Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 34(3): 505-518.e6, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38215744

RESUMO

Germ cells are essential to sexual reproduction. Across the animal kingdom, extracellular signaling isoprenoids, such as retinoic acids (RAs) in vertebrates and juvenile hormones (JHs) in invertebrates, facilitate multiple processes in reproduction. Here we investigated the role of these potent signaling molecules in embryonic germ cell development, using JHs in Drosophila melanogaster as a model system. In contrast to their established endocrine roles during larval and adult germline development, we found that JH signaling acts locally during embryonic development. Using an in vivo biosensor, we observed active JH signaling first within and near primordial germ cells (PGCs) as they migrate to the developing gonad. Through in vivo and in vitro assays, we determined that JHs are both necessary and sufficient for PGC migration. Analysis into the mechanisms of this newly uncovered paracrine JH function revealed that PGC migration was compromised when JHs were decreased or increased, suggesting that specific titers or spatiotemporal JH dynamics are required for robust PGC colonization of the gonad. Compromised PGC migration can impair fertility and cause germ cell tumors in many species, including humans. In mammals, retinoids have many roles in development and reproduction. We found that like JHs in Drosophila, RA was sufficient to impact mouse PGC migration in vitro. Together, our study reveals a previously unanticipated role of isoprenoids as local effectors of pre-gonadal PGC development and suggests a broadly shared mechanism in PGC migration.


Assuntos
Drosophila melanogaster , Hormônios Juvenis , Humanos , Camundongos , Animais , Células Germinativas , Drosophila , Gônadas , Terpenos , Movimento Celular , Mamíferos
2.
Sci Adv ; 8(37): eabo0323, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36103538

RESUMO

Development, morphogenesis, immune system function, and cancer metastasis rely on the ability of cells to move through diverse tissues. To dissect migratory cell behavior in vivo, we developed cell type-specific imaging and perturbation techniques for Drosophila primordial germ cells (PGCs). We find that PGCs use global, retrograde cortical actin flows for orientation and propulsion during guided developmental homing. PGCs use RhoGEF2, a RhoA-specific RGS-RhoGEF, as a dose-dependent regulator of cortical flow through a feedback loop requiring its conserved PDZ and PH domains for membrane anchoring and local RhoA activation. This feedback loop is regulated for directional migration by RhoGEF2 availability and requires AMPK rather than canonical Gα12/13 signaling. AMPK multisite phosphorylation of RhoGEF2 near a conserved EB1 microtubule-binding SxIP motif releases RhoGEF2 from microtubule-dependent inhibition. Thus, we establish the mechanism by which global cortical flow and polarized RhoA activation can be dynamically adapted during natural cell navigation in a changing environment.

3.
Genome Res ; 31(10): 1938-1951, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34389661

RESUMO

Organ function relies on the spatial organization and functional coordination of numerous cell types. The Drosophila ovary is a widely used model system to study the cellular activities underlying organ function, including stem cell regulation, cell signaling and epithelial morphogenesis. However, the relative paucity of cell type-specific reagents hinders investigation of molecular functions at the appropriate cellular resolution. Here, we used single-cell RNA sequencing to characterize all cell types of the stem cell compartment and early follicles of the Drosophila ovary. We computed transcriptional signatures and identified specific markers for nine states of germ cell differentiation and 23 somatic cell types and subtypes. We uncovered an unanticipated diversity of escort cells, the somatic cells that directly interact with differentiating germline cysts. Three escort cell subtypes reside in discrete anatomical positions and express distinct sets of secreted and transmembrane proteins, suggesting that diverse micro-environments support the progressive differentiation of germ cells. Finally, we identified 17 follicle cell subtypes and characterized their transcriptional profiles. Altogether, we provide a comprehensive resource of gene expression, cell type-specific markers, spatial coordinates, and functional predictions for 34 ovarian cell types and subtypes.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Diferenciação Celular/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Células Germinativas , Folículo Ovariano/metabolismo , Ovário/metabolismo
4.
Nature ; 570(7761): 380-384, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31092924

RESUMO

Mitochondria contain their own genomes that, unlike nuclear genomes, are inherited only in the maternal line. Owing to a high mutation rate and low levels of recombination of mitrochondrial DNA (mtDNA), special selection mechanisms exist in the female germline to prevent the accumulation of deleterious mutations1-5. However, the molecular mechanisms that underpin selection are poorly understood6. Here we visualize germline selection in Drosophila using an allele-specific fluorescent in situ-hybridization approach to distinguish wild-type from mutant mtDNA. Selection first manifests in the early stages of Drosophila oogenesis, triggered by reduction of the pro-fusion protein Mitofusin. This leads to the physical separation of mitochondrial genomes into different mitochondrial fragments, which prevents the mixing of genomes and their products and thereby reduces complementation. Once fragmented, mitochondria that contain mutant genomes are less able to produce ATP, which marks them for selection through a process that requires the mitophagy proteins Atg1 and BNIP3. A reduction in Atg1 or BNIP3 decreases the amount of wild-type mtDNA, which suggests a link between mitochondrial turnover and mtDNA replication. Fragmentation is not only necessary for selection in germline tissues, but is also sufficient to induce selection in somatic tissues in which selection is normally absent. We postulate that there is a generalizable mechanism for selection against deleterious mtDNA mutations, which may enable the development of strategies for the treatment of mtDNA disorders.


Assuntos
DNA Mitocondrial/genética , Drosophila/citologia , Drosophila/genética , Células Germinativas/metabolismo , Mitocôndrias/genética , Mitofagia , Trifosfato de Adenosina/metabolismo , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , DNA Mitocondrial/isolamento & purificação , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Feminino , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação
5.
Development ; 145(7)2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29511022

RESUMO

Maintenance of cellular identity is essential for tissue development and homeostasis. At the molecular level, cell identity is determined by the coordinated activation and repression of defined sets of genes. The tumor suppressor L(3)mbt has been shown to secure cellular identity in Drosophila larval brains by repressing germline-specific genes. Here, we interrogate the temporal and spatial requirements for L(3)mbt in the Drosophila ovary, and show that it safeguards the integrity of both somatic and germline tissues. l(3)mbt mutant ovaries exhibit multiple developmental defects, which we find to be largely caused by the inappropriate expression of a single gene, nanos, a key regulator of germline fate, in the somatic ovarian cells. In the female germline, we find that L(3)mbt represses testis-specific and neuronal genes. At the molecular level, we show that L(3)mbt function in the ovary is mediated through its co-factor Lint-1 but independently of the dREAM complex. Together, our work uncovers a more complex role for L(3)mbt than previously understood and demonstrates that L(3)mbt secures tissue identity by preventing the simultaneous expression of original identity markers and tissue-specific misexpression signatures.


Assuntos
Diferenciação Celular/genética , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Ovário/metabolismo , Animais , Drosophila/embriologia , Feminino , Imunofluorescência , Regulação da Expressão Gênica no Desenvolvimento , Hibridização in Situ Fluorescente , Larva/metabolismo , Ovário/citologia , Ovário/embriologia , Proteínas de Ligação a RNA/metabolismo , Análise de Sequência de RNA
6.
Curr Opin Cell Biol ; 42: 128-137, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27484857

RESUMO

Embryonic germ cell migration is a vital component of the germline lifecycle. The translocation of germ cells from the place of origin to the developing somatic gonad involves several processes including passive movements with underlying tissues, transepithelial migration, cell adhesion dynamics, the establishment of environmental guidance cues and the ability to sustain directed migration. How germ cells accomplish these feats in established model organisms will be discussed in this review, with a focus on recent discoveries and themes conserved across species.


Assuntos
Movimento Celular , Células Germinativas/citologia , Animais , Adesão Celular , Células Epiteliais/citologia , Gônadas/citologia , Humanos , Modelos Biológicos
7.
Development ; 139(12): 2101-6, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22619387

RESUMO

Trans-epithelial migration describes the ability of migrating cells to cross epithelial tissues and occurs during development, infection, inflammation, immune surveillance, wound healing and cancer metastasis. Here we investigate Drosophila primordial germ cells (PGCs), which migrate through the endodermal epithelium. Through live imaging and genetic experimentation we demonstrate that PGCs take advantage of endodermal tissue remodeling to gain access to the gonadal mesoderm and are unable to migrate through intact epithelial tissues. These results are in contrast to the behavior of leukocytes, which actively loosen epithelial junctions to migrate, and raise the possibility that in other contexts in which migrating cells appear to breach tissue barriers, they are actually exploiting existing tissue permeability. Therefore, the use of active invasive programs is not the sole mechanism to infiltrate tissues.


Assuntos
Movimento Celular , Drosophila melanogaster/citologia , Drosophila melanogaster/crescimento & desenvolvimento , Endoderma/crescimento & desenvolvimento , Epitélio/crescimento & desenvolvimento , Células Germinativas/citologia , Morfogênese , Animais , Padronização Corporal , Endoderma/citologia , Migração Transendotelial e Transepitelial
8.
PLoS Genet ; 6(10): e1001159, 2010 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-20976250

RESUMO

Regenerative processes are critical to maintain tissue homeostasis in high-turnover tissues. At the same time, proliferation of stem and progenitor cells has to be carefully controlled to prevent hyper-proliferative diseases. Mechanisms that ensure this balance, thus promoting proliferative homeostasis, are expected to be critical for longevity in metazoans. The intestinal epithelium of Drosophila provides an accessible model in which to test this prediction. In aging flies, the intestinal epithelium degenerates due to over-proliferation of intestinal stem cells (ISCs) and mis-differentiation of ISC daughter cells, resulting in intestinal dysplasia. Here we show that conditions that impair tissue renewal lead to lifespan shortening, whereas genetic manipulations that improve proliferative homeostasis extend lifespan. These include reduced Insulin/IGF or Jun-N-terminal Kinase (JNK) signaling activities, as well as over-expression of stress-protective genes in somatic stem cell lineages. Interestingly, proliferative activity in aging intestinal epithelia correlates with longevity over a range of genotypes, with maximal lifespan when intestinal proliferation is reduced but not completely inhibited. Our results highlight the importance of the balance between regenerative processes and strategies to prevent hyperproliferative disorders and demonstrate that promoting proliferative homeostasis in aging metazoans is a viable strategy to extend lifespan.


Assuntos
Proliferação de Células , Drosophila melanogaster/crescimento & desenvolvimento , Longevidade , Células-Tronco/citologia , Animais , Animais Geneticamente Modificados , Western Blotting , Senescência Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Histonas/metabolismo , Homeostase , Proteínas Substratos do Receptor de Insulina , Mucosa Intestinal/metabolismo , Intestinos/citologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Microscopia Confocal , Mutação , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Células-Tronco/metabolismo
9.
Nat Rev Mol Cell Biol ; 11(1): 37-49, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20027186

RESUMO

The regulated migration of cells is essential for development and tissue homeostasis, and aberrant cell migration can lead to an impaired immune response and the progression of cancer. Primordial germ cells (PGCs), precursors to sperm and eggs, have to migrate across the embryo to reach somatic gonadal precursors, where they carry out their function. Studies of model organisms have revealed that, despite important differences, several features of PGC migration are conserved. PGCs require an intrinsic motility programme and external guidance cues to survive and successfully migrate. Proper guidance involves both attractive and repulsive cues and is mediated by protein and lipid signalling.


Assuntos
Movimento Celular/fisiologia , Células Germinativas/fisiologia , Transdução de Sinais , Animais , Humanos
10.
Proc Natl Acad Sci U S A ; 106(24): 9691-6, 2009 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-19478063

RESUMO

Maintenance of genome integrity in germ cells is crucial for the success of future generations. In Drosophila, and mammals, transposable element activity in the germline can cause DNA breakage and sterility. Recent studies have shown that proteins involved in piRNA (PIWI-interacting RNA) biogenesis are necessary for retrotransposon silencing in the Drosophila germline. Females mutant for genes in the piRNA biogenesis pathway produce eggs with patterning defects that result from Chk-2 (checkpoint kinase-2) DNA damage checkpoint activation. Here we show that large ribonucleoprotein aggregates form in response to DNA damage checkpoint activation in egg chambers of females defective in piRNA biogenesis. Aggregate formation is specific to piRNA biogenesis mutants, as other mutations that activate the same Chk-2-dependent checkpoint do not cause aggregate formation. These aggregates contain components of the dynein motor machinery, retrotransposon RNA, and protein and axial patterning RNAs. Disruption of the aggregates by colcemid treatment leads to increased retrotransposon RNA levels, indicating that these structures may be the destination of retrotransposon RNA transport and may be degradation or sequestration sites. We propose that aggregate formation is a cellular response to protect germ cells from DNA damage caused by elevated retrotransposon expression.


Assuntos
Dineínas/metabolismo , Mutação , RNA/metabolismo , Animais , Sequência de Bases , Transporte Biológico , Quinase do Ponto de Checagem 2 , Dano ao DNA , Primers do DNA , Drosophila , Proteínas de Drosophila/genética , Feminino , Proteínas de Homeodomínio/genética , Hibridização In Situ , Proteínas Serina-Treonina Quinases/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transativadores/genética , Fator de Crescimento Transformador alfa/genética
11.
Science ; 323(5916): 943-6, 2009 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-19213920

RESUMO

Directed cell migration, which is critical for embryonic development, leukocyte trafficking, and cell metastasis, depends on chemoattraction. 3-hydroxy-3-methylglutaryl coenzyme A reductase regulates the production of an attractant for Drosophila germ cells that may itself be geranylated. Chemoattractants are commonly secreted through a classical, signal peptide-dependent pathway, but a geranyl-modified attractant would require an alternative pathway. In budding yeast, pheromones produced by a-cells are farnesylated and secreted in a signal peptide-independent manner, requiring the adenosine triphosphate-binding cassette (ABC) transporter Ste6p. Here we show that Drosophila germ cell migration uses a similar pathway, demonstrating that invertebrate germ cells, like yeast cells, are attracted to lipid-modified peptides. Components of this unconventional export pathway are highly conserved, suggesting that this pathway may control the production of similarly modified chemoattractants in organisms ranging from yeast to humans.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/fisiologia , Quimiotaxia/fisiologia , Proteínas de Drosophila/fisiologia , Células Germinativas/fisiologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Transporte Biológico , Diterpenos/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Teste de Complementação Genética , Hidroximetilglutaril-CoA Redutases/metabolismo , Mesoderma/citologia , Mesoderma/metabolismo , Prenilação de Proteína , Sinais Direcionadores de Proteínas , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
J Cell Biol ; 183(1): 157-68, 2008 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-18824569

RESUMO

Despite significant progress in identifying the guidance pathways that control cell migration, how a cell starts to move within an intact organism, acquires motility, and loses contact with its neighbors is poorly understood. We show that activation of the G protein-coupled receptor (GPCR) trapped in endoderm 1 (Tre1) directs the redistribution of the G protein Gbeta as well as adherens junction proteins and Rho guanosine triphosphatase from the cell periphery to the lagging tail of germ cells at the onset of Drosophila melanogaster germ cell migration. Subsequently, Tre1 activity triggers germ cell dispersal and orients them toward the midgut for directed transepithelial migration. A transition toward invasive migration is also a prerequisite for metastasis formation, which often correlates with down-regulation of adhesion proteins. We show that uniform down-regulation of E-cadherin causes germ cell dispersal but is not sufficient for transepithelial migration in the absence of Tre1. Our findings therefore suggest a new mechanism for GPCR function that links cell polarity, modulation of cell adhesion, and invasion.


Assuntos
Caderinas/fisiologia , Movimento Celular/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Células Germinativas/citologia , Receptores Acoplados a Proteínas G/fisiologia , Animais , Caderinas/genética , Caderinas/metabolismo , Adesão Celular/fisiologia , Polaridade Celular/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Embrião não Mamífero/ultraestrutura , Epitélio/embriologia , Epitélio/metabolismo , Epitélio/ultraestrutura , Feminino , Células Germinativas/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/genética , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Microscopia Eletrônica , Mutação , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
13.
Cell Stem Cell ; 1(3): 239-40, 2007 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-18371355

RESUMO

The Drosophila ovary has been a favorite model for the study of stem cells within their niche. In this issue of Cell Stem Cell, Nystul and Spradling (2007) study somatic stem cells within a novel kind of niche and reveal the complexity and coordination of stem cell behavior.


Assuntos
Drosophila melanogaster/citologia , Células Epiteliais/citologia , Folículo Ovariano/citologia , Células-Tronco/citologia , Animais , Movimento Celular , Feminino
14.
Nature ; 443(7107): 97-100, 2006 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-16936717

RESUMO

The ability of organs such as the liver or the lymphoid system to maintain their original size or regain it after injury is well documented. However, little is known about how these organs sense that equilibrium is breached, and how they cease changing when homeostasis is reached. Similarly, it remains unclear how, during normal development, different cell types within an organ coordinate their growth. Here we show that during gonad development in the fruitfly Drosophila melanogaster the proliferation of primordial germ cells (PGCs) and survival of the somatic intermingled cells (ICs) that contact them are coordinated by means of a feedback mechanism composed of a positive signal and a negative signal. PGCs express the EGF receptor (EGFR) ligand Spitz, which is required for IC survival. In turn, ICs inhibit PGC proliferation. Thus, homeostasis and coordination of growth between soma and germ line in the larval ovary is achieved by using a sensor of PGC numbers (EGFR-mediated survival of ICs) coupled to a correction mechanism inhibiting PGC proliferation. This feedback loop ensures that sufficient numbers of PGCs exist to fill all the stem-cell niches that form at the end of larval development. We propose that similar feedback mechanisms might be generally used for coordinated growth, regeneration and homeostasis.


Assuntos
Drosophila melanogaster/crescimento & desenvolvimento , Homeostase , Ovário/citologia , Ovário/crescimento & desenvolvimento , Óvulo/citologia , Células-Tronco/citologia , Animais , Contagem de Células , Proliferação de Células , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Larva/citologia , Larva/crescimento & desenvolvimento , Masculino , Interferência de RNA , Transdução de Sinais
15.
Annu Rev Cell Dev Biol ; 22: 237-65, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16774460

RESUMO

The basic concepts of the molecular machinery that mediates cell migration have been gleaned from cell culture systems. However, the three-dimensional environment within an organism presents migrating cells with a much greater challenge. They must move between and among other cells while interpreting multiple attractive and repulsive cues to choose their proper path. They must coordinate their cell adhesion with their surroundings and know when to start and stop moving. New insights into the control of these remaining mysteries have emerged from genetic dissection and live imaging of germ cell migration in Drosophila, zebrafish, and mouse embryos. In this review, we first describe germ cell migration in cellular and mechanistic detail in these different model systems. We then compare these systems to highlight the emerging principles. Finally, we contrast the migration of germ cells with that of immune and cancer cells to outline the conserved and different mechanisms.


Assuntos
Movimento Celular , Células Germinativas/citologia , Animais , Drosophila/citologia , Camundongos , Peixe-Zebra/fisiologia
16.
Development ; 132(6): 1165-74, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15703281

RESUMO

Cyclins regulate progression through the cell cycle. Control of cyclin levels is essential in Drosophila oogenesis for the four synchronous divisions that generate the 16 cell germ line cyst and for ensuring that one cell in each cyst, the oocyte, is arrested in meiosis, while the remaining fifteen cells become polyploid nurse cells. Changes in cyclin levels could be achieved by regulating transcription, translation or protein stability. The proteasome limits cyclin protein levels in the Drosophila ovary, but the mechanisms regulating RNA turnover or translation remain largely unclear. Here, we report the identification of twin, a homolog of the yeast CCR4 deadenylase. We show that twin is important for the number and synchrony of cyst divisions and oocyte fate. Consistent with the deadenylase activity of CCR4 in yeast, our data suggest that Twin controls germ line cyst development by regulating poly(A) tail lengths of several targets including Cyclin A (CycA) RNA. twin mutants exhibit very low expression of Bag-of-marbles (Bam), a regulator of cyst division, indicating that Twin/Ccr4 activity is necessary for wild-type Bam expression. Lowering the levels of CycA or increasing the levels of Bam suppresses the defects we observe in twin ovaries, implicating CycA and Bam as downstream effectors of Twin. We propose that Twin/Ccr4 functions during early oogenesis to coordinate cyst division, oocyte fate specification and egg chamber maturation.


Assuntos
Adenosina/metabolismo , Ciclinas/biossíntese , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Oogênese/fisiologia , Polímeros/metabolismo , Ribonucleases/metabolismo , Sequência de Aminoácidos , Animais , Ciclinas/genética , Drosophila/genética , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/genética , Feminino , Regulação da Expressão Gênica , Dados de Sequência Molecular , Oogênese/genética , RNA Mensageiro/metabolismo , Ribonucleases/genética , Proteínas de Saccharomyces cerevisiae/genética
17.
Curr Biol ; 14(11): 981-6, 2004 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-15182671

RESUMO

In Drosophila, primordial germ cells (PGCs) are set aside from somatic cells and subsequently migrate through the embryo and associate with somatic gonadal cells to form the embryonic gonad. During larval stages, PGCs proliferate in the female gonad, and a subset of PGCs are selected at late larval stages to become germ line stem cells (GSCs), the source of continuous egg production throughout adulthood. However, the degree of similarity between PGCs and the self-renewing GSCs is unclear. Here we show that many of the genes that are required for GSC maintenance in adults are also required to prevent precocious differentiation of PGCs within the larval ovary. We show that following overexpression of the GSC-differentiation gene bag of marbles (bam), PGCs differentiate to form cysts without becoming GSCs. Furthermore, PGCs that are mutant for nanos (nos), pumilio (pum) or for signaling components of the decapentaplegic (dpp) pathway also differentiate. The similarity in the genes necessary for GSC maintenance and the repression of PGC differentiation suggest that PGCs and GSCs may be functionally equivalent and that the larval gonad functions as a "PGC niche".


Assuntos
Diferenciação Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/fisiologia , Gônadas/citologia , Transdução de Sinais , Células-Tronco/fisiologia , Animais , Drosophila , Proteínas de Drosophila/metabolismo , Feminino , Imunofluorescência , Células Germinativas/metabolismo , Proteínas de Fluorescência Verde , Temperatura Alta , Larva/fisiologia , Proteínas Luminescentes , Ovário/metabolismo , Proteínas de Ligação a RNA/metabolismo , Células-Tronco/metabolismo
18.
Nat Cell Biol ; 6(5): 427-35, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15077115

RESUMO

In many cell types polarized transport directs the movement of mRNAs and proteins from their site of synthesis to their site of action, thus conferring cell polarity. The cytoplasmic dynein microtubule motor complex is involved in this process. In Drosophila melanogaster, the Egalitarian (Egl) and Bicaudal-D (BicD) proteins are also essential for the transport of macromolecules to the oocyte and to the apical surface of the blastoderm embryo. Hence, Egl and BicD, which have been shown to associate, may be part of a conserved core localization machinery in Drosophila, although a direct association between these molecules and the dynein motor complex has not been shown. Here we report that Egl interacts directly with Drosophila dynein light chain (Dlc), a microtubule motor component, through an Egl domain distinct from that which binds BicD. We propose that the Egl-BicD complex is loaded through Dlc onto the dynein motor complex thereby facilitating transport of cargo. Consistent with this model, point mutations that specifically disrupt Egl-Dlc association also disrupt microtubule-dependant trafficking both to and within the oocyte, resulting in a loss of oocyte fate maintenance and polarity. Our data provide a direct link between a molecule necessary for oocyte specification and the microtubule motor complex, and supports the hypothesis that microtubule-mediated transport is important for preserving oocyte fate.


Assuntos
Polaridade Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Dineínas/metabolismo , Oócitos/fisiologia , Animais , Linhagem Celular , Proteínas de Drosophila/genética , Dineínas/química , Dineínas/genética , Feminino , Humanos , Microtúbulos/metabolismo , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/metabolismo , Mutagênese Sítio-Dirigida , Oócitos/citologia , Oogênese , Ovário/citologia , Ovário/fisiologia , Ligação Proteica , Estrutura Terciária de Proteína , Técnicas do Sistema de Duplo-Híbrido
19.
Development ; 130(26): 6625-34, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14660550

RESUMO

Gap junctions coordinate processes ranging from muscle contraction to ovarian follicle development. Here we show that the gap junction protein Zero population growth (Zpg) is required for germ cell differentiation in the Drosophila ovary. In the absence of Zpg the stem cell daughter destined to differentiate dies. The zpg phenotype is novel, and we used this phenotype to genetically dissect the process of stem cell maintenance and differentiation. Our findings suggest that germ line stem cells differentiate upon losing contact with their niche, that gap junction mediated cell-cell interactions are required for germ cell differentiation, and that in Drosophila germ line stem cell differentiation to a cystoblast is gradual.


Assuntos
Diferenciação Celular/fisiologia , Drosophila/embriologia , Junções Comunicantes/fisiologia , Ovário/embriologia , Células-Tronco/citologia , Animais , Embrião não Mamífero/fisiologia , Feminino , Morfogênese , Ovário/citologia
20.
Genetics ; 164(4): 1435-46, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12930750

RESUMO

The Drosophila oocyte develops from a cluster of 16 interconnected cells that derive from a common progenitor. One of these cells, the oocyte, arrests in meiosis. The other cells endoreplicate their DNA and produce mRNAs and proteins that they traffic to the oocyte along a polarized microtubule cytoskeleton shared by the entire cyst. Therefore, Drosophila oogenesis is an attractive system for the study of cell cycle control and cell polarity. We carried out a clonal screen on the right arm of chromosome 3 for female sterile mutations using the FLP-FRT-ovo(D) system to identify new genes required for early oogenesis. We identified alleles of oo18 RNA binding protein (orb) and Darkener of apricot (Doa), which had previously been shown to exhibit oogenesis defects. We also identified several lethal alleles of the male sterile mutant, bobble (bob). In addition, we identified eight new lethal complementation groups that exhibit early oogenesis phenotypes. We analyzed mutant clones to determine the aspects of oogenesis disrupted by each complementation group. We assayed for the production and development of egg chambers, localization of ORB to and within the oocyte, and proper execution of the nurse cell cycle (endoreplication of DNA) and the oocyte cell cycle (karyosome formation). Here we discuss the identification, mapping, and phenotypic characterization of these new genes: omelet, soft boiled, hard boiled, poached, fried, over easy, sunny side up, and benedict.


Assuntos
Drosophila melanogaster/genética , Genes de Insetos , Proteínas de Insetos/genética , Mutação , Oócitos , Oogênese/genética , Alelos , Animais , Biomarcadores , Clonagem Molecular , Análise Mutacional de DNA , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genes Letais , Teste de Complementação Genética , Homozigoto , Infertilidade Feminina/genética , Infertilidade Masculina/genética , Proteínas de Insetos/metabolismo , Masculino , Oócitos/citologia , Oócitos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA