Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Death Discov ; 8(1): 495, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36550096

RESUMO

KDM5C is a histone H3K4-specific demethylase, which has been shown to play a key role in biological disease and development. However, the role of KDM5C in trophoblasts at early pregnancy is currently unknown. Here, we showed that KDM5C was upregulated in placental trophoblasts from recurrent miscarriage (RM) patients compared with healthy controls (HCs). Trophoblast proliferation and invasion was inhibited by KDM5C overexpression and was promoted by KDM5C knockdown. Transcriptome sequencing revealed that elevated KDM5C exerted anti-proliferation and anti-invasion effects by repressing the expression of essential regulatory genes. The combination analysis of RNA-seq, ChIP-seq and CUT&Tag assay showed that KDM5C overexpression leads to the reduction of H3K4me3 on the promoters and the corresponding downregulation of expression of several regulatory genes in trophoblasts. Among these genes, TGFß2 and RAGE are essential for the proliferation and invasion of trophoblasts. Importantly, overexpression of KDM5C by a systemically delivered KDM5C adenovirus vector (Ad-KDM5C) promoted embryo resorption rate in mouse. Our results support that KDM5C is an important regulator of the trophoblast function during early pregnancy, and suggesting that KDM5C activity could be responsible for epigenetic alterations seen RM disease.

2.
Artigo em Inglês | MEDLINE | ID: mdl-34999220

RESUMO

Fatty acid-binding protein (Fabp)-4 is a member of the FABP family. Mammalian fabp4 has been demonstrated to involve in inflammation and immunity, whereas the related data of fish fabp4 remain limited. Therefore, we further investigated the effects of fabp4 on immunity in Ctenopharyngodon idella. The fabp4 sequence spanned 405 bp was cloned first, sharing high identity to fabp4 from other fish and mammals. Fabp4 expression was the highest in the adipose tissue, followed by the heart, muscle, and liver. In vivo, lipopolysaccharide (LPS) triggered the expression of fabp4, toll-like receptor (tlr)-22, interleukin (il)-1ß, and tumor necrosis factor (tnf)-α in the kidney and spleen. In vitro, exposing C. idella CIK cells to LPS decreased their viability, and the expression of fabp4 was also increased by LPS. However, BMS309403, an inhibitor of FABP4, mitigated these effects. Furthermore, treating the cells with LPS or fabp4 overexpression plasmids resulted in reactive oxygen species (ROS) generation and upregulation of inflammatory genes expression, including tlr22, type-I interferon (ifn-1), interferon regulatory factor (irf)-7, tnfα, il-1ß, and interferon-ß promoter stimulator 1. These effects were ameliorated by preincubation with BMS309403. Moreover, incubating the cells with glutathione reduced the production of ROS and the expression of inflammatory genes that were evoked by LPS and plasmid treatments. These results showed that fabp4 acts as a pro-inflammatory molecule via elevating ROS levels, providing a novel understanding of the molecular regulation of innate immunity in teleosts.


Assuntos
Carpas , Doenças dos Peixes , Animais , Carpas/genética , Carpas/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Peixes/metabolismo , Expressão Gênica , Imunidade Inata/genética , Estresse Oxidativo
3.
Fish Physiol Biochem ; 44(1): 197-207, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28918543

RESUMO

The purpose of this study was to explore the mechanism of by which docosahexaenoic acid (DHA) inhibit the accumulation of adipose tissue lipid in grass carp (Ctenopharyngodon idella). We therefore designed two semi-purified diets, namely DHA-free (control) and DHA-supplemented, and fed them to grass carp (22.19 ± 1.76 g) for 3 and 6 weeks. DHA supplementation led to a significantly lower intraperitoneal fat index (IPFI) than that in the control group by reducing the number of adipocytes but significantly higher adipocyte size (P < 0.05). In the intraperitoneal adipose tissue, the DHA-fed group showed significantly higher peroxisome proliferator-activated receptor (PPAR)γ, CCAAT enhancer-binding protein (C/EBP)α, and sterol regulatory element-binding protein (SREBP)1c mRNA expression levels at both 3 and 6 weeks (P < 0.05). However, the ratio of the expression levels of B cell leukemia 2 (Bcl-2) and Bcl-2-associated X protein (Bax) was significantly lower in the DHA-fed group than in the control group (P < 0.05), and the protein expression levels of the apoptosis-related proteins caspase 3, caspase 8, and caspase 9 were also significantly higher (P < 0.05). Overall, although DHA promotes lipid synthesis, it is more likely that DHA could suppress the lipid accumulation in adipocytes of grass carp by inducing adipocyte apoptosis.


Assuntos
Adipócitos/efeitos dos fármacos , Ração Animal/análise , Carpas/metabolismo , Dieta/veterinária , Ácidos Docosa-Hexaenoicos/administração & dosagem , Metabolismo dos Lipídeos/efeitos dos fármacos , Adipócitos/fisiologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Apoptose/efeitos dos fármacos , Suplementos Nutricionais
4.
Br J Nutr ; 118(6): 411-422, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28980889

RESUMO

Four isonitrogenous and isoenergetic purified diets containing free arachidonic acid (ARA) or EPA (control group), 0·30 % ARA, 0·30 % EPA and 0·30 % ARA+EPA (equivalent) were designed to feed juvenile grass carp (10·21 (sd 0·10) g) for 10 weeks. Only the EPA group presented better growth performance compared with the control group (P<0·05). Dietary ARA and EPA were incorporated into polar lipids more than non-polar lipids in hepatopancreas but not intraperitoneal fat (IPF) tissue. Fish fed ARA and EPA showed an increase of serum superoxide dismutase and catalase activities, and decrease of glutathione peroxidase activity and malondialdehyde contents (P<0·05). The hepatopancreatic TAG levels decreased both in ARA and EPA groups (P<0·05), accompanied by the decrease of lipoprotein lipase (LPL) activity in the ARA group (P<0·05). Fatty acid synthase (FAS), diacylglycerol O-acyltransferase and apoE gene expression in the hepatopancreas decreased in fish fed ARA and EPA, but only the ARA group exhibited increased mRNA level of adipose TAG lipase (ATGL) (P<0·05). Decreased IPF index and adipocyte sizes were found in the ARA group (P<0·05). Meanwhile, the ARA group showed decreased expression levels of adipogenic genes CCAAT enhancer-binding protein α, LPL and FAS, and increased levels of the lipid catabolic genes PPAR α, ATGL, hormone-sensitive lipase and carnitine palmitoyltransferase 1 (CPT-1) in IPF, whereas the EPA group only increased PPAR α and CPT-1 mRNA expression and showed less levels than the ARA group. Overall, dietary EPA is beneficial to the growth performance, whereas ARA is more potent in inducing lipolysis and inhibiting adipogenesis, especially in IPF. Meanwhile, dietary ARA and EPA showed the similar preference in esterification and the improvement in antioxidant response.


Assuntos
Antioxidantes/metabolismo , Ácido Araquidônico/administração & dosagem , Composição Corporal , Carpas/fisiologia , Ácido Eicosapentaenoico/administração & dosagem , Metabolismo dos Lipídeos , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Ração Animal/análise , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Dieta/veterinária , Glutationa Peroxidase/sangue , Hepatopâncreas/efeitos dos fármacos , Hepatopâncreas/metabolismo , Lipase Lipoproteica/sangue , Malondialdeído/sangue , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Superóxido Dismutase/sangue
5.
Gene ; 565(2): 192-200, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25865300

RESUMO

n-3 highly unsaturated fatty acids (n-3 HUFAs) have been shown to suppress lipid accumulation and improve protein utilization in grass carp; however, little is known about the underlying molecular mechanism. Hence, we analyzed the hepatopancreas transcriptome of grass carp (Ctenopharyngodon idellus) fed either lard oil (LO) or fish oil (FO) diets. RNA-seq data showed that 125 genes were significantly up-regulated and 107 were significantly down-regulated in the FO group. Among them, 17 lipid metabolism related genes, 12 carbohydrate metabolism related genes, and 34 protein metabolism related genes were selected. Lipid metabolism related genes, such as very long-chain acyl-CoA synthetase (ACSVL),carnitine O-palmitoyltransferase 1 (CPT1) and carnitine-acylcarnitine translocase (CACT), were up-regulated in the FO group. But the genes of diacylglycerol O-acyltransferase 2 (DGAT2) and stearoyl-CoA desaturase (SCD) were down-regulated. Down-regulation of glycolysis related genes, such as 6-phosphofructokinase (PFK), phosphoglycerate kinase (PGK) and pyruvate dehydrogenase kinase (PDK), added with up-regulation of gluconeogenesis related genes, such as phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase), suggests lower utilization of carbohydrate of the FO group. Besides, dietary FO also influenced the protein metabolism related genes, such as up-regulation of genes involved in digestion of dietary protein, mRNA transcription, protein translation and amino acid utilization, down-regulation of genes involved in mRNA degradation and ubiquitination of protein. Interestingly, the up-regulation of mitochondrial uncoupling protein 2 (UCP2) and down-regulation of oxidative phosphorylation related genes (cytochrome c oxidase subunit 4 isoform 2 [COX4I2], HIG1 domain family member 1A [HIGD1A] and cytochrome-b5 reductase [CYB5R]) suggest that energy metabolism may be also influenced by dietary fatty acid composition. These findings presented here provide a comprehensive understanding of the molecular mechanisms governing the effects of fish oil in grass carp.


Assuntos
Carpas/genética , Carpas/metabolismo , Gorduras na Dieta/metabolismo , Óleos de Peixe/metabolismo , Hepatopâncreas/metabolismo , Transcriptoma/genética , Animais , Metabolismo dos Carboidratos/genética , Dieta/métodos , Regulação para Baixo/genética , Metabolismo Energético/genética , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Glicólise/genética , Metabolismo dos Lipídeos/genética , Proteínas/metabolismo , Transcrição Gênica/genética , Regulação para Cima/genética
6.
Acta Histochem ; 115(1): 3-7, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21705042

RESUMO

Previous investigations on galectin-3 (gal-3) have focused mainly on its role in some malignant tumors. It was believed that gal-3 plays important roles in cell proliferation, apoptosis and adhesion in many cell types. Recently, gal-3 has been recognized as a factor related to endometrial receptivity in the human endometrium and trophoblast during embryo implantation. Human chorionic gonadotropin (hCG) is a specific embryonic hormone providing a signal from the embryo involved in preparing the receptive endometrium for embryo implantation. The current study aimed to determine whether hCG regulates gal-3 expression in endometrial cells. Our results showed that expression of gal-3 in both endometrial epithelial cells (EECs) and endometrial stromal cells (ESCs) could be regulated by hCG in an intricate manner. These results indicate that gal-3 might be regulated by hCG in preparing the endometrium for embryonic implantation.


Assuntos
Gonadotropina Coriônica/metabolismo , Endométrio/citologia , Células Epiteliais/metabolismo , Galectina 3/genética , Células Estromais/metabolismo , Células Cultivadas , Feminino , Galectina 3/metabolismo , Perfilação da Expressão Gênica , Humanos
7.
Hum Reprod ; 24(11): 2879-89, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19633306

RESUMO

BACKGROUND: Galectin-3 (gal-3) is a beta-galactoside-binding protein which can be detected in endometrium. The study was designed to investigate synergism of gal-3 and integrinbeta3 in endometrial cell proliferation and adhesion in an in vitro model of endometrial receptivity. METHODS: The RL95-2 cell line was employed as an in vitro model for receptive endometrium. Cells transfected with gal-3 siRNA or treated with exogenous gal-3 were incubated with or without function-blocking integrinbeta1/3 antibody for evaluating synergism of gal-3 and integrins on cell proliferation and adhesion. Proliferation was measured by BrdU incorporation, and adhesion to fibronectin (FN) was determined by an adhesion assay. Integrin expression was analyzed by Flow Cytometry and western blots. Bewo spheroids were co-cultured with the RL95-2 monolayer to mimic the blastocyst-endometrial interaction, and colocalization of gal-3, integrinbeta3 and FN at the interface was observed by confocal microscopy. RESULTS: The knock-down of gal-3 inhibited RL95-2 cell proliferation and adhesion. However, a reduction of proliferation and adhesion was also observed in presence of exogenous gal-3, and this was further reduced by a functional block to integrinbeta3. Moreover, gal-3 knock-down significantly increased integrinbeta3 expression, however, the colocalization of integrinbeta3 and FN was not increased. As expected, the colocalization of integrinbeta3 was decreased with the knock-down of gal-3. CONCLUSIONS: This study has provided an in vitro model for the complex interactions between gal-3 and integrinbeta3 in the regulation of endometrial cell proliferation and adhesion.


Assuntos
Proliferação de Células , Endométrio/metabolismo , Galectina 3/metabolismo , Integrina beta3/metabolismo , Adesão Celular , Linhagem Celular , Endométrio/citologia , Feminino , Fibronectinas/metabolismo , Galectina 3/antagonistas & inibidores , Humanos , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA