the current status of knowledge on the Congenital Disorders of Glycosylation (CDG) with regard to their phenotypic spectrum, diagnostic and therapeutic strategies, and pathophysiology. It documents the clinical and basic research activities, and efforts to involve patients and their families. In the second part, it tries to look into the future of CDG. More specific biomarkers are needed for fast CDG diagnosis and treatment monitoring. Whole genome sequencing will play an increasingly important role in the molecular diagnosis of unsolved CDG. Epigenetic defects are expected to join the rapidly expanding genetic and allelic heterogeneity of the CDG family. Novel treatments are urgently needed particularly for PMM2-CDG, the most prevalent CDG. Patient services such as apps should be developed e.g. to document the natural history and monitor treatment. Networking (EURO-CDG, the European Reference Networks (MetabERN)) is an efficient tool to disseminate knowledge and boost collaboration at all levels. The final goal is of course to improve the quality of life of the patients and their families.


Assuntos
Defeitos Congênitos da Glicosilação/epidemiologia , Defeitos Congênitos da Glicosilação/genética , Fosfotransferases (Fosfomutases)/genética , Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/patologia , Glicosilação , Humanos , Mutação/genética , Qualidade de Vida , Inquéritos e Questionários
19.
Genome Med ; 9(1): 118, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29273094

RESUMO

BACKGROUND: The phenotypic severity of congenital muscular dystrophy-dystroglycanopathy (MDDG) syndromes associated with aberrant glycosylation of α-dystroglycan ranges from the severe Walker-Warburg syndrome or muscle-eye-brain disease to mild, late-onset, isolated limb-girdle muscular dystrophy without neural involvement. However, muscular dystrophy is invariably found across the spectrum of MDDG patients. METHODS: Using linkage mapping and whole-exome sequencing in two families with an unexplained neurodevelopmental disorder, we have identified homozygous and compound heterozygous mutations in B3GALNT2. RESULTS: The first family comprises two brothers of Dutch non-consanguineous parents presenting with mild ID and behavioral problems. Immunohistochemical analysis of muscle biopsy revealed no significant aberrations, in line with the absence of a muscular phenotype in the affected siblings. The second family includes five affected individuals from an Iranian consanguineous kindred with mild-to-moderate intellectual disability (ID) and epilepsy without any notable neuroimaging, muscle, or eye abnormalities. Complementation assays of the compound heterozygous mutations identified in the two brothers had a comparable effect on the O-glycosylation of α-dystroglycan as previously reported mutations that are associated with severe muscular phenotypes. CONCLUSIONS: In conclusion, we show that mutations in B3GALNT2 can give rise to a novel MDDG syndrome presentation, characterized by ID associated variably with seizure, but without any apparent muscular involvement. Importantly, B3GALNT2 activity does not fully correlate with the severity of the phenotype as assessed by the complementation assay.


Assuntos
Deficiência Intelectual/genética , Mutação , N-Acetilgalactosaminiltransferases/genética , Fenótipo , Síndrome de Walker-Warburg/genética , Adolescente , Adulto , Linhagem Celular , Criança , Feminino , Genes Recessivos , Genótipo , Humanos , Deficiência Intelectual/patologia , Masculino , N-Acetilgalactosaminiltransferases/metabolismo , Linhagem , Síndrome de Walker-Warburg/patologia
20.
Biochim Biophys Acta Mol Basis Dis ; 1863(12): 3303-3312, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28807751

RESUMO

The neuron-restricted isoform 3 of the plasma membrane Ca2+ ATPase plays a major role in the regulation of Ca2+ homeostasis in the brain, where the precise control of Ca2+ signaling is a necessity. Several function-affecting genetic mutations in the PMCA3 pump associated to X-linked congenital cerebellar ataxias have indeed been described. Interestingly, the presence of co-occurring mutations in additional genes suggest their synergistic action in generating the neurological phenotype as digenic modulators of the role of PMCA3 in the pathologies. Here we report a novel PMCA3 mutation (G733R substitution) in the catalytic P-domain of the pump in a patient affected by non-progressive ataxia, muscular hypotonia, dysmetria and nystagmus. Biochemical studies of the pump have revealed impaired ability to control cellular Ca2+ handling both under basal and under stimulated conditions. A combined analysis by homology modeling and molecular dynamics have revealed a role for the mutated residue in maintaining the correct 3D configuration of the local structure of the pump. Mutation analysis in the patient has revealed two additional function-impairing compound heterozygous missense mutations (R123Q and G214S substitution) in phosphomannomutase 2 (PMM2), a protein that catalyzes the isomerization of mannose 6-phosphate to mannose 1-phosphate. These mutations are known to be associated with Type Ia congenital disorder of glycosylation (PMM2-CDG), the most common group of disorders of N-glycosylation. The findings highlight the association of PMCA3 mutations to cerebellar ataxia and strengthen the possibility that PMCAs act as digenic modulators in Ca2+-linked pathologies.


Assuntos
Ataxia/genética , Ataxia/metabolismo , Defeitos Congênitos da Glicosilação/metabolismo , Mutação de Sentido Incorreto , Fosfotransferases (Fosfomutases)/deficiência , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Cálcio/metabolismo , Pré-Escolar , Defeitos Congênitos da Glicosilação/diagnóstico por imagem , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/patologia , Glicosilação , Células HeLa , Humanos , Masculino , Fosfotransferases (Fosfomutases)/genética , Fosfotransferases (Fosfomutases)/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA