Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
BMJ Open ; 14(5): e081660, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702085

RESUMO

INTRODUCTION: Breast cancer survivors have an increased risk for chronic fatigue and altered gut microbiota composition, both with negative health and quality of life affects. Exercise modestly improves fatigue and is linked to gut microbial diversity and production of beneficial metabolites. Studies suggest that gut microbiota composition is a potential mechanism underlying fatigue response to exercise. Randomised controlled trials testing the effects of exercise on the gut microbiome are limited and there is a scarcity of findings specific to breast cancer survivors. The objective of this study is to determine if fitness-related modifications to gut microbiota occur and, if so, mediate the effects of aerobic exercise on fatigue response. METHODS AND ANALYSIS: The research is a randomised controlled trial among breast cancer survivors aged 18-74 with fatigue. The primary aim is to determine the effects of aerobic exercise training compared with an attention control on gut microbiota composition. The secondary study aims are to test if exercise training (1) affects the gut microbiota composition directly and/or indirectly through inflammation (serum cytokines), autonomic nervous system (heart rate variability) or hypothalamic-pituitary-adrenal axis mediators (hair cortisol assays), and (2) effects on fatigue are direct and/or indirect through changes in the gut microbiota composition. All participants receive a standardised controlled diet. Assessments occur at baseline, 5 weeks, 10 weeks and 15 weeks (5 weeks post intervention completion). Faecal samples collect the gut microbiome and 16S gene sequencing will identify the microbiome. Fatigue is measured by a 13-item multidimensional fatigue scale. ETHICS AND DISSEMINATION: The University of Alabama at Birmingham Institutional Review Board (IRB) approved this study on 15 May 2019, UAB IRB#30000320. A Data and Safety Monitoring Board convenes annually or more often if indicated. Findings will be disseminated in peer-reviewed journals and conference presentations. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov, NCT04088708.


Assuntos
Neoplasias da Mama , Sobreviventes de Câncer , Fadiga , Microbioma Gastrointestinal , Humanos , Feminino , Sobreviventes de Câncer/psicologia , Pessoa de Meia-Idade , Adulto , Idoso , Ensaios Clínicos Controlados Aleatórios como Assunto , Exercício Físico/fisiologia , Qualidade de Vida , Terapia por Exercício/métodos , Adulto Jovem , Adolescente
2.
Gut Pathog ; 16(1): 13, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468325

RESUMO

BACKGROUND: The gut microbiota is associated with risk for colorectal cancer (CRC), a chronic disease for which racial disparities persist with Black Americans having a higher risk of CRC incidence and mortality compared to other groups. Given documented racial differences, the gut microbiota may offer some insight into previously unexplained racial disparities in CRC incidence and mortality. A case-control analysis comparing 11 women newly diagnosed with CRC with 22 cancer-free women matched on age, BMI, and race in a 1:2 ratio was conducted. Information about participants' diet and perceived stress levels were obtained via 24-h Dietary Recall and Perceived Stress Scale-10 survey, respectively. Participants provided stool samples from which microbial genomic DNA was extracted to reveal the abundance of 26 genera chosen a priori based on their previously observed relevance to CRC, anxiety symptoms, and diet. RESULTS: Significantly lower alpha diversity was observed among cancer-free Black women compared to all other race-cancer status combinations. No group differences were observed when comparing beta diversity. Non-Hispanic White CRC cases tended to have higher relative abundance of Fusobacteria, Gemellaceae, and Peptostreptococcus compared to all other race-cancer combination groups. Perceived stress was inversely associated with alpha diversity and was associated with additional genera. CONCLUSIONS: Our findings suggest that microbiome-CRC associations may differ by racial group. Additional large, racially diverse population-based studies are needed to determine if previously identified associations between characteristics of the gut microbiome and CRC are generalizable to Black women and other racial, ethnic, and gender groups.

3.
PLoS Biol ; 21(2): e3001922, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36780432

RESUMO

A universal taxonomy of viruses is essential for a comprehensive view of the virus world and for communicating the complicated evolutionary relationships among viruses. However, there are major differences in the conceptualisation and approaches to virus classification and nomenclature among virologists, clinicians, agronomists, and other interested parties. Here, we provide recommendations to guide the construction of a coherent and comprehensive virus taxonomy, based on expert scientific consensus. Firstly, assignments of viruses should be congruent with the best attainable reconstruction of their evolutionary histories, i.e., taxa should be monophyletic. This fundamental principle for classification of viruses is currently included in the International Committee on Taxonomy of Viruses (ICTV) code only for the rank of species. Secondly, phenotypic and ecological properties of viruses may inform, but not override, evolutionary relatedness in the placement of ranks. Thirdly, alternative classifications that consider phenotypic attributes, such as being vector-borne (e.g., "arboviruses"), infecting a certain type of host (e.g., "mycoviruses," "bacteriophages") or displaying specific pathogenicity (e.g., "human immunodeficiency viruses"), may serve important clinical and regulatory purposes but often create polyphyletic categories that do not reflect evolutionary relationships. Nevertheless, such classifications ought to be maintained if they serve the needs of specific communities or play a practical clinical or regulatory role. However, they should not be considered or called taxonomies. Finally, while an evolution-based framework enables viruses discovered by metagenomics to be incorporated into the ICTV taxonomy, there are essential requirements for quality control of the sequence data used for these assignments. Combined, these four principles will enable future development and expansion of virus taxonomy as the true evolutionary diversity of viruses becomes apparent.


Assuntos
Bacteriófagos , Vírus , Humanos , Metagenômica , Filogenia , Vírus/genética
4.
Res Sq ; 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36711747

RESUMO

Background: The gut microbiota is associated with risk for colorectal cancer (CRC), a chronic disease for which racial disparities persist with Black Americans having a higher risk of CRC incidence and mortality compared to other groups. Given documented racial differences, the gut microbiota may offer some insight into previously unexplained racial disparities in CRC incidence and mortality. A case-control analysis comparing 11 women newly diagnosed with CRC with 22 cancer-free women matched on age, BMI, and race in a 1:2 ratio was conducted. Information about participants' diet and perceived stress levels were obtained via 24-hour Dietary Recall and Perceived Stress Scale-10 survey, respectively. Participants provided stool samples from which microbial genomic DNA was extracted to reveal the abundance of 26 genera chosen a priori based on their previously observed relevance to CRC, anxiety symptoms, and diet. Results: Significantly lower alpha diversity was observed among cancer-free Black women compared to all other race-cancer status combinations. No group differences were observed when comparing beta diversity. Non-Hispanic White CRC cases tended to have higher relative abundance of Fusobacteria, Gemellaceae, and Peptostreptococcus compared to all other race-cancer combination groups. Perceived stress was inversely associated with alpha diversity and was associated with additional genera. Conclusions: Our findings suggest that microbiome-CRC associations may differ by racial group. Additional large, racially diverse population-based studies are needed to determine if previously identified associations between characteristics of the gut microbiome and CRC are generalizable to Black women and other racial, ethnic, and gender groups.

5.
Virology ; 570: 123-133, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35398776

RESUMO

The current outbreak of coronavirus disease-2019 (COVID-19) caused by SARS-CoV-2 poses unparalleled challenges to global public health. SARS-CoV-2 is a Betacoronavirus, one of four genera belonging to the Coronaviridae subfamily Orthocoronavirinae. Coronaviridae, in turn, are members of the order Nidovirales, a group of enveloped, positive-stranded RNA viruses. Here we present a systematic phylogenetic and evolutionary study based on protein domain architecture, encompassing the entire proteomes of all Orthocoronavirinae, as well as other Nidovirales. This analysis has revealed that the genomic evolution of Nidovirales is associated with extensive gains and losses of protein domains. In Orthocoronavirinae, the sections of the genomes that show the largest divergence in protein domains are found in the proteins encoded in the amino-terminal end of the polyprotein (PP1ab), the spike protein (S), and many of the accessory proteins. The diversity among the accessory proteins is particularly striking, as each subgenus possesses a set of accessory proteins that is almost entirely specific to that subgenus. The only notable exception to this is ORF3b, which is present and orthologous over all Alphacoronaviruses. In contrast, the membrane protein (M), envelope small membrane protein (E), nucleoprotein (N), as well as proteins encoded in the central and carboxy-terminal end of PP1ab (such as the 3C-like protease, RNA-dependent RNA polymerase, and Helicase) show stable domain architectures across all Orthocoronavirinae. This comprehensive analysis of the Coronaviridae domain architecture has important implication for efforts to develop broadly cross-protective coronavirus vaccines.


Assuntos
COVID-19 , Coronaviridae , Nidovirales , Coronaviridae/genética , Evolução Molecular , Humanos , Proteínas de Membrana/genética , Nidovirales/genética , Filogenia , SARS-CoV-2/genética
6.
PLoS Pathog ; 16(2): e1008337, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32069330

RESUMO

Iron is essential for nearly all bacterial pathogens, including Mycobacterium tuberculosis (Mtb), but is severely limited in the human host. To meet its iron needs, Mtb secretes siderophores, small molecules with high affinity for iron, and takes up iron-loaded mycobactins (MBT) and carboxymycobactins (cMBT), from the environment. Mtb is also capable of utilizing heme and hemoglobin which contain more than 70% of the iron in the human body. However, many components of these iron acquisition pathways are still unknown. In this study, a high-density transposon mutagenesis coupled with deep sequencing (TnSeq) showed that Mtb exhibits nearly opposite requirements for 165 genes in the presence of heme and hemoglobin versus MBT and cMBT as iron sources. The ESX-3 secretion system was assessed as essential for siderophore-mediated iron uptake and, surprisingly, also for heme utilization by Mtb. Predictions derived from the TnSeq analysis were validated by growth experiments with isogenic Mtb mutants. These results showed that (i) the efflux pump MmpL5 plays a dominant role in siderophore secretion, (ii) the Rv2047c protein is essential for growth of Mtb in the presence of mycobactin, and (iii) the transcriptional repressor Zur is required for heme utilization by Mtb. The novel genetic determinants of iron utilization revealed in this study will stimulate further experiments in this important area of Mtb physiology.


Assuntos
Ferro/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Amida Sintases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico , Heme/metabolismo , Hemoglobinas/metabolismo , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Oxazóis/metabolismo , Sideróforos/metabolismo , Virulência
7.
Exp Physiol ; 104(4): 529-539, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30763983

RESUMO

NEW FINDINGS: What is the central question of this study? Does the link between cardiorespiratory fitness and gut microbiota diversity persist after adjusting for the potential effects of percentage body fat and activity-related energy expenditure (AEE)? What is the main finding and its importance? This is the first study to examine the link between cardiorespiratory fitness and gut microbiota diversity while accounting for the underlying effects of percentage body fat and free-living AEE. Results from the present work suggest that cardiorespiratory fitness, not physical activity, is a superior correlate of gut microbiota diversity among post-primary treatment, non-metastatic breast cancer survivors. ABSTRACT: Cancer treatment uniquely triggers multiple physiological shifts detrimental to overall health. Although previous research indicates a link between the gut microbiota and cardiorespiratory fitness, it is unclear whether these findings are attributable to potential underlying effects of percentage body fat or free-living activity energy expenditure (AEE). The microbe composition of faecal specimens from 37 breast cancer survivors was determined using 16S microbiome analyses. Individual-sample microbiota diversity (α-diversity) and between-sample community differences (ß-diversity) were examined. Peak oxygen uptake ( V̇O2peak ) was estimated from a graded exercise test consistent with the modified Naughton protocol, in which exercise terminates at 85% of age-predicted maximal heart rate. The AEE was measured over 10 days using doubly labelled water, wherein the percentage body fat was calculated from total body water. Pearson correlations revealed α-diversity indices (Chao1, observed species, PD whole tree and Shannon) to be positively associated with V̇O2peak (r = 0.34-0.51; P < 0.05), whereas the percentage of maximal heart rate during stages 1-4 of the graded exercise test (r = -0.34 to -0.50; P < 0.05) and percentage body fat (r = -0.32 to -0.41; P < 0.05) were negatively associated with the same α-diversity indices. Multiple linear regression models showed that V̇O2peak accounted for 22 and 26% of the variance in taxonomic richness (observed species) and phylogenic diversity after adjustment for percentage body fat and menopausal status. Unweighted UniFrac (ß-diversity) was significant for several outcomes involving cardiorespiratory fitness, and significant taxa comparisons were found. Associations between gut microbiota and free-living AEE were not found. Results from the present work suggest that cardiorespiratory fitness, not physical activity, is a superior correlate of gut microbiota diversity.


Assuntos
Neoplasias da Mama/microbiologia , Neoplasias da Mama/fisiopatologia , Aptidão Cardiorrespiratória/fisiologia , Microbioma Gastrointestinal/fisiologia , Aptidão Física/fisiologia , Composição Corporal/fisiologia , Metabolismo Energético/fisiologia , Teste de Esforço/métodos , Feminino , Humanos , Pessoa de Meia-Idade , Consumo de Oxigênio/fisiologia , Sobreviventes
8.
Psychosom Med ; 80(7): 640-648, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29901485

RESUMO

OBJECTIVE: Racial health disparities persist among black and white women for colorectal cancer. Understanding racial differences in the gut microbiota and related covariates (e.g., stress) may yield new insight into unexplained colorectal cancer disparities. METHODS: Healthy non-Hispanic black or white women (age ≥19 years) provided survey data, anthropometrics, and stool samples. Fecal DNA was collected and isolated from a wipe. Polymerase chain reaction was used to amplify the V4 region of the 16SrRNA gene and 250 bases were sequenced using the MiSeq platform. Microbiome data were analyzed using QIIME. Operational taxonomic unit data were log transformed and normalized. Analyses were conducted using linear models in R Package "limma." RESULTS: Fecal samples were analyzed for 80 women (M (SD) age = 39.9 (14.0) years, 47 black, 33 white). Blacks had greater average body mass index (33.3 versus 27.5 kg/m, p < .01) and waist circumference (98.3 versus 86.6 cm, p = .003) than whites. Whites reported more stressful life events (p = .026) and greater distress (p = .052) than blacks. Final models accounted for these differences. There were no significant differences in dietary variables. Unadjusted comparisons revealed no racial differences in alpha diversity. Racial differences were observed in beta diversity and abundance of top 10 operational taxonomic units. Blacks had higher abundances than whites of Faecalibacterium (p = .034) and Bacteroides (p = .038). Stress was associated with abundances of Bifidobacterium. The association between race and Bacteroides (logFC = 1.72, 0 = 0.020) persisted in fully adjusted models. CONCLUSIONS: Racial differences in the gut microbiota were observed including higher Bacteroides among blacks. Efforts to cultivate an "ideal" gut microbiota may help reduce colorectal cancer risk.


Assuntos
Bacteroides , Bifidobacterium , Faecalibacterium , Microbioma Gastrointestinal , Estresse Psicológico , Circunferência da Cintura , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Alabama/etnologia , Bacteroides/isolamento & purificação , Bifidobacterium/isolamento & purificação , Negro ou Afro-Americano/etnologia , Índice de Massa Corporal , Estudos Transversais , Faecalibacterium/isolamento & purificação , Projetos Piloto , Estresse Psicológico/etnologia , Estresse Psicológico/microbiologia , Brancos
9.
Geroscience ; 40(3): 257-268, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29869736

RESUMO

Advanced age has been associated with alterations to the microbiome within the intestinal tract as well as intestinal permeability (i.e., "leaky gut"). Prior studies suggest that intestinal permeability may contribute to increases in systemic inflammation-an aging hallmark-possibly via microorganisms entering the circulation. Yet, no studies exist describing the state of the circulating microbiome among older persons. To compare microbiota profiles in serum between healthy young (20-35 years, n = 24) and older adults (60-75 years, n = 24) as well as associations between differential microbial populations and prominent indices of age-related inflammation. Unweighted Unifrac analysis, a measure of ß-diversity, revealed that microbial communities clustered differently between young and older adults. Several measures of α-diversity, including chao1 (p = 0.001), observed species (p = 0.001), and phylogenetic diversity (p = 0.002) differed between young and older adults. After correction for false discovery rate (FDR), age groups differed (all p values ≤ 0.016) in the relative abundance of the phyla Bacteroidetes, SR1, Spirochaetes, Bacteria_Other, TM7, and Tenericutes. Significant positive correlations (p values ≤ 0.017 after FDR correction) were observed between IGF1 and Bacteroidetes (ρ = 0.380), Spirochaetes (ρ = 0.528), SR1 (ρ = 0.410), and TM7 (ρ = 0.399). Significant inverse correlations were observed for IL6 with Bacteroidetes (ρ = - 0.398) and TM7 (ρ = - 0.423), as well as for TNFα with Bacteroidetes (ρ = - 0.344). Similar findings were observed at the class taxon. These data are the first to demonstrate that the richness and composition of the serum microbiome differ between young and older adults and that these factors are linked to indices of age-related inflammation.


Assuntos
DNA Bacteriano/sangue , Inflamação/etiologia , Fator de Crescimento Insulin-Like I/metabolismo , Interleucina-6/sangue , Microbiota , Fator de Necrose Tumoral alfa/sangue , Adulto , Fatores Etários , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
10.
Support Care Cancer ; 25(5): 1563-1570, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28064384

RESUMO

PURPOSE: In this proof-of-concept pilot study, our purpose was to determine correlations between gut microbiota composition and alterations in cardiorespiratory fitness and psychosocial outcomes among post-primary treatment breast cancer survivors (BCS). METHODS: Composition of the gut microbiota in BCS (n = 12) was assessed at baseline (M0) and at the end of 3 months (M3) using Illumina MiSeq DNA Sequencing of the 16S rRNA gene. Gut microbiota composition was analyzed using the QIIME bioinformatics software and represented through diversity metrics and taxa analyses. Cardiorespiratory fitness, fatigue, anxiety, depression, and sleep dysfunction were assessed at M0 and M3 via the submaximal treadmill test, Fatigue Symptom Inventory, Hospital Anxiety and Depression Scale, and Pittsburgh Sleep Quality Index, respectively. RESULTS: Increased fatigue interference in BCS was associated with increased mean within-sample Shannon diversity (organism richness and evenness) (p = 0.009). Weighted UniFrac analysis (shifts in taxa relative abundance) revealed significant differences in between-sample (beta) diversity for changes in fatigue interference (p = 0.01) and anxiety (p = 0.022), with a trend observed for fatigue intensity and sleep dysfunction (p < 0.1). Unweighted UniFrac analysis (shifts in taxa types) found significant beta diversity differences for cardiorespiratory fitness (p = 0.026). Prior to false discovery correction (FDR), changes in fitness, fatigue, anxiety, and sleep dysfunction were associated with the frequency of certain gut bacteria genera (e.g., Faecalibacterium, Prevotella, Bacteroides) (p < 0.05). CONCLUSIONS: Correlations may exist between alterations in gut microbiota composition and longitudinal changes in cardiorespiratory fitness, fatigue, and anxiety in BCS. Further research examining the role of the microbiota-gut-brain axis in exercise-induced effects on psychosocial outcomes in BCS is warranted.


Assuntos
Neoplasias da Mama/psicologia , Aptidão Cardiorrespiratória/fisiologia , Exercício Físico/fisiologia , Microbioma Gastrointestinal/imunologia , Adolescente , Adulto , Idoso , Neoplasias da Mama/mortalidade , Feminino , Humanos , Pessoa de Meia-Idade , Taxa de Sobrevida , Sobreviventes/psicologia , Adulto Jovem
11.
J Proteome Res ; 14(10): 4413-24, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26354146

RESUMO

Polyomaviruses are a family of small DNA viruses that are associated with a number of severe human diseases, particularly in immunocompromised individuals. The detailed virus-host interactions during lytic polyomavirus infection are not fully understood. Here, we report the first nuclear proteomic study with BK polyomavirus (BKPyV) in a primary renal proximal tubule epithelial cell culture system using stable isotope labeling by amino acids in cell culture (SILAC) proteomic profiling coupled with liquid chromatography-tandem mass spectrometry. We demonstrated the feasibility of SILAC labeling in these primary cells and subsequently performed reciprocal labeling-infection experiments to identify proteins that are altered by BKPyV infection. Our analyses revealed specific proteins that are significantly up- or down-regulated in the infected nuclear proteome. The genes encoding many of these proteins were not identified in a previous microarray study, suggesting that differential regulation of these proteins may be independent of transcriptional control. Western blotting experiments verified the SILAC proteomic findings. Finally, pathway and network analyses indicated that the host cell DNA damage response signaling and DNA repair pathways are among the cellular processes most affected at the protein level during polyomavirus infection. Our study provides a comprehensive view of the host nuclear proteomic changes during polyomavirus lytic infection and suggests potential novel host factors required for a productive polyomavirus infection.


Assuntos
Vírus BK/fisiologia , Núcleo Celular/metabolismo , Reparo do DNA , Células Epiteliais/metabolismo , Proteoma/metabolismo , Núcleo Celular/química , Núcleo Celular/patologia , Núcleo Celular/virologia , Cromatografia Líquida , Dano ao DNA , Células Epiteliais/patologia , Células Epiteliais/virologia , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Interações Hospedeiro-Patógeno , Humanos , Marcação por Isótopo , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Túbulos Renais Proximais/virologia , Anotação de Sequência Molecular , Cultura Primária de Células , Proteoma/genética , Proteoma/isolamento & purificação , Transdução de Sinais , Espectrometria de Massas em Tandem , Transcrição Gênica
12.
J Immunol ; 195(7): 3071-85, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26324769

RESUMO

It is clear that IL-10 plays an essential role in maintaining homeostasis in the gut in response to the microbiome. However, it is unknown whether IL-10 also facilitates immune homeostasis at distal sites. To address this question, we asked whether splenic immune populations were altered in IL-10-deficient (Il10(-/-)) mice in which differences in animal husbandry history were associated with susceptibility to spontaneous enterocolitis that is microbiome dependent. The susceptible mice exhibited a significant increase in splenic macrophages, neutrophils, and marginal zone (MZ) B cells that was inhibited by IL-10 signaling in myeloid, but not B cells. The increase in macrophages was due to increased proliferation that correlated with a subsequent enhancement in MZ B cell differentiation. Cohousing and antibiotic treatment studies suggested that the alteration in immune homeostasis in the spleen was microbiome dependent. The 16S rRNA sequencing revealed that susceptible mice harbored a different microbiome with a significant increase in the abundance of the bacterial genus Helicobacter. The introduction of Helicobacter hepaticus to the gut of nonsusceptible mice was sufficient to drive macrophage expansion and MZ B cell development. Given that myeloid cells and MZ B cells are part of the first line of defense against blood-borne pathogens, their increase following a breach in the gut epithelial barrier would be protective. Thus, IL-10 is an essential gatekeeper that maintains immune homeostasis at distal sites that can become functionally imbalanced upon the introduction of specific pathogenic bacteria to the intestinal track.


Assuntos
Linfócitos B/imunologia , Disbiose/microbiologia , Microbioma Gastrointestinal/genética , Infecções por Helicobacter/imunologia , Helicobacter hepaticus/imunologia , Interleucina-10/genética , Animais , Linfócitos B/citologia , Sequência de Bases , Contagem de Células , Diferenciação Celular/imunologia , Proliferação de Células , DNA Bacteriano/genética , Enterocolite/imunologia , Enterocolite/microbiologia , Infecções por Helicobacter/microbiologia , Interleucina-10/imunologia , Ativação Linfocitária/imunologia , Tecido Linfoide/citologia , Tecido Linfoide/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Transdução de Sinais/imunologia
13.
Viruses ; 7(4): 2126-46, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25912716

RESUMO

To investigate gene loss in poxviruses belonging to the Chordopoxvirinae subfamily, we assessed the gene content of representative members of the subfamily, and determined whether individual genes present in each genome were intact, truncated, or fragmented. When nonintact genes were identified, the early stop mutations (ESMs) leading to gene truncation or fragmentation were analyzed. Of all the ESMs present in these poxvirus genomes, over 65% co-localized with microsatellites-simple sequence nucleotide repeats. On average, microsatellites comprise 24% of the nucleotide sequence of these poxvirus genomes. These simple repeats have been shown to exhibit high rates of variation, and represent a target for poxvirus protein variation, gene truncation, and reductive evolution.


Assuntos
Chordopoxvirinae/genética , Variação Genética , Genoma Viral , Instabilidade Genômica , Repetições de Microssatélites , Códon sem Sentido , Biologia Computacional , Evolução Molecular , Deleção de Genes
14.
J Clin Microbiol ; 44(9): 3055-64, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16954227

RESUMO

Respiratory syncytial virus (RSV) is the most commonly identified viral agent of acute respiratory tract infection (ARI) of young children and causes repeat infections throughout life. Limited data are available on the molecular epidemiology of RSV from developing countries, including India. This study reports on the genetic variability in the glycoprotein G gene among RSV isolates from India. Reverse transcription-PCR for a region of the RSV G protein gene was done with nasopharyngeal aspirates (NPAs) collected in a prospective longitudinal study in two rural villages near Delhi and from children with ARI seen in an urban hospital. Nucleotide sequence comparisons among 48 samples demonstrated a higher prevalence of group A (77%) than group B (23%) RSV isolates. The level of genetic variability was higher among the group A viruses (up to 14%) than among the group B viruses (up to 2%). Phylogenetic analysis revealed that both the GA2 and GA5 group A RSV genotypes were prevalent during the 2002-2003 season and that genotype GA5 was predominant in the 2003-2004 season, whereas during the 2004-2005 season both genotype GA5 and genotype BA, a newly identified group B genotype, cocirculated in almost equal proportions. Comparison of the nonsynonymous mutation-to-synonymous mutation ratios (dN/dS) revealed greater evidence for selective pressure between the GA2 and GA5 genotypes (dN/dS, 1.78) than within the genotypes (dN/dS, 0.69). These are among the first molecular analyses of RSV strains from the second most populous country in the world and will be useful for comparisons to candidate vaccine strains.


Assuntos
Variação Genética , Infecções por Vírus Respiratório Sincicial/epidemiologia , Vírus Sincicial Respiratório Humano/classificação , Infecções Respiratórias/epidemiologia , Proteínas Virais de Fusão/genética , Doença Aguda , Sequência de Aminoácidos , Pré-Escolar , Hospitais Urbanos , Humanos , Índia/epidemiologia , Lactente , Recém-Nascido , Epidemiologia Molecular , Dados de Sequência Molecular , Nasofaringe/virologia , Filogenia , Prevalência , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/genética , Infecções Respiratórias/virologia , População Rural , Estações do Ano , Análise de Sequência de DNA
15.
J Clin Invest ; 109(4): 533-40, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11854326

RESUMO

The congenital polycystic kidney (cpk) mutation is the most extensively characterized mouse model of polycystic kidney disease (PKD). The renal cystic disease is fully expressed in homozygotes and is strikingly similar to human autosomal recessive PKD (ARPKD), whereas genetic background modulates the penetrance of the corresponding defect in the developing biliary tree. We now describe the positional cloning, mutation analysis, and expression of a novel gene that is disrupted in cpk mice. The cpk gene is expressed primarily in the kidney and liver and encodes a hydrophilic, 145-amino acid protein, which we term cystin. When expressed exogenously in polarized renal epithelial cells, cystin is detected in cilia, and its expression overlaps with polaris, another PKD-related protein. We therefore propose that the single epithelial cilium is important in the functional differentiation of polarized epithelia and that ciliary dysfunction underlies the PKD phenotype in cpk mice.


Assuntos
Proteínas de Membrana/genética , Mutação , Rim Policístico Autossômico Dominante/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Mapeamento Cromossômico , Cílios/metabolismo , Clonagem Molecular , DNA Complementar/genética , Modelos Animais de Doenças , Expressão Gênica , Homozigoto , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Camundongos Mutantes , Dados de Sequência Molecular , Rim Policístico Autossômico Dominante/etiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA