Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Glycobiology ; 33(7): 567-578, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37216646

RESUMO

There is an urgent need to develop new tumor biomarkers for early cancer detection, but the variability of tumor-derived antigens has been a limitation. Here we demonstrate a novel anti-Tn antibody microarray platform to detect Tn+ glycoproteins, a near universal antigen in carcinoma-derived glycoproteins, for broad detection of cancer. The platform uses a specific recombinant IgG1 to the Tn antigen (CD175) as a capture reagent and a recombinant IgM to the Tn antigen as a detecting reagent. These reagents were validated by immunohistochemistry in recognizing the Tn antigen using hundreds of human tumor specimens. Using this approach, we could detect Tn+ glycoproteins at subnanogram levels using cell lines and culture media, serum, and stool samples from mice engineered to express the Tn antigen in intestinal epithelial cells. The development of a general cancer detection platform using recombinant antibodies for detection of altered tumor glycoproteins expressing a unique antigen could have a significant impact on cancer detection and monitoring.


Assuntos
Antígenos Glicosídicos Associados a Tumores , Carcinoma , Humanos , Animais , Camundongos , Glicosilação , Glicoproteínas , Biomarcadores Tumorais , Linhagem Celular
2.
Genes (Basel) ; 13(7)2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35885999

RESUMO

(1) Background: Barrett's esophagus is a major risk factor for esophageal adenocarcinoma. In this pilot study, we employed precision mass spectrometry to map global (phospho)protein perturbations in Barrett's esophagus lesions and adjacent normal tissue to glean insights into disease progression. (2) Methods: Biopsies were collected from two small but independent cohorts. Comparative analyses were performed between Barrett's esophagus samples and adjacent matched (normal) tissues from patients with known pathology, while specimens from healthy patients served as additional controls. (3) Results: We identified and quantified 6810 proteins and 6395 phosphosites in the discovery cohort, revealing hundreds of statistically significant differences in protein abundances and phosphorylation states. We identified a robust proteomic signature that accurately classified the disease status of samples from the independent patient cohorts. Pathway-level analysis of the phosphoproteomic profiles revealed the dysregulation of specific cellular processes, including DNA repair, in Barrett's esophagus relative to paired controls. Comparative analysis with previously published transcriptomic profiles provided independent evidence in support of these preliminary findings. (4) Conclusions: This pilot study establishes the feasibility of using unbiased quantitative phosphoproteomics to identify molecular perturbations associated with disease progression in Barrett's esophagus to define potentially clinically actionable targets warranting further assessment.


Assuntos
Esôfago de Barrett , Esôfago de Barrett/genética , Esôfago de Barrett/metabolismo , Esôfago de Barrett/patologia , Progressão da Doença , Estudos de Viabilidade , Humanos , Projetos Piloto , Proteômica
3.
Glycobiology ; 31(11): 1444-1463, 2021 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-34350945

RESUMO

Bladder cancer is the ninth most frequently diagnosed cancer worldwide, and there is a need to develop new biomarkers for staging and prognosis of this disease. Here we report that cell lines derived from low-grade and high-grade bladder cancers exhibit major differences in expression of glycans in surface glycoproteins. We analyzed protein glycosylation in three low-grade bladder cancer cell lines RT4 (grade-1-2), 5637 (grade-2), and SW780 (grade-1), and three high-grade bladder cancer cell lines J82COT (grade-3), T24 (grade-3) and TCCSUP (grade-4), with primary bladder epithelial cells, A/T/N, serving as a normal bladder cell control. Using a variety of approaches including flow cytometry, immunofluorescence, glycomics and gene expression analysis, we observed that the low-grade bladder cancer cell lines RT4, 5637 and SW780 express high levels of the fucosylated Lewis-X antigen (Lex, CD15) (Galß1-4(Fucα1-3)GlcNAcß1-R), while normal bladder epithelial A/T/N cells lack Lex expression. T24 and TCCSUP cells also lack Lex, whereas J82COT cells express low levels of Lex. Glycomics analyses revealed other major differences in fucosylation and sialylation of N-glycans between these cell types. O-glycans are highly differentiated, as RT4 cells synthesize core 2-based O-glycans that are lacking in the T24 cells. These differences in glycan expression correlated with differences in RNA expression levels of their cognate glycosyltransferases, including α1-3/4-fucosyltransferase genes. These major differences in glycan structures and gene expression profiles between low- and high-grade bladder cancer cells suggest that glycans and glycosyltransferases are candidate biomarkers for grading bladder cancers.


Assuntos
Biomarcadores Tumorais/metabolismo , Fucosiltransferases/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Biomarcadores Tumorais/genética , Células Cultivadas , Fucosiltransferases/genética , Glicosilação , Humanos , Neoplasias da Bexiga Urinária/patologia
4.
JCI Insight ; 6(9)2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33784256

RESUMO

Lupus nephritis (LN) is a serious complication occurring in 50% of patients with systemic lupus erythematosus (SLE) for which there is a lack of biomarkers, a lack of specific medications, and a lack of a clear understanding of its pathogenesis. The expression of calcium/calmodulin kinase IV (CaMK4) is increased in podocytes of patients with LN and lupus-prone mice, and its podocyte-targeted inhibition averts the development of nephritis in mice. Nephrin is a key podocyte molecule essential for the maintenance of the glomerular slit diaphragm. Here, we show that the presence of fucose on N-glycans of IgG induces, whereas the presence of galactose ameliorates, podocyte injury through CaMK4 expression. Mechanistically, CaMK4 phosphorylates NF-κB, upregulates the transcriptional repressor SNAIL, and limits the expression of nephrin. In addition, we demonstrate that increased expression of CaMK4 in biopsy specimens and in urine podocytes from people with LN is linked to active kidney disease. Our data shed light on the role of IgG glycosylation in the development of podocyte injury and propose the development of "liquid kidney biopsy" approaches to diagnose LN.


Assuntos
Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/metabolismo , Imunoglobulina G/metabolismo , Nefrite Lúpica/metabolismo , Podócitos/metabolismo , Adolescente , Adulto , Idoso , Animais , Linhagem Celular , Feminino , Fucose/metabolismo , Galactose/metabolismo , Humanos , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Adulto Jovem
5.
J Leukoc Biol ; 109(5): 915-930, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33070381

RESUMO

Alpha-1-acid glycoprotein (AGP-1) is a positive acute phase glycoprotein with uncertain functions. Serum AGP-1 (sAGP-1) is primarily derived from hepatocytes and circulates as 12-20 different glycoforms. We isolated a glycoform secreted from platelet-activating factor (PAF)-stimulated human neutrophils (nAGP-1). Its peptide sequence was identical to hepatocyte-derived sAGP-1, but nAGP-1 differed from sAGP-1 in its chromatographic behavior, electrophoretic mobility, and pattern of glycosylation. The function of these 2 glycoforms also differed. sAGP-1 activated neutrophil adhesion, migration, and neutrophil extracellular traps (NETosis) involving myeloperoxidase, peptidylarginine deiminase 4, and phosphorylation of ERK in a dose-dependent fashion, whereas nAGP-1 was ineffective as an agonist for these events. Furthermore, sAGP-1, but not nAGP-1, inhibited LPS-stimulated NETosis. Interestingly, nAGP-1 inhibited sAGP-1-stimulated neutrophil NETosis. The discordant effect of the differentially glycosylated AGP-1 glycoforms was also observed in platelets where neither of the AGP-1 glycoforms alone stimulated aggregation of washed human platelets, but sAGP-1, and not nAGP-1, inhibited aggregation induced by PAF or ADP, but not by thrombin. These functional effects of sAGP-1 correlated with intracellular cAMP accumulation and phosphorylation of the protein kinase A substrate vasodilator-stimulated phosphoprotein and reduction of Akt, ERK, and p38 phosphorylation. Thus, the sAGP-1 glycoform limits platelet reactivity, whereas nAGP-1 glycoform also limits proinflammatory actions of sAGP-1. These studies identify new functions for this acute phase glycoprotein and demonstrate that the glycosylation of AGP-1 controls its effects on 2 critical cells of acute inflammation.


Assuntos
Plaquetas/metabolismo , Neutrófilos/metabolismo , Orosomucoide/metabolismo , Difosfato de Adenosina/farmacologia , Biomarcadores/metabolismo , Plaquetas/efeitos dos fármacos , AMP Cíclico/metabolismo , Armadilhas Extracelulares/metabolismo , Glicosilação/efeitos dos fármacos , Humanos , Modelos Biológicos , Ativação de Neutrófilo/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Orosomucoide/agonistas , Peptídeos/metabolismo , Fator de Ativação de Plaquetas/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Polissacarídeos/metabolismo , Isoformas de Proteínas/metabolismo
6.
JCI Insight ; 5(21)2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32990680

RESUMO

Patient-derived organoid models are proving to be a powerful platform for both basic and translational studies. Here we conduct a methodical analysis of pancreatic ductal adenocarcinoma (PDAC) tumor organoid drug response in paired patient-derived xenograft (PDX) and PDX-derived organoid (PXO) models grown under WNT-free culture conditions. We report a specific relationship between area under the curve value of organoid drug dose response and in vivo tumor growth, irrespective of the drug treatment. In addition, we analyzed the glycome of PDX and PXO models and demonstrate that PXOs recapitulate the in vivo glycan landscape. In addition, we identify a core set of 57 N-glycans detected in all 10 models that represent 50%-94% of the relative abundance of all N-glycans detected in each of the models. Last, we developed a secreted biomarker discovery pipeline using media supernatant of organoid cultures and identified potentially new extracellular vesicle (EV) protein markers. We validated our findings using plasma samples from patients with PDAC, benign gastrointestinal diseases, and chronic pancreatitis and discovered that 4 EV proteins are potential circulating biomarkers for PDAC. Thus, we demonstrate the utility of organoid cultures to not only model in vivo drug responses but also serve as a powerful platform for discovering clinically actionable serologic biomarkers.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais/sangue , Carcinoma Ductal Pancreático/patologia , Modelos Animais de Doenças , Vesículas Extracelulares/metabolismo , Organoides/patologia , Neoplasias Pancreáticas/patologia , Animais , Apoptose , Carcinoma Ductal Pancreático/sangue , Carcinoma Ductal Pancreático/tratamento farmacológico , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Nus , Organoides/efeitos dos fármacos , Organoides/metabolismo , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/tratamento farmacológico , Polissacarídeos/metabolismo , Prognóstico , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias Pancreáticas
8.
Glycobiology ; 30(5): 282-300, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-31742337

RESUMO

The Tn antigen is a neoantigen abnormally expressed in many human carcinomas and expression correlates with metastasis and poor survival. To explore its biomarker potential, new antibodies are needed that specifically recognize this antigen in tumors. Here we generated two recombinant antibodies to the Tn antigen, Remab6 as a chimeric human IgG1 antibody and ReBaGs6 as a murine IgM antibody and characterized their specificities using multiple biochemical and biological approaches. Both Remab6 and ReBaGs6 recognize clustered Tn structures, but most importantly do not recognize glycoforms of human IgA1 that contain potential cross-reactive Tn antigen structures. In flow cytometry and immunofluorescence analyses, Remab6 recognizes human cancer cell lines expressing the Tn antigen, but not their Tn-negative counterparts. In immunohistochemistry (IHC), Remab6 stains many human cancers in tissue array format but rarely stains normal tissues and then mostly intracellularly. We used these antibodies to identify several unique Tn-containing glycoproteins in Tn-positive Colo205 cells, indicating their utility for glycoproteomics in future biomarker studies. Thus, recombinant Remab6 and ReBaGs6 are useful for biochemical characterization of cancer cells and IHC of tumors and represent promising tools for Tn biomarker discovery independently of recognition of IgA1.


Assuntos
Antígenos Glicosídicos Associados a Tumores/análise , Biomarcadores Tumorais/análise , Carcinoma/diagnóstico , Glicoproteínas/análise , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antígenos Glicosídicos Associados a Tumores/genética , Antígenos Glicosídicos Associados a Tumores/imunologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Carcinoma/genética , Carcinoma/imunologia , Feminino , Glicoproteínas/genética , Glicoproteínas/imunologia , Humanos , Lactente , Masculino , Camundongos , Pessoa de Meia-Idade , Proteínas Recombinantes/imunologia , Células Tumorais Cultivadas , Adulto Jovem
9.
Int J Mol Sci ; 20(20)2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31640124

RESUMO

Zika virus (ZIKV) is a global public health issue due to its association with severe developmental disorders in infants and neurological disorders in adults. ZIKV uses glycosylation of its envelope (E) protein to interact with host cell receptors to facilitate entry; these interactions could also be important for designing therapeutics and vaccines. Due to a lack of proper information about Asn-linked (N-glycans) on ZIKV E, we analyzed ZIKV E of various strains derived from different cells. We found ZIKV E proteins being extensively modified with oligomannose, hybrid and complex N-glycans of a highly heterogeneous nature. Host cell surface glycans correlated strongly with the glycomic features of ZIKV E. Mechanistically, we observed that ZIKV N-glycans might play a role in viral pathogenesis, as mannose-specific C-type lectins DC-SIGN and L-SIGN mediate host cell entry of ZIKV. Our findings represent the first detailed mapping of N-glycans on ZIKV E of various strains and their functional significance.


Assuntos
Proteínas do Envelope Viral/química , Infecção por Zika virus/virologia , Zika virus/fisiologia , Zika virus/patogenicidade , Animais , Chlorocebus aethiops , Glicosilação , Interações entre Hospedeiro e Microrganismos , Humanos , Oligossacarídeos/metabolismo , Polissacarídeos/metabolismo , Células THP-1 , Células Vero , Internalização do Vírus , Zika virus/metabolismo
10.
Nat Microbiol ; 4(12): 2146-2154, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31611643

RESUMO

A slimy, hydrated mucus gel lines all wet epithelia in the human body, including the eyes, lungs, and gastrointestinal and urogenital tracts. Mucus forms the first line of defence while housing trillions of microorganisms that constitute the microbiota1. Rarely do these microorganisms cause infections in healthy mucus1, suggesting that mechanisms exist in the mucus layer that regulate virulence. Using the bacterium Pseudomonas aeruginosa and a three-dimensional (3D) laboratory model of native mucus, we determined that exposure to mucus triggers downregulation of virulence genes that are involved in quorum sensing, siderophore biosynthesis and toxin secretion, and rapidly disintegrates biofilms-a hallmark of mucosal infections. This phenotypic switch is triggered by mucins, which are polymers that are densely grafted with O-linked glycans that form the 3D scaffold inside mucus. Here, we show that isolated mucins act at various scales, suppressing distinct virulence pathways, promoting a planktonic lifestyle, reducing cytotoxicity to human epithelia in vitro and attenuating infection in a porcine burn model. Other viscous polymer solutions lack the same effect, indicating that the regulatory function of mucin does not result from its polymeric structure alone. We identify that interactions with P. aeruginosa are mediated by mucin-associated glycans (mucin glycans). By isolating glycans from the mucin backbone, we assessed the collective activity of hundreds of complex structures in solution. Similar to their grafted counterparts, free mucin glycans potently regulate bacterial phenotypes even at relatively low concentrations. This regulatory function is likely dependent on glycan complexity, as monosaccharides do not attenuate virulence. Thus, mucin glycans are potent host signals that 'tame' microorganisms, rendering them less harmful to the host.


Assuntos
Interações Hospedeiro-Patógeno , Mucinas/química , Muco/microbiologia , Polissacarídeos/química , Pseudomonas aeruginosa/patogenicidade , Animais , Biofilmes , Queimaduras/microbiologia , Células Epiteliais/microbiologia , Feminino , Células HT29 , Humanos , Muco/química , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum , Suínos , Virulência/genética , Ferimentos e Lesões/microbiologia
11.
Sci Rep ; 9(1): 8920, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222080

RESUMO

Despite advances in stem cell research, cell transplantation therapy for liver failure is impeded by a shortage of human primary hepatocytes (HPH), along with current differentiation protocol limitations. Several studies have examined the concept of co-culture of human induced pluripotent cells (hiPSCs) with various types of supporting non-parenchymal cells to attain a higher differentiation yield and to improve hepatocyte-like cell functions both in vitro and in vivo. Co-culturing hiPSCs with human endothelial cells (hECs) is a relatively new technique that requires more detailed studies. Using our 3D human embryoid bodies (hEBs) formation technology, we interlaced Human Adipose Microvascular Endothelial Cells (HAMEC) with hiPSCs, leading to a higher differentiation yield and notable improvements across a wide range of hepatic functions. We conducted a comprehensive gene and protein secretion analysis of our HLCs coagulation factors profile, showing promising results in comparison with HPH. Furthermore, a stage-specific glycomic analysis revealed that the differentiated hepatocyte-like clusters (HLCs) resemble the glycan features of a mature tissue rather than cells in culture. We tested our HLCs in animal models, where the presence of HAMEC in the clusters showed a consistently better performance compared to the hiPSCs only group in regard to persistent albumin secretion post-transplantation.


Assuntos
Células Endoteliais/citologia , Hepatócitos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Organoides/citologia , Diferenciação Celular , Transplante de Células , Técnicas de Cocultura , Humanos , Falência Hepática/terapia , Modelos Animais
12.
Am J Pathol ; 189(2): 283-294, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30448401

RESUMO

High levels of proinflammatory cytokines have been associated with a loss of tissue function in ocular autoimmune diseases, but the basis for this relationship remains poorly understood. Here we investigate a new role for tumor necrosis factor α in promoting N-glycan-processing deficiency at the surface of the eye through inhibition of N-acetylglucosaminyltransferase expression in the Golgi. Using mass spectrometry, complex-type biantennary oligosaccharides were identified as major N-glycan structures in differentiated human corneal epithelial cells. Remarkably, significant differences were detected between the efficacies of cytokines in regulating the expression of glycogenes involved in the biosynthesis of N-glycans. Tumor necrosis factor α but not IL-1ß had a profound effect in suppressing the expression of enzymes involved in the Golgi branching pathway, including N-acetylglucosaminyltransferases 1 and 2, which are required for the formation of biantennary structures. This decrease in gene expression was correlated with a reduction in enzymatic activity and impaired N-glycan branching. Moreover, patients with ocular mucous membrane pemphigoid were characterized by marginal N-acetylglucosaminyltransferase expression and decreased N-glycan branching in the conjunctiva. Together, these data indicate that proinflammatory cytokines differentially influence the expression of N-glycan-processing enzymes in the Golgi and set the stage for future studies to explore the pathophysiology of ocular autoimmune diseases.


Assuntos
Doenças Autoimunes , Túnica Conjuntiva , Córnea , Complexo de Golgi , Penfigoide Mucomembranoso Benigno , Polissacarídeos/metabolismo , Adulto , Idoso , Doenças Autoimunes/metabolismo , Doenças Autoimunes/patologia , Linhagem Celular Transformada , Túnica Conjuntiva/metabolismo , Túnica Conjuntiva/patologia , Córnea/metabolismo , Córnea/patologia , Feminino , Complexo de Golgi/metabolismo , Complexo de Golgi/patologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Interleucina-1beta/metabolismo , Masculino , Pessoa de Meia-Idade , N-Acetilglucosaminiltransferases/metabolismo , Penfigoide Mucomembranoso Benigno/metabolismo , Penfigoide Mucomembranoso Benigno/patologia , Fator de Necrose Tumoral alfa/metabolismo
13.
J Biol Chem ; 292(26): 11079-11090, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28487369

RESUMO

Transmembrane mucins are highly O-glycosylated glycoproteins that coat the apical glycocalyx on mucosal surfaces and represent the first line of cellular defense against infection and injury. Relatively low levels of N-glycans are found on transmembrane mucins, and their structure and function remain poorly characterized. We previously reported that carbohydrate-dependent interactions of transmembrane mucins with galectin-3 contribute to maintenance of the epithelial barrier at the ocular surface. Now, using MALDI-TOF mass spectrometry, we report that transmembrane mucin N-glycans in differentiated human corneal epithelial cells contain primarily complex-type structures with N-acetyllactosamine, a preferred galectin ligand. In N-glycosylation inhibition experiments, we find that treatment with tunicamycin and siRNA-mediated knockdown of the Golgi N-acetylglucosaminyltransferase I gene (MGAT1) induce partial loss of both total and cell-surface levels of the largest mucin, MUC16, and a concomitant reduction in glycocalyx barrier function. Moreover, we identified a distinct role for N-glycans in promoting MUC16's binding affinity toward galectin-3 and in causing retention of the lectin on the epithelial cell surface. Taken together, these studies define a role for N-linked oligosaccharides in supporting the stability and function of transmembrane mucins on mucosal surfaces.


Assuntos
Antígeno Ca-125/metabolismo , Córnea/metabolismo , Células Epiteliais/metabolismo , Galectina 3/metabolismo , Glicocálix/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Sanguíneas , Antígeno Ca-125/genética , Linhagem Celular Transformada , Galectina 3/genética , Galectinas , Glicocálix/genética , Glicosilação , Humanos , Proteínas de Membrana/genética , Estabilidade Proteica
14.
Mol Cell Proteomics ; 13(11): 3097-113, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25071157

RESUMO

Immunoglobulin A nephropathy (IgAN) is the most common form of glomerulonephritis worldwide and is histologically characterized by the deposition of IgA1 and consequent inflammation in the glomerular mesangium. Prior studies suggested that serum IgA1 from IgAN patients contains aberrant, undergalactosylated O-glycans, for example, Tn antigen and its sialylated version, SialylTn (STn), but the mechanisms underlying aberrant O-glycosylation are not well understood. Here we have used serial lectin separation technologies, Western blot, enzymatic modifications, and mass spectrometry to explore whether there are different glycoforms of IgA1 in plasma from patients with IgAN and healthy individuals. Although total plasma IgA in IgAN patients was elevated ∼ 1.6-fold compared with that in healthy donors, IgA1 in all samples was unexpectedly separable into two distinct glycoforms: one with core 1 based O-glycans, and the other exclusively containing Tn/STn structures. Importantly, Tn antigen present on IgA1 from IgAN patients and controls was convertible into the core 1 structure in vitro by recombinant T-synthase. Our results demonstrate that undergalactosylation of O-glycans in IgA1 is not restricted to IgAN and suggest that in vivo inefficiency of T-synthase toward IgA1 in a subpopulation of B or plasma cells, as well as overall elevation of IgA, may contribute to IgAN pathogenesis.


Assuntos
Antígenos Glicosídicos Associados a Tumores/metabolismo , Galactosiltransferases/metabolismo , Glomerulonefrite por IGA/sangue , Imunoglobulina A/sangue , Polissacarídeos/metabolismo , Adulto , Antígenos Glicosídicos Associados a Tumores/imunologia , Linfócitos B/imunologia , Feminino , Galactose/metabolismo , Mesângio Glomerular/imunologia , Mesângio Glomerular/patologia , Glicosilação , Humanos , Imunoglobulina A/classificação , Imunoglobulina A/imunologia , Inflamação/imunologia , Lectinas/imunologia , Masculino , Aglutinina de Amendoim/imunologia , Polissacarídeos/sangue , Sialiltransferases/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
15.
Proteomics Clin Appl ; 7(9-10): 618-31, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23857728

RESUMO

In many different human disorders, the cellular glycome is altered. An interesting but poorly understood alteration occurs in the mucin-type O-glycome, in which there is aberrant expression of the truncated O-glycans Tn (GalNAcα1-Ser/Thr) and its sialylated version sialyl-Tn (STn) (Neu5Acα2,6GalNAcα1-Ser/Thr). Both Tn and STn are tumor-associated carbohydrate antigens and tumor biomarkers, since they are not expressed normally and appear early in tumorigenesis. Moreover, their expression is strongly associated with poor prognosis and tumor metastasis. The Tn and STn antigens are also expressed in other human diseases and disorders, such as Tn syndrome and IgA nephropathy. The major pathological mechanism for expression of the Tn and STn antigens is compromised T-synthase activity, resulting from alteration of the X-linked gene that encodes for Cosmc, a molecular chaperone specifically required for the correct folding of T-synthase to form active enzyme. This review will summarize our current understanding of the Tn and STn antigens in terms of their biochemistry and role in pathology.


Assuntos
Antígenos Glicosídicos Associados a Tumores/metabolismo , Doença , Glicômica/métodos , Animais , Biomarcadores Tumorais/metabolismo , Humanos , Mucinas/biossíntese
16.
J Biol Chem ; 287(49): 41523-33, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23035125

RESUMO

Cosmc is the specific molecular chaperone in the endoplasmic reticulum for T-synthase, a Golgi ß3-galactosyltransferase that generates the core 1 O-glycan, Galß1-3GalNAcα-Ser/Thr, in glycoproteins. Dysfunctional Cosmc results in the formation of inactive T-synthase and consequent expression of the Tn antigen (GalNAcα1-Ser/Thr), which is associated with several human diseases. However, the molecular regulation of expression of Cosmc, which is encoded by a single gene on Xq24, is poorly understood. Here we show that epigenetic silencing of Cosmc through hypermethylation of its promoter leads to loss of Cosmc transcripts in Tn4 cells, an immortalized B cell line from a male patient with a Tn-syndrome-like phenotype. These cells lack T-synthase activity and express the Tn antigen. Treatment of cells with 5-aza-2'-deoxycytidine causes restoration of Cosmc transcripts, restores T-synthase activity, and reduces Tn antigen expression. Bisulfite sequencing shows that CG dinucleotides in the Cosmc core promoter are hypermethylated. Interestingly, several other X-linked genes associated with glycosylation are not silenced in Tn4 cells, and we observed no correlation of a particular DNA methyltransferase to aberrant methylation of Cosmc in these cells. Thus, hypermethylation of the Cosmc promoter in Tn4 cells is relatively specific. Epigenetic silencing of Cosmc provides another mechanism underlying the abnormal expression of the Tn antigen, which may be important in understanding aberrant Tn antigen expression in human diseases, including IgA nephropathy and cancer.


Assuntos
Antígenos Glicosídicos Associados a Tumores/metabolismo , Epigênese Genética , Regulação da Expressão Gênica , Leucócitos/metabolismo , Chaperonas Moleculares/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Citosol/metabolismo , Inativação Gênica , Glicosilação , Glicosiltransferases/metabolismo , Humanos , Masculino , Metilação , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Transcrição Gênica
17.
Glycoconj J ; 27(1): 99-114, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19768537

RESUMO

The second human beta-galactoside alpha-2,6-sialyltransferase (hST6Gal II) differs from hST6Gal I, the first member of ST6Gal family, in substrate specificity and tissue expression pattern. While ST6GAL1 gene is expressed in almost all human tissues, ST6GAL2 shows a restricted tissue-specific pattern of expression, mostly expressed in embryonic and adult brain. In order to understand the mechanisms involved in the transcriptional regulation of ST6GAL2, we first characterized the transcription start sites (TSS) in SH-SY5Y neuroblastoma cells. 5' RACE experiments revealed multiple TSS located on three first alternative 5' exons, termed EX, EY and EZ, which are unusually close on the genomic sequence and are all located more than 42 kbp upstream of the first common coding exon. Using Taqman duplex Q-PCR, we showed that the ST6GAL2 transcripts initiated by EX or EY are mainly expressed in both brain-related cell lines and human cerebral cortex, testifying for the use of a similar transcriptional regulation in vivo. Furthermore, we also showed for the first time hST6Gal II protein expression in the different lobes of the human cortex. Luciferase reporter assays allowed us to define two sequences upstream EX and EY with a high and moderate promoter activity, respectively. Bioinformatics analysis and site-directed mutagenesis showed that NF-kappaB and NRSF are likely to act as transcriptional repressors, whereas neuronal-related development factors Sox5, Puralpha and Olf1, are likely to act as transcriptional activators of ST6GAL2. This suggests that ST6GAL2 transcription could be potentially activated for specific neuronal functions.


Assuntos
Córtex Cerebral/enzimologia , Regulação Enzimológica da Expressão Gênica , Neurônios/enzimologia , Sialiltransferases/genética , Transcrição Gênica , Regiões 5' não Traduzidas/genética , Pareamento de Bases/genética , Sequência de Bases , Sítios de Ligação , Linhagem Celular Tumoral , Biologia Computacional , Ensaios Enzimáticos , Humanos , Luciferases/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo , Transfecção
18.
Biol Chem ; 390(7): 601-9, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19335207

RESUMO

The disialoganglioside G(D3) is an oncofetal marker of a variety of human tumors including melanoma and neuroblastoma, playing a key role in tumor progression. G(D3) and 9-O-acetyl-G(D3) are overexpressed in approximately 50% of invasive ductal breast carcinoma, but no relationship has been established between disialoganglioside expression and breast cancer progression. In order to determine the effect of G(D3) expression on breast cancer development, we analyzed the biosynthesis of gangliosides in several breast epithelial cell lines including MDA-MB-231, MCF-7, BT-20, T47-D, and MCF10A, by immunocytochemistry, flow cytometry, and real-time PCR. Our results show that, in comparison to tumors, cultured breast cancer cells express a limited pattern of gangliosides. Disialogangliosides were not detected in any cell line and G(M3) was only observed at the cell surface of MDA-MB-231 cells. To evaluate the influence of G(D3) in breast cancer cell behavior, we established and characterized MDA-MB-231 cells overexpressing G(D3) synthase. We show that G(D3) synthase expressing cells accumulate G(D3), G(D2), and G(T3) at the cell surface. Moreover, G(D3) synthase overexpression bypasses the need of serum for cell growth and increases cell migration. This suggests that G(D3) synthase overexpression may contribute to increasing the malignant properties of breast cancer cells.


Assuntos
Neoplasias da Mama/patologia , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Sialiltransferases/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Gangliosídeos/biossíntese , Gangliosídeos/genética , Humanos
19.
Biochem J ; 410(1): 213-23, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17944600

RESUMO

Bronchial mucins from patients suffering from CF (cystic fibrosis) exhibit glycosylation alterations, especially increased amounts of the sialyl-Lewis(x) (NeuAcalpha2-3Galbeta1-4[Fucalpha1-3]GlcNAc-R) and 6-sulfo-sialyl-Lewis(x) (NeuAcalpha2-3Galbeta1-4[Fucalpha1-3][SO(3)H-6]GlcNAc-R) terminal structures. These epitopes are preferential receptors for Pseudomonas aeruginosa, the bacteria responsible for the chronicity of airway infection and involved in the morbidity and early death of CF patients. However, these glycosylation changes cannot be directly linked to defects in CFTR (CF transmembrane conductance regulator) gene expression since cells that secrete airway mucins express no or very low amounts of the protein. Several studies have shown that inflammation may affect glycosylation and sulfation of various glycoproteins, including mucins. In the present study, we show that incubation of macroscopically healthy fragments of human bronchial mucosa with IL-6 (interleukin-6) or IL-8 results in a significant increase in the expression of alpha1,3/4-fucosyltransferases [FUT11 (fucosyltransferase 11 gene) and FUT3], alpha2-6- and alpha2,3-sialyltransferases [ST3GAL6 (alpha2,3-sialyltransferase 6 gene) and ST6GAL2 (alpha2,6-sialyltransferase 2 gene)] and GlcNAc-6-O-sulfotransferases [CHST4 (carbohydrate sulfotransferase 4 gene) and CHST6] mRNA. In parallel, the amounts of sialyl-Lewis(x) and 6-sulfo-sialyl-Lewis(x) epitopes at the periphery of high-molecular-mass proteins, including MUC4, were also increased. In conclusion, our results indicate that IL-6 and -8 may contribute to the increased levels of sialyl-Lewis(x) and 6-sulfo-sialyl-Lewis(x) epitopes on human airway mucins from patients with CF.


Assuntos
Brônquios/enzimologia , Epitopos/biossíntese , Fucosiltransferases/metabolismo , Glicosiltransferases/metabolismo , Interleucina-6/fisiologia , Interleucina-8/fisiologia , Antígenos CD15/biossíntese , Sulfotransferases/metabolismo , Fibrose Cística/imunologia , Fucosiltransferases/genética , Glicosiltransferases/genética , Humanos , Antígenos CD15/metabolismo , Mucosa/enzimologia , Reação em Cadeia da Polimerase , Sulfotransferases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA