Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36143728

RESUMO

Cortical bone machining is commonly used in craniofacial surgery. The shaping of bone surfaces requires a precise determination of the process's complexity due to the cutting tool's defined or undefined geometry. Therefore, research was carried out to assess the impact of the rake angle (γ), clearance angle and depth of cut (d) on the cortical bone machining process. Analysis was carried out based on the orthogonal cutting in three directions. The cutting tool shape was simplified, and the cutting forces and the chip-formation process were monitored. The highest values of the resultant cutting force and shear force were recorded for γ < 0. The specific cutting force decreases with the increase of d. Cutting in the transverse direction is characterized by the highest values of resultant cutting force and shear force. The coefficient of friction depends primarily on the d and takes a constant value or increases with the increase of γ. The tests showed that the chips are formed in the entire range of d ≥ 0.5 µm and create regular shapes for d ≥ 10 µm. The research novelty confirms that even negative cutting angles guarantee controlled cutting and can find wider application in surgical procedures.

2.
Materials (Basel) ; 15(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36013695

RESUMO

Erosion of the elbow due to non-Newtonian viscous slurry flows is often observed in hydrocarbon transportation pipelines. This paper intends to study the erosion behavior of double offset U-bends and 180° U-bends for two-phase (liquid-sand) flow. A numerical simulation was conducted using the Discrete Phase Model (DPM) on carbon steel pipe bends with a 40 mm diameter and an R/D ratio of 1.5. The validity of the erosion model has been established by comparing it with the results quantified in the literature by experiment. While the maximum erosive wear rates of all evaluated cases were found to be quite different, the maximum erosion locations have been identified between 150° and 180° downstream at the outer curvature. It was seen that with the increase in disperse phase diameter, the erosive wear rate and impact area increased. Moreover, with the change of configuration from a 180° U-bend to a double offset U-bend, the influence of turbulence on the transit of the disperse phase decreases as the flow approaches downstream and results in less erosive wear in a double offset U-bend. Furthermore, the simulation results manifest that the erosive wear increases with an increase in flow velocity, and the erosion rate of the double offset U-bend was nearly 8.58 times less than the 180° U-bend for a carrier fluid velocity of 2 m/s and 1.82 times less for 4 m/s carrier fluid velocity. The erosion rate of the double offset U-bend was reduced by 120% compared to the 180° U-bend for 6 m/s in liquid-solid flow.

3.
Materials (Basel) ; 15(8)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35454514

RESUMO

AISI 316L stainless steel (SS) is one of the extensively used biomaterials to produce implants and medical devices. It provides a low-cost solution with ample mechanical properties, corrosion resistance, and biocompatibility compared to its counterpart materials. However, the implants made of this material are subjected to a short life span in human physiological conditions leading to the leaching of metal ions, thus limiting its use as a biomaterial. In this research, the addition of boron, titanium, and niobium with varying concentrations in the SS matrix has been explored. This paper explores the impact of material composition on modified SS alloy's physical and mechanical properties. The study's outcomes specify that the microhardness increases for all the alloy compositions, with a maximum increase of 64.68% for the 2 wt.% niobium added SS alloy. On the other hand, the tensile strength decreased to 297.40 MPa for the alloy containing 0.25 wt.% boron and 2 wt.% titanium additions compared to a tensile strength of 572.50 MPa for pure SS. The compression strength increased from 776 MPa for pure SS to 1408 MPa for the alloy containing niobium and titanium additions in equal concentrations.

4.
Materials (Basel) ; 15(5)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35268995

RESUMO

The optical properties and electric field enhancement of gold nanorods for different cases were investigated in this study. The numerical analysis was carried out to understand the functionality and working of gold nanorods, while the experimental portion of the work was focused on the efficiency of gold nanorods for targeted drug delivery. COMSOL Multiphysics was used for numerical analysis. The theoretical results suggest the use of gold nanorods (AuNRs) for anticancer applications. The resonance peaks for gold nanorods of 10 nm diameter were observed at 560 nm. The resonance peaks shifted towards longer wavelengths with an increase in nanorod size. The resonance peaks showed a shift of 140 nm with a change in nanorod length from 25 to 45 nm. On the experimental side, 22 nm, 35 nm and 47 nm long gold nanorods were produced using the seed-mediated growth method. The surface morphology of the nanorods, as well as their optical characteristics, were characterized. Later, gold nanorods were applied to the targeted delivery of the doxorubicin drug. Gold nanorods showed better efficiency for doxorubicin drug loading time, release time, loading temperature, and release temperature. These results reveal that AuNRs@DA possess good ability to load and deliver the drug directly to the tumorous cells since these cells show high temperature and acidity.

5.
Materials (Basel) ; 15(5)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35269017

RESUMO

The finite element analysis technique was used to investigate the suitability of silver nanorods, spheres, ellipsoids and core−shell structures for the hyperthermia treatment of cancer. The temperature of the silver nanostructures was raised from 42 to 46 °C, in order to kill the cancerous cells. The time taken by the nanostructures to attain this temperature, with external source heating, was also estimated. The heat transfer module in COMSOL Multiphysics was used for the finite element analysis of hyperthermia, based on silver nanostructures. The thermal response of different shapes of silver nanostructures was evaluated by placing them inside the spherical domain of the tumor tissue. The proposed geometries were heated at different time intervals. Optimization of the geometries was performed to achieve the best treatment temperature. It was observed that silver nanorods quickly attain the desired temperature, as compared to other shapes. The silver nanorods achieved the highest temperature of 44.3 °C among all the analyzed geometries. Moreover, the central volume, used to identify the thermal response, was the maximum for the silver nano-ellipsoids. Thermal equilibrium in the treatment region was attained after 0.5 µs of heating, which made these structures suitable for hyperthermia treatment.

6.
Materials (Basel) ; 14(23)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34885397

RESUMO

In modern constructions, especially aircraft, the aim is to minimize the weight of the components used. This necessitates the use of innovative construction materials, or the production of these parts with ever-decreasing wall thicknesses. To simplify assembly and improve strength properties, so-called structural elements are being used in the form of monolithic elements, which are replacing the assemblies of parts joined by, for example, riveting. These structures often have a complex, thin-walled geometry with deep pockets. This paper attempts to assess the accuracy of manufacturing thin-walled elements, in the shape of walls with different geometries, made of various aluminum alloys. Machining tests were conducted at different cutting speeds, which allowed comparisons of the geometric accuracy of parts manufactured under conventional and high-speed cutting conditions. Based on the result obtained, it was found that the elements made of EN AW-7075 T651 alloy underwent the greatest deformations during machining in comparison to other two materials (EN AW-6082 T651 and EN AC-43000). An increase in the geometrical accuracy of the manufactured elements was also observed with the increase in the cutting speed for the HSC range. Hence, to minimize the postmachining deformation of thin-walled elements, the use of high-speed cutting is justified.

7.
Materials (Basel) ; 14(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34443025

RESUMO

Mechanical behavior and characteristics of two different types of materials: cast iron with lamellar graphite EN-GJL-250 and cast iron with spheroidal graphite EN-GJS-400-15 which were cast in ceramic molds using gravitational casting method has considered in this research. The ceramic molds were obtained by 3D printing method. First, a finite element analysis was developed to determine Tresca and von Mises stresses and the deformations of the ceramic molds under an applied pressure of 25 MPa. Samples were produced by gravitational casting using two types of cast iron materials. Mechanical tests were made using samples produced from these two types of materials and microstructure analysis evaluation of fractured zones was realized by scanning electron microscopy. Obtained results were finally used for designing, developing, and producing of one 'hydraulic block' of a railway installation by the Benninger Guss company of Switzerland.

8.
Materials (Basel) ; 14(12)2021 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-34199244

RESUMO

The powder metallurgy (PM) technique has been widely used for producing different alloy compositions by the addition of suitable reinforcements. PM is also capable of producing desireable mechanical and physical properties of the material by varying process parameters. This research investigates the addition of titanium and niobium in a 316L stainless steel matrix for potential use in the biomedical field. The increase of sintering dwell time resulted in simultaneous sintering and surface nitriding of compositions, using nitrogen as the sintering atmosphere. The developed alloy compositions were characterized using OM, FESEM, XRD and XPS techniques for quantification of the surface nitride layer and the nitrogen absorbed during sintering. The corrosion resistance and cytotoxicity assessments of the developed compositions were carried out in artificial saliva solution and human oral fibroblast cell culture, respectively. The results indicated that the nitride layer produced during sintering increased the corrosion resistance of the alloy and the developed compositions are non-cytotoxic. This newly developed alloy composition and processing technique is expected to provide a low-cost solution to implant manufacturing.

9.
Materials (Basel) ; 13(14)2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32708624

RESUMO

This work presents experimental studies with numerical modeling, aiming at the development of guidelines for shaping aluminum alloy AA6111-T4, t = 1.5 mm thick, with the use of a shear-slitting operation. During the experimental tests, parametric analyses were conducted for the selected material thickness. For the purposes of the material deformation's analysis, a vision system based on the digital image correlation (DiC) method was used. Numerical models were developed with the use of finite element analysis (FEA) and the mesh-free method: smoothed particle hydrodynamics (SPH), which were used to analyze the residual stress and strain in the cutting zone at different process conditions. The results indicate a significant effect of the horizontal clearance between knives on the width of the deformation zone on sheet cut edge. Together with the clearance value increase, the deformation zone increases. The highest burrs on the cut edge were obtained, when the slitting speed was set to v = 17 m/min, and clearance to hc = 6%t. A strong influence was observed of the horizontal clearance value at high slitting speeds on burr unshapeliness. The most favorable conditions were obtained for v = 32 m/min, hc = 0.062 mm, and rake angle of upper knife for α = 30°. For this configuration, a smooth sheared edge with minimal burr height was obtained.

10.
Materials (Basel) ; 13(9)2020 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-32397543

RESUMO

This study describes the surface topography of the 17-4 PH stainless steel machined under dry, wet and near-dry cutting conditions. Cutting speeds of 150-500 m/min, feeds of 0.05-0.4 mm/rev and 0.5 mm depth of cutting were applied. The research was based on the 'parameter space investigation' method. Surface roughness parameters, contour maps and material participation curves were analysed using the optical Sensofar S Neox 3D profilometer and the effect of feed, cutting speed and their mutual interaction was noticed. Changes in chip shape depending on the processing conditions are shown. Compared to dry machining, a reduction of Sa, Sq and Sz parameters of 38-48% was achieved for near-dry condition. For lower feeds and average cutting speeds valleys and ridges were observed on the surface machined under dry, wet and near-dry conditions. For higher feeds and middle and higher cutting speeds, deep valleys and high ridges were observed on the surface. Depending on the processing conditions, different textures of the machined surface were registered, particularly anisotropic mixed, periodic and periodically determined. In the Sa range of 0.4-0.8 µm for dry and wet conditions the surface isotropy is ~20%, under near-dry conditions it is ~60%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA