Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Front Mol Neurosci ; 16: 1175851, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251643

RESUMO

The involvement of mitochondrial dysfunction in cystatin B (CSTB) deficiency has been suggested, but its role in the onset of neurodegeneration, myoclonus, and ataxia in the CSTB-deficient mouse model (Cstb-/-) is yet unknown. CSTB is an inhibitor of lysosomal and nuclear cysteine cathepsins. In humans, partial loss-of-function mutations cause the progressive myoclonus epilepsy neurodegenerative disorder, EPM1. Here we applied proteome analysis and respirometry on cerebellar synaptosomes from early symptomatic (Cstb-/-) mice to identify the molecular mechanisms involved in the onset of CSTB-deficiency associated neural pathogenesis. Proteome analysis showed that CSTB deficiency is associated with differential expression of mitochondrial and synaptic proteins, and respirometry revealed a progressive impairment in mitochondrial function coinciding with the onset of myoclonus and neurodegeneration in (Cstb-/-) mice. This mitochondrial dysfunction was not associated with alterations in mitochondrial DNA copy number or membrane ultrastructure. Collectively, our results show that CSTB deficiency generates a defect in synaptic mitochondrial bioenergetics that coincides with the onset and progression of the clinical phenotypes, and thus is likely a contributor to the pathogenesis of EPM1.

2.
Front Behav Neurosci ; 17: 1325051, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38179183

RESUMO

Progressive myoclonus epilepsy type 1 (EPM1) is an autosomal recessively inherited childhood-adolescence onset neurodegenerative disease caused by mutations in the cystatin B (CSTB gene). The key clinical manifestation in EPM1 is progressive, stimulus-sensitive, in particular action-induced myoclonus. The cystatin B-deficient mouse model, Cstb-/-, has been described to present with myoclonic seizures and progressive ataxia. Here we describe results from in-depth behavioral phenotyping of the Cstb-/- mouse model in pure isogenic 129S2/SvHsd background covering ages from 1.5 to 6 months. We developed a method for software-assisted detection of myoclonus from video recordings of the Cstb-/- mice. Additionally, we observed that the mice were hyperactive and showed reduced startle response, problems in motor coordination and lack of inhibition. We were, however, not able to demonstrate an ataxic phenotype in them. This detailed behavioral phenotyping of the Cstb-/- mice reveals new aspects of this mouse model. The nature of the motor problems in the Cstb-/- mice seems to be more complex and more resembling the human phenotype than initially described.

3.
Front Mol Neurosci ; 15: 1069122, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36533126

RESUMO

Cystatin B (CSTB) is a cysteine cathepsin inhibitor whose biallelic loss-of-function mutations in human result in defects in brain development and in neurodegeneration. The physiological function of CSTB is largely unknown, and the mechanisms underlying the human brain diseases remain poorly understood. We previously showed that CSTB modulates the proteolysis of the N-terminal tail of histone H3 (H3cs1) during in vitro neurogenesis. Here we investigated the significance of this mechanism in postnatal mouse brain. Spatiotemporal analysis of H3cs1 intensity showed that while H3cs1 in wild-type (wt) mice was found at varying levels during the first postnatal month, it was virtually absent in adult brain. We further showed that the high level of H3cs1 coincides with chromatin association of de novo synthesized cathepsin L suggesting a role for nuclear cathepsin L in brain development and maturation. On the contrary, the brains of Cstb -/- mice showed sustained H3cs1 proteolysis to adulthood with increased chromatin-associated cathepsin L activity, implying that CSTB regulates chromatin-associated cathepsin L activity in the postnatal mouse brain. As H3 tail proteolysis has been linked to cellular senescence in vitro, we explored the presence of several cellular senescence markers in the maturing Cstb -/- cerebellum, where we see increased levels of H3cs1. While several markers showed alterations in Cstb -/- mice, the results remained inconclusive regarding the association of deficient CSTB function with H3cs1-induced senescence. Together, we identify a molecular role for CSTB in brain with implications for brain development and disease.

4.
Brain ; 145(7): 2301-2312, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35373813

RESUMO

Pathogenic variants in A Disintegrin And Metalloproteinase (ADAM) 22, the postsynaptic cell membrane receptor for the glycoprotein leucine-rich repeat glioma-inactivated protein 1 (LGI1), have been recently associated with recessive developmental and epileptic encephalopathy. However, so far, only two affected individuals have been described and many features of this disorder are unknown. We refine the phenotype and report 19 additional individuals harbouring compound heterozygous or homozygous inactivating ADAM22 variants, of whom 18 had clinical data available. Additionally, we provide follow-up data from two previously reported cases. All affected individuals exhibited infantile-onset, treatment-resistant epilepsy. Additional clinical features included moderate to profound global developmental delay/intellectual disability (20/20), hypotonia (12/20) and delayed motor development (19/20). Brain MRI findings included cerebral atrophy (13/20), supported by post-mortem histological examination in patient-derived brain tissue, cerebellar vermis atrophy (5/20), and callosal hypoplasia (4/20). Functional studies in transfected cell lines confirmed the deleteriousness of all identified variants and indicated at least three distinct pathological mechanisms: (i) defective cell membrane expression; (ii) impaired LGI1-binding; and/or (iii) impaired interaction with the postsynaptic density protein PSD-95. We reveal novel clinical and molecular hallmarks of ADAM22 deficiency and provide knowledge that might inform clinical management and early diagnostics.


Assuntos
Proteínas ADAM , Encefalopatias , Epilepsia Resistente a Medicamentos , Proteínas do Tecido Nervoso , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Atrofia , Encefalopatias/genética , Proteína 4 Homóloga a Disks-Large , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
5.
Neurobiol Dis ; 156: 105418, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34102276

RESUMO

Cystatin B (CSTB) acts as an inhibitor of cysteine proteases of the cathepsin family and loss-of-function mutations result in human brain diseases with a genotype-phenotype correlation. In the most severe case, CSTB-deficiency disrupts brain development, and yet the molecular basis of this mechanism is missing. Here, we establish CSTB as a regulator of chromatin structure during neural stem cell renewal and differentiation. Murine neural precursor cells (NPCs) undergo transient proteolytic cleavage of the N-terminal histone H3 tail by cathepsins B and L upon induction of differentiation into neurons and glia. In contrast, CSTB-deficiency triggers premature H3 tail cleavage in undifferentiated self-renewing NPCs and sustained H3 tail proteolysis in differentiating neural cells. This leads to significant transcriptional changes in NPCs, particularly of nuclear-encoded mitochondrial genes. In turn, these transcriptional alterations impair the enhanced mitochondrial respiration that is induced upon neural stem cell differentiation. Collectively, our findings reveal the basis of epigenetic regulation in the molecular pathogenesis of CSTB deficiency.


Assuntos
Cistatina B/deficiência , Histonas/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Animais , Células Cultivadas , Cistatina B/genética , Epigênese Genética/fisiologia , Histonas/genética , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout
6.
Front Mol Neurosci ; 13: 570640, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281550

RESUMO

Progressive myoclonus epilepsy of Unverricht-Lundborg type (EPM1) is a neurodegenerative disorder caused by loss-of-function mutations in the cystatin B (CSTB) gene. Progression of the clinical symptoms in EPM1 patients, including stimulus-sensitive myoclonus, tonic-clonic seizures, and ataxia, are well described. However, the cellular dysfunction during the presymptomatic phase that precedes the disease onset is not understood. CSTB deficiency leads to alterations in GABAergic signaling, and causes early neuroinflammation followed by progressive neurodegeneration in brains of a mouse model, manifesting as progressive myoclonus and ataxia. Here, we report the first proteome atlas from cerebellar synaptosomes of presymptomatic Cstb-deficient mice, and propose that early mitochondrial dysfunction is important to the pathogenesis of altered synaptic function in EPM1. A decreased sodium- and chloride dependent GABA transporter 1 (GAT-1) abundance was noted in synaptosomes with CSTB deficiency, but no functional difference was seen between the two genotypes in electrophysiological experiments with pharmacological block of GAT-1. Collectively, our findings provide novel insights into the early onset and pathogenesis of CSTB deficiency, and reveal greater complexity to the molecular pathogenesis of EPM1.

7.
Epilepsia ; 61(11): 2593-2608, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32940364

RESUMO

OBJECTIVE: Microglial phagocytosis of apoptotic cells is an essential component of the brain regenerative response during neurodegeneration. Whereas it is very efficient in physiological conditions, it is impaired in mouse and human mesial temporal lobe epilepsy, and now we extend our studies to a model of progressive myoclonus epilepsy type 1 in mice lacking cystatin B (CSTB). METHODS: We used confocal imaging and stereology-based quantification of apoptosis and phagocytosis of the hippocampus of Cstb knockout (KO) mice, an in vitro model of phagocytosis and siRNAs to acutely reduce Cstb expression, and a virtual three-dimensional (3D) model to analyze the physical relationship between apoptosis, phagocytosis, and active hippocampal neurons. RESULTS: Microglial phagocytosis was impaired in the hippocampus of Cstb KO mice at 1 month of age, when seizures arise and hippocampal atrophy begins. This impairment was not related to the lack of Cstb in microglia alone, as shown by in vitro experiments with microglial Cstb depletion. The phagocytosis impairment was also unrelated to seizures, as it was also present in Cstb KO mice at postnatal day 14, before seizures begin. Importantly, phagocytosis impairment was restricted to the granule cell layer and spared the subgranular zone, where there are no active neurons. Furthermore, apoptotic cells (both phagocytosed and not phagocytosed) in Cstb-deficient mice were at close proximity to active cFos+ neurons, and a virtual 3D model demonstrated that the physical relationship between apoptotic cells and cFos+ neurons was specific for Cstb KO mice. SIGNIFICANCE: These results suggest a complex crosstalk between apoptosis, phagocytosis, and neuronal activity, hinting that local neuronal activity could be related to phagocytosis dysfunction in Cstb KO mice. Overall, these data suggest that phagocytosis impairment is an early feature of hippocampal damage in epilepsy and opens novel therapeutic approaches for epileptic patients based on targeting microglial phagocytosis.


Assuntos
Giro Denteado/metabolismo , Modelos Animais de Doenças , Microglia/metabolismo , Neurônios/metabolismo , Fagocitose/fisiologia , Síndrome de Unverricht-Lundborg/metabolismo , Animais , Cistatina B/deficiência , Cistatina B/genética , Giro Denteado/patologia , Camundongos , Camundongos Knockout , Microglia/patologia , Neurônios/patologia , Síndrome de Unverricht-Lundborg/genética , Síndrome de Unverricht-Lundborg/patologia
8.
Am J Ophthalmol ; 188: 41-50, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29366613

RESUMO

PURPOSE: To describe the phenotype and the genetic defect in keratoendotheliitis fugax hereditaria, an autosomal dominant keratitis that periodically affects the corneal endothelium and stroma, leading in some patients to opacities and decreased visual acuity. DESIGN: Cross-sectional, hospital-based study. METHODS: Patient Population: Thirty affected and 7 unaffected subjects from 7 families, and 4 sporadic patients from Finland. OBSERVATION PROCEDURES: Ophthalmic examination and photography, corneal topography, specular microscopy, and optical coherence tomography in 34 patients, whole exome sequencing in 10 patients, and Sanger sequencing in 34 patients. MAIN OUTCOME MEASURES: Clinical phenotype, disease-causing genetic variants. RESULTS: Unilateral attacks of keratoendotheliitis typically occurred 1-6 times a year (median, 2.5), starting at a median age of 11 years (range, 5-28 years), and lasted for 1-2 days. The attacks were characterized by cornea pseudoguttata and haze in the posterior corneal stroma, sometimes with a mild anterior chamber reaction, and got milder and less frequent in middle age. Seventeen (50%) patients had bilateral stromal opacities. The disease was inherited as an autosomal dominant trait. A likely pathogenic variant c.61G>C in the NLRP3 gene, encoding cryopyrin, was detected in all 34 tested patients and segregated with the disease. This variant is present in both Finnish and non-Finnish European populations at a frequency of about 0.02% and 0.01%, respectively. CONCLUSION: Keratoendotheliitis fugax hereditaria is an autoinflammatory cryopyrin-associated periodic syndrome caused by a missense mutation c.61G>C in exon 1 of NLRP3 in Finnish patients. It is additionally expected to occur in other populations of European descent.


Assuntos
Síndromes Periódicas Associadas à Criopirina/genética , Ceratite/congênito , Mutação de Sentido Incorreto , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteínas NLR/genética , Domínio Pirina/genética , Adolescente , Adulto , Idade de Início , Idoso , Topografia da Córnea , Estudos Transversais , Síndromes Periódicas Associadas à Criopirina/diagnóstico , Éxons/genética , Feminino , Humanos , Ceratite/diagnóstico , Ceratite/genética , Masculino , Microscopia , Pessoa de Meia-Idade , Linhagem , Análise de Sequência de DNA , Tomografia de Coerência Óptica , Adulto Jovem
9.
J Neuromuscul Dis ; 3(4): 475-485, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27911336

RESUMO

BACKGROUND: Anoctaminopathies are muscle diseases caused by recessive mutations in the ANO5 gene. The effects of anoctaminopathy on oxidative capacity have not previously been studied in a controlled setting. OBJECTIVE: To characterize oxidative capacity in a clinically and genetically well-defined series of patients with anoctaminopathy. METHODS: We sequenced the ANO5 gene in 111 Finnish patients with suspected LGMD2. Patients with positive findings underwent close clinical examination, including electromyography, muscle MRI, and, in selected cases, muscle biopsy. Oxidative capacity was analyzed using spiroergometry and compared to age-matched healthy controls. RESULTS: We characterized 12 newly identified and 2 previously identified patients with ANO5 mutations from 11 families. Our material was genetically homogeneous with most patients homozygous for the Finnish founder variant c.2272C>T (p.Arg758Cys). In one family, we found a novel p.Met470Arg variant compound heterozygous with p.Arg758Cys. Lower limb muscle MRI revealed progressive fatty degeneration of specific posterior compartment muscles. Patients' spiroergometric profiles showed that anoctaminopathy significantly impaired oxidative capacity with increasing ventilation. CONCLUSIONS: Our findings support earlier reports that anoctaminopathy progresses slowly and demonstrate that the disease impairs the capacity for aerobic exercise.


Assuntos
Músculo Esquelético/metabolismo , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Consumo de Oxigênio , Adulto , Anoctaminas/genética , Estudos de Casos e Controles , Eletromiografia , Exercício Físico/fisiologia , Teste de Esforço , Feminino , Finlândia , Heterozigoto , Homozigoto , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiopatologia , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/fisiopatologia
10.
J Neuroinflammation ; 13(1): 298, 2016 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-27894304

RESUMO

Progressive myoclonus epilepsy of Unverricht-Lundborg type (EPM1) is an autosomal recessively inherited childhood-onset neurodegenerative disorder, characterized by myoclonus, seizures, and ataxia. Mutations in the cystatin B gene (CSTB) underlie EPM1. The CSTB-deficient (Cstb -/- ) mouse model recapitulates key features of EPM1, including myoclonic seizures. The mice show early microglial activation that precedes seizure onset and neuronal loss and leads to neuroinflammation. We here characterized the inflammatory phenotype of Cstb -/- mice in more detail. We found higher concentrations of chemokines and pro-inflammatory cytokines in the serum of Cstb -/- mice and higher CXCL13 expression in activated microglia in Cstb -/- compared to control mouse brains. The elevated chemokine levels were not accompanied by blood-brain barrier disruption, despite increased brain vascularization. Macrophages in the spleen and brain of Cstb -/- mice were predominantly pro-inflammatory. Taken together, these data show that CXCL13 expression is a hallmark of microglial activation in Cstb -/- mice and that the brain inflammation is linked to peripheral inflammatory changes, which might contribute to the disease pathology of EPM1.


Assuntos
Cistatina B/deficiência , Encefalite/etiologia , Regulação da Expressão Gênica/genética , Inflamação/etiologia , Epilepsias Mioclônicas Progressivas/complicações , Epilepsias Mioclônicas Progressivas/genética , Animais , Encéfalo/patologia , Cistatina B/genética , Citocinas/sangue , Modelos Animais de Doenças , Encefalite/sangue , Inflamação/sangue , Camundongos , Camundongos Knockout , Microglia/metabolismo
11.
PLoS One ; 11(6): e0158195, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27355630

RESUMO

Progressive myoclonus epilepsy of Unverricht-Lundborg type (EPM1, OMIM254800) is an autosomal recessive neurodegenerative disorder characterized by stimulus-sensitive and action-activated myoclonus, tonic-clonic epileptic seizures, and ataxia. Loss-of-function mutations in the gene encoding the cysteine protease inhibitor cystatin B (CSTB) underlie EPM1. The deficiency of CSTB in mice (Cstb-/- mice) generates a phenotype resembling the symptoms of EPM1 patients and is accompanied by microglial activation at two weeks of age and an upregulation of immune system-associated genes in the cerebellum at one month of age. To shed light on molecular pathways and processes linked to CSTB deficiency in microglia we characterized the transcriptome of cultured Cstb-/- mouse microglia using microarray hybridization and RNA sequencing (RNA-seq). The gene expression profiles obtained with these two techniques were in good accordance and not polarized to either pro- or anti-inflammatory status. In Cstb-/- microglia, altogether 184 genes were differentially expressed. Of these, 33 genes were identified by both methods. Several interferon-regulated genes were weaker expressed in Cstb-/- microglia compared to control. This was confirmed by quantitative real-time PCR of the transcripts Irf7 and Stat1. Subsequently, we explored the biological context of CSTB deficiency in microglia more deeply by functional enrichment and canonical pathway analysis. This uncovered a potential role for CSTB in chemotaxis, antigen-presentation, and in immune- and defense response-associated processes by altering JAK-STAT pathway signaling. These data support and expand the previously suggested involvement of inflammatory processes to the disease pathogenesis of EPM1 and connect CSTB deficiency in microglia to altered expression of interferon-regulated genes.


Assuntos
Cistatina B/genética , Perfilação da Expressão Gênica , Interferons/metabolismo , Transdução de Sinais , Síndrome de Unverricht-Lundborg/genética , Animais , Anti-Inflamatórios/química , Janus Quinase 1/metabolismo , Camundongos , Camundongos Knockout , Microglia/metabolismo , Mutação , Fenótipo , Fator de Transcrição STAT1/metabolismo , Análise de Sequência de RNA , Síndrome de Unverricht-Lundborg/patologia
12.
Biol Open ; 5(5): 584-95, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-27044324

RESUMO

Mulibrey nanism (MUL) is a rare autosomal recessive multi-organ disorder characterized by severe prenatal-onset growth failure, infertility, cardiopathy, risk for tumors, fatty liver, and type 2 diabetes. MUL is caused by loss-of-function mutations in TRIM37, which encodes an E3 ubiquitin ligase belonging to the tripartite motif (TRIM) protein family and having both peroxisomal and nuclear localization. We describe a congenic Trim37 knock-out mouse (Trim37(-/-)) model for MUL. Trim37(-/-) mice were viable and had normal weight development until approximately 12 months of age, after which they started to manifest increasing problems in wellbeing and weight loss. Assessment of skeletal parameters with computer tomography revealed significantly smaller skull size, but no difference in the lengths of long bones in Trim37(-/-) mice as compared with wild-type. Both male and female Trim37(-/-) mice were infertile, the gonads showing germ cell aplasia, hilus and Leydig cell hyperplasia and accumulation of lipids in and around Leydig cells. Male Trim37(-/-) mice had elevated levels of follicle-stimulating and luteinizing hormones, but maintained normal levels of testosterone. Six-month-old Trim37(-/-) mice had elevated fasting blood glucose and low fasting serum insulin levels. At 1.5 years Trim37(-/-) mice showed non-compaction cardiomyopathy, hepatomegaly, fatty liver and various tumors. The amount and morphology of liver peroxisomes seemed normal in Trim37(-/-) mice. The most consistently seen phenotypes in Trim37(-/-) mice were infertility and the associated hormonal findings, whereas there was more variability in the other phenotypes observed. Trim37(-/-) mice recapitulate several features of the human MUL disease and thus provide a good model to study disease pathogenesis related to TRIM37 deficiency, including infertility, non-alcoholic fatty liver disease, cardiomyopathy and tumorigenesis.

13.
J Bone Miner Res ; 31(9): 1734-42, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27005318

RESUMO

WNT proteins comprise a 19-member glycoprotein family that act in several developmental and regenerative processes. In bone, WNT proteins regulate osteoblast differentiation and maintain bone health by activating the canonical WNT/ß-catenin pathway. We reported a heterozygous missense mutation c.652T>G (p.C218G) in WNT1 exon 4 as the cause for severe early-onset, autosomal dominant osteoporosis. The initial study concerned a large Finnish family with 10 affected adults. Here we report clinical findings of the WNT1 osteoporosis in 8 children and young adults (median age 14 years; range 10 to 30 years) in two families, all with the p.C218G mutation in WNT1. Clinical assessments showed no apparent dysmorphia or features similar to typical osteogenesis imperfecta (OI). Biochemistry revealed no changes in parameters of calcium metabolism and bone turnover markers. Fracture frequencies varied, but all subjects had sustained at least one fracture and 4 had a pathological fracture history. Plain radiographs showed osteopenic appearance, loss in vertebral height, and thin diaphyses of the long bones. Bone densitometry showed the BMD to be below normal median in all subjects and the bone mass deficit seemed to be more severe in older participants. Bone histomorphometry revealed a low turnover osteoporosis in 2 subjects at ages 14 and 16 years. These findings are congruent with earlier findings in adult patients and indicate that WNT1 osteoporosis causes significant skeletal changes already in early childhood and impairs bone mass gain during pubertal years. Genetic testing of children or close relatives of affected individuals is recommended for appropriate preventive measures. © 2016 American Society for Bone and Mineral Research.


Assuntos
Osso e Ossos/patologia , Osteoporose/patologia , Proteína Wnt1/metabolismo , Adolescente , Biomarcadores/sangue , Biópsia , Densidade Óssea , Criança , Estudos de Coortes , Densitometria , Feminino , Heterozigoto , Humanos , Perna (Membro)/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Mutação/genética , Osteoporose/sangue , Osteoporose/genética , Linhagem , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/patologia , Proteína Wnt1/genética , Adulto Jovem
14.
Ophthalmology ; 123(5): 1112-7, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26876698

RESUMO

PURPOSE: Germline mutations of the BRCA1-associated protein-1 gene (BAP1) predispose carriers to uveal melanoma. We report the population-based frequency of germline pathogenic variants of BAP1 in Finnish patients with uveal melanoma who live in a high-risk region for this cancer. DESIGN: Cohort study. PARTICIPANTS: In Finland, uveal melanomas are treated centrally in the Ocular Oncology Service, Helsinki University Hospital. We collected clinical data and genomic DNA from 148 of 188 consecutive patients diagnosed from January 2010 through December 2012. Seven of these patients from 6 families had a history of uveal melanoma in 1 relative, and 2 patients from 2 additional families had such a history in 2 relatives. METHODS: Sequencing BAP1. MAIN OUTCOME MEASURES: Pathogenic variants in BAP1. RESULTS: We found 2 different pathogenic variants in BAP1 in 3 patients. Two patients had a single nucleotide insertion in exon 14 resulting in a shift of reading frame. Both had a family history of uveal melanoma in at least 1 relative. One patient without a family history of uveal melanoma had a single nucleotide substitution in the conserved splice donor site of intron 2. BAP1 cancer predisposition syndrome-related cancers were present in all 3 families. The overall frequency of BAP1 pathogenic variants was 2.0% (3/148; 95% confidence interval, 0.4-5.8), the frequency among patients 50 years of age or younger was 3.6% (1/28; 95% confidence interval, 0.1-18), and a pathogenic variant was detected in 2 of 8 families with a history of uveal melanoma. CONCLUSIONS: The frequency of BAP1 germline pathogenic variants in consecutive Finnish patients with uveal melanoma who come from a high-risk region for the development of this cancer is comparable with reports from other populations.


Assuntos
Mutação em Linhagem Germinativa , Melanoma/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética , Neoplasias Uveais/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Éxons/genética , Feminino , Finlândia , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Adulto Jovem
15.
Neurology ; 84(15): 1529-36, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25770194

RESUMO

OBJECTIVE: This Finnish nationwide study aimed to refine the clinical phenotype variability and to identify factors that could explain the extensive variability in the clinical severity of the symptoms observed among patients with Unverricht-Lundborg disease (progressive myoclonus epilepsy type 1 [EPM1]) homozygous for the dodecamer expansion mutation in the cystatin B (CSTB) gene. METHODS: The study population consisted of 66 (33 men and 33 women) patients with genetically confirmed EPM1 homozygous for the CSTB expansion mutation for whom the sizes of the expanded alleles were determined. The clinical evaluation included videorecorded Unified Myoclonus Rating Scale and retrospectively collected medical history. The navigated transcranial magnetic stimulation test was used to determine motor threshold (MT) and silent period (SP) of the motor cortex. RESULTS: An earlier age at onset for EPM1 and longer disease duration were associated with more severe action myoclonus, lower performance IQ, increased MT, and prolonged SP. The number of dodecamer repeats in CSTB alleles varied between 38 and 77. On average, the size of the longer expanded alleles of patients was independently associated with MT, but exerted only a modulating effect on age at onset, myoclonus severity, and SP. CONCLUSIONS: As a group, earlier disease onset and longer duration are associated with more severe phenotype. Even though the vast majority of patients with EPM1 have a uniform genetic mutation, the actual size of the longer CSTB expansion mutation allele is likely to have a modulating effect on the age at disease onset, myoclonus severity, and cortical neurophysiology.


Assuntos
Cistatina B/genética , Córtex Motor/fisiopatologia , Mioclonia/fisiopatologia , Síndrome de Unverricht-Lundborg/fisiopatologia , Adolescente , Adulto , Idade de Início , Criança , Feminino , Finlândia/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Fenótipo , Índice de Gravidade de Doença , Fatores de Tempo , Estimulação Magnética Transcraniana , Síndrome de Unverricht-Lundborg/epidemiologia , Síndrome de Unverricht-Lundborg/genética , Adulto Jovem
16.
Bone Rep ; 3: 76-82, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28377970

RESUMO

Progressive myoclonus epilepsy of Unverricht-Lundborg type (EPM1) is an autosomal recessively inherited disorder characterized by incapacitating stimulus-sensitive myoclonus and tonic-clonic epileptic seizures with onset at the age of 6 to 16 years. EPM1 patients also exhibit a range of skeletal changes, e.g., thickened frontal cranial bone, arachnodactyly and scoliosis. Mutations in the gene encoding cystatin B (CSTB) underlie EPM1. CSTB is an inhibitor of cysteine cathepsins, including cathepsin K, a key enzyme in bone resorption by osteoclasts. CSTB has previously been shown to protect osteoclasts from experimentally induced apoptosis and to modulate bone resorption in vitro. Nevertheless, its physiological function in bone and the cause of the bone changes in patients remain unknown. Here we used the CSTB-deficient mouse (Cstb-/-) model of EPM1 to evaluate the contribution of defective CSTB protein function on bone pathology and osteoclast differentiation and function. Micro-computed tomography of hind limbs revealed thicker trabeculae and elevated bone mineral density in the trabecular bone of Cstb-/- mice. Histology from Cstb-/- mouse bones showed lower osteoclast count and thinner growth plates in long bones. Bone marrow-derived osteoclast cultures revealed lower osteoclast number and size in the Cstb-/- group. Cstb-/- osteoclasts formed less and smaller resorption pits in an in vitro assay. This impaired resorptive capacity was likely due to a decrease in osteoclast numbers and size. These data imply that the skeletal changes in Cstb-/- mice and in EPM1 patients are a result of CSTB deficiency leading to impaired osteoclast formation and consequently compromised resorptive capacity. These results suggest that the role of CSTB in osteoclast homeostasis and modulation of bone metabolism extends beyond cathepsin K regulation.

17.
Glia ; 63(3): 400-11, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25327891

RESUMO

Progressive myoclonus epilepsy of Unverricht-Lundborg type (EPM1) is an autosomal-recessively inherited neurodegenerative disorder characterized by severely incapacitating myoclonus, seizures, and ataxia, and caused by loss-of-function mutations in the cystatin B gene (CSTB). A central neuropathological finding in the Cstb(-/-) mouse, an animal model for EPM1, is early microglial activation, which precedes astroglial activation, neuronal loss, and onset of myoclonus, thus implying a critical role for microglia in EPM1 pathogenesis. Here, we characterized phenotypic and functional properties of microglia from Cstb(-/-) mice utilizing brain tissue, microglia directly isolated from the brain, and primary microglial cultures. Our results show significantly higher Cstb mRNA expression in microglia than in neurons and astrocytes. In Cstb(-/-) mouse brain, expression of the inflammatory marker p-p38 MAPK and the proportion of both pro-inflammatory M1 and anti-inflammatory M2 microglia is higher than in control mice. Moreover, M1/M2 polarization of microglia in presymptomatic Cstb(-/-) mice is, compared to control mice, skewed towards M2 type at postnatal day 14 (P14), but towards M1 type at P30, a time point associated with onset of myoclonus. At this age, the high expression of both pro-inflammatory inducible nitric oxide synthase (iNOS) and anti-inflammatory arginase 1 (ARG1) in Cstb(-/-) mouse cortex is accompanied by the presence of peripheral immune cells. Consistently, activated Cstb(-/-) microglia show elevated chemokine release and chemotaxis. However, their MHCII surface expression is suppressed. Taken together, our results link CSTB deficiency to neuroinflammation with early activation and dysfunction of microglia and will open new avenues for therapeutic interventions for EPM1.


Assuntos
Encéfalo/imunologia , Cistatina B/deficiência , Microglia/fisiologia , Síndrome de Unverricht-Lundborg/imunologia , Animais , Arginase/metabolismo , Astrócitos/metabolismo , Células Cultivadas , Cistatina B/genética , Modelos Animais de Doenças , Genes MHC da Classe II/fisiologia , Granulócitos/fisiologia , Macrófagos/fisiologia , Camundongos da Linhagem 129 , Neuroimunomodulação/fisiologia , Neurônios/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , RNA Mensageiro/metabolismo , Linfócitos T/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
18.
J Neurol ; 261(10): 1911-6, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25034270

RESUMO

We present a clinical, neuro-radiological and genetic study on a family with members suffering from an autosomal dominantly inherited syndrome characterised by epilepsy, cerebral calcifications and cysts, bone abnormalities; progressive neuro-cognitive deterioration and paranasal sinusitis. This syndrome shares several features with leukoencephalopathy with calcifications and cysts also called Labrune syndrome and the condition of cerebroretinal microangiopathy with calcifications and cysts (CRMCC; Coats plus syndrome). Genetic studies in this family did not reveal mutations in the CTC1 gene defected in CRMCC. We interpret our results as those supporting recent findings that despite clinical similarities, late-onset Labrune and Coats plus syndrome might be distinct entities. This family may have Labrune syndrome or a yet unclassified entity; exploration of similar cases could help classifying this one, and related conditions.


Assuntos
Ataxia/complicações , Neoplasias Encefálicas/complicações , Calcinose/complicações , Cistos do Sistema Nervoso Central/complicações , Saúde da Família , Leucoencefalopatias/complicações , Espasticidade Muscular/complicações , Doenças Retinianas/complicações , Convulsões/complicações , Ataxia/diagnóstico , Ataxia/genética , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Calcinose/diagnóstico , Calcinose/genética , Cistos do Sistema Nervoso Central/diagnóstico , Cistos do Sistema Nervoso Central/genética , Feminino , Humanos , Leucoencefalopatias/diagnóstico , Leucoencefalopatias/genética , Imageamento por Ressonância Magnética , Masculino , Espasticidade Muscular/diagnóstico , Espasticidade Muscular/genética , Mutação/genética , Oftalmologia , Doenças Retinianas/diagnóstico , Doenças Retinianas/genética , Convulsões/diagnóstico , Convulsões/genética , Proteínas de Ligação a Telômeros/genética , Tomografia Computadorizada por Raios X
19.
PLoS One ; 9(6): e90709, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24603771

RESUMO

Unverricht-Lundborg type progressive myoclonus epilepsy (EPM1, OMIM 254800) is an autosomal recessive disorder characterized by onset at the age of 6 to 16 years, incapacitating stimulus-sensitive myoclonus and tonic-clonic epileptic seizures. It is caused by mutations in the gene encoding cystatin B. Previously, widespread white matter changes and atrophy has been detected both in adult EPM1 patients and in 6-month-old cystatin B-deficient mice, a mouse model for the EPM1 disease. In order to elucidate the spatiotemporal dynamics of the brain atrophy and white matter changes in EPM1, we conducted longitudinal in vivo magnetic resonance imaging and ex vivo diffusion tensor imaging accompanied with tract-based spatial statistics analysis to compare volumetric changes and fractional anisotropy in the brains of 1 to 6 months of age cystatin B-deficient and control mice. The results reveal progressive but non-uniform volume loss of the cystatin B-deficient mouse brains, indicating that different neuronal populations possess distinct sensitivity to the damage caused by cystatin B deficiency. The diffusion tensor imaging data reveal early and progressive white matter alterations in cystatin B-deficient mice affecting all major tracts. The results also indicate that the white matter damage in the cystatin B-deficient brain is most likely secondary to glial activation and neurodegenerative events rather than a primary result of CSTB deficiency. The data also show that diffusion tensor imaging combined with TBSS analysis provides a feasible approach not only to follow white matter damage in neurodegenerative mouse models but also to detect fractional anisotropy changes related to normal white matter maturation and reorganisation.


Assuntos
Cerebelo/patologia , Cistatina B/deficiência , Tálamo/patologia , Síndrome de Unverricht-Lundborg/patologia , Animais , Imagem de Tensor de Difusão , Progressão da Doença , Feminino , Humanos , Imageamento por Ressonância Magnética , Camundongos Knockout , Tamanho do Órgão
20.
PLoS One ; 9(2): e89321, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24586687

RESUMO

Progressive myoclonus epilepsy of Unverricht-Lundborg type (EPM1) is an autosomal recessively inherited neurodegenerative disease, manifesting with myoclonus, seizures and ataxia, caused by mutations in the cystatin B (CSTB) gene. With the aim of understanding the molecular basis of pathogenetic events in EPM1 we characterized gene expression changes in the cerebella of pre-symptomatic postnatal day 7 (P7) and symptomatic P30 cystatin B -deficient (Cstb(-/-) ) mice, a model for the disease, and in cultured Cstb(-/-) cerebellar granule cells using a pathway-based approach. Differentially expressed genes in P7 cerebella were connected to synaptic function and plasticity, and in cultured cerebellar granule cells, to cell cycle, cytoskeleton, and intracellular transport. In particular, the gene expression data pinpointed alterations in GABAergic pathway. Electrophysiological recordings from Cstb(-/-) cerebellar Purkinje cells revealed a shift of the balance towards decreased inhibition, yet the amount of inhibitory interneurons was not declined in young animals. Instead, we found diminished number of GABAergic terminals and reduced ligand binding to GABAA receptors in Cstb(-/-) cerebellum. These results suggest that alterations in GABAergic signaling could result in reduced inhibition in Cstb(-/-) cerebellum leading to the hyperexcitable phenotype of Cstb(-/-) mice. At P30, the microarray data revealed a marked upregulation of immune and defense response genes, compatible with the previously reported early glial activation that precedes neuronal degeneration. This further implies the role of early-onset neuroinflammation in the pathogenesis of EPM1.


Assuntos
Cerebelo/metabolismo , Cistatina B/genética , Regulação da Expressão Gênica , Epilepsias Mioclônicas Progressivas/genética , Neurônios/metabolismo , Animais , Animais Recém-Nascidos , Cerebelo/imunologia , Modelos Animais de Doenças , Feminino , Neurônios GABAérgicos/metabolismo , Ligantes , Masculino , Camundongos , Camundongos Knockout , Ligação Proteica , Células de Purkinje/metabolismo , Receptores de GABA-A/metabolismo , Reprodutibilidade dos Testes , Potenciais Sinápticos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA