Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Mol Ther Nucleic Acids ; 35(2): 102225, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38948332

RESUMO

Chimeric antigen receptor T (CAR-T) cell therapy targeting T cell tumors still faces many challenges, one of which is its fratricide due to the target gene expressed on CAR-T cells. Despite this, these CAR-T cells can be expanded in vitro by extending the culture time and effectively eliminating malignant T cells. However, the mechanisms underlying CAR-T cell survival in cell subpopulations, the molecules involved, and their regulation are still unknown. We performed single-cell transcriptome profiling to investigate the fratricidal CAR-T products (CD26 CAR-Ts and CD44v6 CAR-Ts) targeting T cells, taking CD19 CAR-Ts targeting B cells from the same donor as a control. Compared with CD19 CAR-Ts, fratricidal CAR-T cells exhibit no unique cell subpopulation, but have more exhausted T cells, fewer cytotoxic T cells, and more T cell receptor (TCR) clonal amplification. Furthermore, we observed that fratricidal CAR-T cell survival was accompanied by target gene expression. Gene expression results suggest that fratricidal CAR-T cells may downregulate their human leukocyte antigen (HLA) molecules to evade T cell recognition. Single-cell regulatory network analysis and suppression experiments revealed that exhaustion mediated by critical regulatory factors may contribute to fratricidal CAR-T cell survival. Together, these data provide valuable and first-time insights into the survival of fratricidal CAR-T cells.

2.
Front Cardiovasc Med ; 11: 1347552, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628317

RESUMO

Background: The cardioprotective effect of remote ischemia preconditioning in clinical studies is inconsistent with experimental results. Adaptation to high-altitude hypoxia has been reported to be cardioprotective in animal experiments. However, the clinical significance of the cardioprotective effect of high-altitude adaptation has not been demonstrated. Methods: A retrospective cohort study with propensity score matching was designed to compare the outcomes of cardiac surgery between highlanders and lowlanders in a tertiary teaching hospital. The data of adult cardiac surgical patients from January 2013 to December 2022, were collected for analysis. Patients with cardiopulmonary bypass and cardioplegia were divided into a low-altitude group (<1,500 m) and a high-altitude group (≥1,500 m) based on the altitude of their place of residence. Results: Of 3,020 patients, the majority (87.5%) permanently lived in low-altitude regions [495 (435, 688) m], and there were 379 patients (12.5%) in the high-altitude group [2,552 (1,862, 3,478) m]. The 377 highlander patients were matched with lowlander patients at a ratio of 1:1. The high-altitude group exhibited a 44.5% reduction in the incidence of major adverse cardiovascular events (MACEs) compared with the low-altitude group (6.6% vs. 11.9%, P = 0.017). The patients in the moderate high-altitude subgroup (2,500-3,500 m) had the lowest incidence (5.6%) of MACEs among the subgroups. The level of creatinine kinase muscle-brain isoenzymes on the first postoperative morning was lower in the high-altitude group than in the low-altitude group (66.5 [47.9, 89.0] U/L vs. 69.5 [49.3, 96.8] U/L, P = 0.003). Conclusions: High-altitude adaptation exhibits clinically significant cardioprotection in cardiac surgical patients.

3.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(1): 33-38, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38433628

RESUMO

Objective To visualize the research status and hotspots of women's common disease screening based on CiteSpace 6.1.R6,and to provide a reference for the in-depth research in this field thereafter. Methods The relevant articles were retrieved from the China National Knowledge Infrastructure with the time interval from January 1,1992 to December 13,2022.The analysis was conducted on the number of annual publications,countries(regions),institutions,author collaboration networks,keyword co-occurrence,clustering,and bursts. Results A total of 900 papers that met the criteria were included,and the number of annual publications showed a trend of first increasing and then decreasing.The cross-institutional collaboration network was mature.The research hotspots mainly covered women's health,the prevalence of women's diseases,reproductive health,and breast diseases.The hotspots have evolved from an initial focus on reproductive health care to gynecological disease management,and eventually to reproductive health and holistic health care in women. Conclusions The attention should be kept on the screening of women's common diseases.It is advisable to synchronize the screening of women's common diseases with the screening of cervical and breast cancers to expand the screening coverage,promote early disease detection and treatment,and comprehensively safeguard women's health.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Masculino , China/epidemiologia , Pescoço
4.
ACS Nano ; 18(9): 7046-7063, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38381372

RESUMO

Type 2 alveolar epithelial cell (AEC2) senescence is crucial to the pathogenesis of pulmonary fibrosis (PF). The nicotinamide adenine dinucleotide (NAD+)-consuming enzyme cluster of differentiation 38 (CD38) is a marker of senescent cells and is highly expressed in AEC2s of patients with PF, thus rendering it a potential treatment target. Umbilical cord mesenchymal stem cell (MSC)-derived extracellular vesicles (MSC-EVs) have emerged as a cell-free treatment with clinical application prospects in antiaging and antifibrosis treatments. Herein, we constructed CD38 antigen receptor membrane-modified MSC-EVs (CD38-ARM-MSC-EVs) by transfecting MSCs with a lentivirus loaded with a CD38 antigen receptor-CD8 transmembrane fragment fusion plasmid to target AEC2s and alleviate PF. Compared with MSC-EVs, the CD38-ARM-MSC-EVs engineered in this study showed a higher expression of the CD38 antigen receptor and antifibrotic miRNAs and targeted senescent AEC2s cells highly expressing CD38 in vitro and in naturally aged mouse models after intraperitoneal administration. CD38-ARM-MSC-EVs effectively restored the NAD+ levels, reversed the epithelial-mesenchymal transition phenotype, and rejuvenated senescent A549 cells in vitro, thereby mitigating multiple age-associated phenotypes and alleviating PF in aged mice. Thus, this study provides a technology to engineer MSC-EVs and support our CD38-ARM-MSC-EVs to be developed as promising agents with high clinical potential against PF.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Fibrose Pulmonar , Humanos , Camundongos , Animais , Fibrose Pulmonar/terapia , Fibrose Pulmonar/metabolismo , Células Epiteliais Alveolares , NAD/metabolismo , Vesículas Extracelulares/metabolismo , Receptores de Antígenos/metabolismo
5.
Anal Chem ; 96(8): 3525-3534, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38345335

RESUMO

Anaplastic lymphoma kinase (ALK) rearrangements have been identified as key oncogenic drivers of a subset of nonsmall cell lung cancer (NSCLC). The final chimeric protein of the fusion gene can be constitutively activated, which accounts for the growth and proliferation of ALK-rearranged tumors and thus strongly associates with cancer invasion and metastasis. Diagnostic tools enabling the visualization of ALK activity in a structure-function-based approach are highly desirable to determine ALK status and guide ALK tyrosine kinase inhibitor (ALK-TKI) treatment making. Here, we describe the design, synthesis, and application of a new environment-sensitive fluorescent probe HX16 by introducing an environment-sensitive fluorophore 4-sulfonamidebenzoxadiazole to visualize ALK activity in living cancer cells and tumor tissue slices (mouse model and human biopsy sample). HX16 is a multifunctional chemical tool based on the pharmacophore of ALK-TKI (ceritinib) and can specifically target the kinase domain of ALK with a high sensitivity. Using flow cytometry and confocal microscopy, HX16 enables visualization of ALK activity in various cancer cells with distinct ALK fusion genes, as well as xenograft mouse models. Importantly, HX16 was also applied to visualize ALK activity in a tumor biopsy from a NSCLC patient with ALK-echinoderm microtubule-associated protein-like-4 fusion gene for prediction of ALK-TKI sensitivity. These results demonstrate that strategically designed ALK-TKI-based probe allows the assessment of ALK activity in tumor tissues and hold promise as a useful diagnostic tool in predicting ALK-TKI therapy response.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Quinase do Linfoma Anaplásico/genética , Corantes Fluorescentes , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Proteínas Tirosina Quinases , Inibidores de Proteínas Quinases/farmacologia
6.
Eur J Med Chem ; 265: 116115, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38199166

RESUMO

Polo-like kinase 4 (PLK4), a highly conserved serine/threonine kinase, masterfully regulates centriole duplication in a spatiotemporal manner to ensure the fidelity of centrosome duplication and proper mitosis. Abnormal expression of PLK4 contributes to genomic instability and associates with a poor prognosis in cancer. Inhibition of PLK4 is demonstrated to exhibit significant efficacy against various types of human cancers, further highlighting its potential as a promising therapeutic target for cancer treatment. As such, numerous small-molecule inhibitors with distinct chemical scaffolds targeting PLK4 have been extensively investigated for the treatment of different human cancers, with several undergoing clinical evaluation (e.g., CFI-400945). Here, we review the structure, distribution, and biological functions of PLK4, encapsulate its intricate regulatory mechanisms of expression, and highlighting its multifaceted roles in cancer development and metastasis. Moreover, the recent advancements of PLK4 inhibitors in patent or literature are summarized, and their therapeutic potential as monotherapies or combination therapies with other anticancer agents are also discussed.


Assuntos
Neoplasias , Quinases Polo-Like , Humanos , Ciclo Celular , Mitose , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Quinases Polo-Like/antagonistas & inibidores , Quinases Polo-Like/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/efeitos dos fármacos
7.
Cardiovasc Res ; 119(16): 2607-2622, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-37713664

RESUMO

AIMS: Endurance exercise is associated with an increased risk of atrial fibrillation (AF). We previously established that adverse atrial remodelling and AF susceptibility induced by intense exercise in mice require the mechanosensitive and pro-inflammatory cytokine tumour necrosis factor (TNF). The cellular and mechanistic basis for these TNF-mediated effects is unknown. METHODS AND RESULTS: We studied the impact of Tnf excision, in either atrial cardiomyocytes or endothelial cells (using Cre-recombinase expression controlled by Nppa or Tie2 promoters, respectively), on the cardiac responses to six weeks of intense swim exercise training. TNF ablation, in either cell type, had no impact on the changes in heart rate, autonomic tone, or left ventricular structure and function induced by exercise training. Tnf excision in atrial cardiomyocytes did, however, prevent atrial hypertrophy, fibrosis, and macrophage infiltration as well as conduction slowing and increased AF susceptibility arising from exercise training. In contrast, endothelial-specific excision only reduced the training-induced atrial hypertrophy. Consistent with these cell-specific effects of Tnf excision, inducing TNF loss from atrial cardiomyocytes prevented activation of p38MAPKinase, a strain-dependent downstream mediator of TNF signalling, without affecting the atrial stretch as assessed by atrial pressures induced by exercise. Despite TNF's established role in innate immune responses and inflammation, neither acute nor chronic exercise training caused measurable NLRP3 inflammasome activation. CONCLUSIONS: Our findings demonstrate that adverse atrial remodelling and AF vulnerability induced by intense exercise require TNF in atrial cardiomyocytes whereas the impact of endothelial-derived TNF is limited to hypertrophy modulation. The implications of the cell autonomous effects of TNF and crosstalk between cells in the atria are discussed.


Assuntos
Fibrilação Atrial , Remodelamento Atrial , Cardiomiopatias , Animais , Camundongos , Fibrilação Atrial/etiologia , Fibrilação Atrial/prevenção & controle , Fibrilação Atrial/patologia , Miócitos Cardíacos/metabolismo , Células Endoteliais/metabolismo , Átrios do Coração , Fator de Necrose Tumoral alfa/metabolismo , Cardiomiopatias/metabolismo , Hipertrofia/complicações , Hipertrofia/metabolismo
9.
J Am Chem Soc ; 145(37): 20412-20421, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37651106

RESUMO

Somatic mutations are important signatures in clinical cancer treatment. However, accurate detection of rare somatic mutations with low variant-allele frequencies (VAFs) in clinical samples is challenging because of the interference caused by high concentrations of wild-type (WT) sequences. Here, we report a post amplification SNV-specific DNA assembly (PANDA) technology that eliminates the high concentration pressure caused by WT through a mismatch-guided DNA assembly and enables the ultrasensitive detection of cancer mutations with VAFs as low as 0.1%. Because it generates an assembly product that only exposes a single-stranded domain with the minimal length for signal readout and thus eliminates possible interferences from secondary structures and cross-interactions among sequences, PANDA is highly versatile and expandable for multiplex testing. With ultrahigh sensitivity, PANDA enabled the quantitative analysis of EGFR mutations in cell-free DNA of 68 clinical plasma samples and four pleuroperitoneal fluid samples, with test results highly consistent with NGS deep sequencing. Compared to digital PCR, PANDA returned fewer false negatives and ambiguous cases of clinical tests. Meanwhile, it also offers much lower upfront instrumental and operational costs. The multiplexity was demonstrated by developing a 3-plex PANDA for the simultaneous analysis of three EGFR mutations in 54 pairs of tumor and the adjacent noncancerous tissue samples collected from lung cancer patients. Because of the ultrahigh sensitivity, multiplexity, and simplicity, we anticipate that PANDA will find wide applications for analyzing clinically important rare mutations in diverse devastating diseases.


Assuntos
Ácidos Nucleicos Livres , Neoplasias Pulmonares , Humanos , Alelos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , DNA/genética , Receptores ErbB
10.
Nat Commun ; 14(1): 4248, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460620

RESUMO

The binding of small molecules to the double helical structure of DNA, through either intercalation or minor groove binding, may significantly alter the stability and functionality of DNA, which is a fundamental basis for many therapeutic and sensing applications. Here, we report that small-molecule DNA binders can also be used to program reaction pathways of a dynamic DNA reaction, where DNA strand displacement can be tuned quantitatively according to the affinity, charge, and concentrations of a given DNA binder. The binder-induced nucleic acid strand displacement (BIND) thus enables innovative technologies to accelerate the discovery and characterization of bioactive small molecules. Specifically, we demonstrate the comprehensive characterization of existing and newly discovered DNA binders, where critical parameters for binding affinity and sequence selectivity can be obtained in a single, unbiased molecular platform without the need for any specialized equipment. We also engineer a tandem BIND system as a high-throughput screening assay for discovering DNA binders, through which 8 DNA binders were successfully discovered from a library of 700 compounds.


Assuntos
Antineoplásicos , DNA , DNA/metabolismo
11.
J Appl Oral Sci ; 31: e20220447, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37132700

RESUMO

Human periodontal ligament stem cells (hPDLSCs) are promising cells for dental and periodontal regeneration. This study aimed to develop novel alginate-fibrin fibers that encapsulates hPDLSCs and metformin, to investigate the effect of metformin on the osteogenic differentiation of hPDLSCs, and to determine the regulatory role of the Shh/Gli1 signaling pathway in the metformin-induced osteogenic differentiation of hPDLSCs for the first time. CCK8 assay was used to evaluate hPDLSCs. Alkaline phosphatase (ALP) staining, alizarin red S staining, and the expression of osteogenic genes were evaluated. Metformin and hPDLSCs were encapsulated in alginate-fibrinogen solutions, which were injected to form alginate-fibrin fibers. The activation of Shh/Gli1 signaling pathway was examined using qRT-PCR and western blot. A mechanistic study was conducted by inhibiting the Shh/Gli1 pathway using GANT61. The administration of 50 µM metformin resulted in a significant upregulation of osteogenic gene expression in hPDLSCs by 1.4-fold compared to the osteogenic induction group (P < 0.01), including ALP and runt-related transcription factor-2 (RUNX2). Furthermore, metformin increased ALP activity by 1.7-fold and bone mineral nodule formation by 2.6-fold (P<0.001). We observed that hPDLSCs proliferated with the degradation of alginate-fibrin fibers, and metformin induced their differentiation into the osteogenic lineage. Metformin also promoted the osteogenic differentiation of hPDLSCs by upregulating the Shh/Gli1 signaling pathway by 3- to 6- fold compared to the osteogenic induction group (P<0.001). The osteogenic differentiation ability of hPDLSCs were decreased 1.3- to 1.6-fold when the Shh/Gli1 pathway was inhibited, according to ALP staining and alizarin red S staining (P<0.01). Metformin enhanced the osteogenic differentiation of hPDLSCs via the Shh/Gli1 signaling pathway. Degradable alginate-fibrin hydrogel fibers encapsulating hPDLSCs and metformin have significant potential for use in dental and periodontal tissue engineering applications. Alginate-fibrin fibers encapsulating hPDLSCs and metformin have a great potential for use in the treatment of maxillofacial bone defects caused by trauma, tumors, and tooth extraction. Additionally, they may facilitate the regeneration of periodontal tissue in patients with periodontitis.


Assuntos
Osteogênese , Ligamento Periodontal , Humanos , Hidrogéis/farmacologia , Proteína GLI1 em Dedos de Zinco/farmacologia , Células-Tronco , Diferenciação Celular , Células Cultivadas , Proliferação de Células
12.
Heliyon ; 9(5): e15152, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37251840

RESUMO

Angiogenesis plays a critical role in the survival, progression and metastasis of malignant tumors. Multiple factors are known to induce tumor angiogenesis, vascular endothelial growth factor (VEGF) is the most important one. Lenvatinib is an oral multi-kinase inhibitor of VEGFRs which has been approved for the treatment of various malignancies as the first-line agent by the Food and Drug Administration (FDA). It shows excellent antitumor efficacy in clinical practice. However, the adverse effects of Lenvatinib may seriously impair the therapeutic effect. Here we report the discovery and characterization of a novel VEGFR inhibitor (ZLF-095), which exhibited high activity and selectivity for VEGFR1/2/3. ZLF-095 displayed apparently antitumor effect in vitro and in vivo. We discovered that Lenvatinib could provoke fulminant ROS-caspase3-GSDME-dependent pyroptosis in GSDME-expressing cells by loss of mitochondrial membrane potential, which may be one of the reasons for Lenvatinib's toxicity. Meanwhile, ZLF-095 showed less toxicity than Lenvatinib by switching pyroptosis to apoptosis. These results suggest that ZLF-095 could become a potential angiogenesis inhibitor for cancer therapy.

13.
J Chromatogr A ; 1689: 463746, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36584612

RESUMO

The efficient and green extraction of bioactive ingredients from natural plants play a vital role in their corresponding drug effects and subsequent studies. Recently, deep eutectic solvents (DESs) have been considered promising new green solvents for efficiently and selectively extracting substances from varied plants. In this work, an environment-friendly DESs-based ultrasonic-assisted extraction (DESs-UAE) procedure was developed for highly efficient and non-polluting extraction of alkaloids from the roots of Stephania tetrandra (ST). A total of fifteen different combinations of DESs, compared with traditional organic solvents (methanol and 95% ethanol) and water, were evaluated for extraction of bioactive alkaloids (FAN and TET) from ST, and the results revealed that DESs system made up of choline chloride and ethylene glycol with mole ratio of 1:2 exhibited the optimal extraction efficiency for alkaloids. Additionally, a four-factor and three-level Box-Behnken design (BBD), a particular pattern of response surface methodology (RSM), was used to optimize extraction conditions. RSM results indicated that the maximum extraction yields of FAN, TET, and TA were attained 7.23, 13.36, 20.59 mg/g, respectively, within extraction temperature of 52 °C, extraction time of 82 min, DES water content of 23% (v/v), and liquid-solid ratio of 23 mL/g. The measured results were consistent with the predicted values. Notably, the optimized DES extraction efficiency of TA, according to the experimental data analysis, is 2.2, 3.3 and 4.1 times higher than methanol, 95% ethanol and water, respectively. Meanwhile, based on 3D response surface plots, interactive effects plots and contour maps, the effects of the aforementioned four essential factors on the extraction yield and their interactions on the response were visualized. The results revealed that the mutual interactions between extraction temperature and liquid-solid ratio exhibited positive effects on all responses, while extraction time and water content in DES posed a negative effect. Therefore, these results suggest that DESs, as a class of novel green solvents, with the potential to substitute organic solvent and water, can be widely and effectively applied to extract bioactive compounds from natural plants.


Assuntos
Alcaloides , Stephania tetrandra , Solventes Eutéticos Profundos , Metanol , Solventes , Água , Extratos Vegetais , Etanol
14.
J. appl. oral sci ; 31: e20220447, 2023. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1430631

RESUMO

Abstract Human periodontal ligament stem cells (hPDLSCs) are promising cells for dental and periodontal regeneration. Objective This study aimed to develop novel alginate-fibrin fibers that encapsulates hPDLSCs and metformin, to investigate the effect of metformin on the osteogenic differentiation of hPDLSCs, and to determine the regulatory role of the Shh/Gli1 signaling pathway in the metformin-induced osteogenic differentiation of hPDLSCs for the first time. Methodology CCK8 assay was used to evaluate hPDLSCs. Alkaline phosphatase (ALP) staining, alizarin red S staining, and the expression of osteogenic genes were evaluated. Metformin and hPDLSCs were encapsulated in alginate-fibrinogen solutions, which were injected to form alginate-fibrin fibers. The activation of Shh/Gli1 signaling pathway was examined using qRT-PCR and western blot. A mechanistic study was conducted by inhibiting the Shh/Gli1 pathway using GANT61. Results The administration of 50 μM metformin resulted in a significant upregulation of osteogenic gene expression in hPDLSCs by 1.4-fold compared to the osteogenic induction group (P < 0.01), including ALP and runt-related transcription factor-2 (RUNX2). Furthermore, metformin increased ALP activity by 1.7-fold and bone mineral nodule formation by 2.6-fold (P<0.001). We observed that hPDLSCs proliferated with the degradation of alginate-fibrin fibers, and metformin induced their differentiation into the osteogenic lineage. Metformin also promoted the osteogenic differentiation of hPDLSCs by upregulating the Shh/Gli1 signaling pathway by 3- to 6- fold compared to the osteogenic induction group (P<0.001). The osteogenic differentiation ability of hPDLSCs were decreased 1.3- to 1.6-fold when the Shh/Gli1 pathway was inhibited, according to ALP staining and alizarin red S staining (P<0.01). Conclusions Metformin enhanced the osteogenic differentiation of hPDLSCs via the Shh/Gli1 signaling pathway. Degradable alginate-fibrin hydrogel fibers encapsulating hPDLSCs and metformin have significant potential for use in dental and periodontal tissue engineering applications. Clinical Significance Alginate-fibrin fibers encapsulating hPDLSCs and metformin have a great potential for use in the treatment of maxillofacial bone defects caused by trauma, tumors, and tooth extraction. Additionally, they may facilitate the regeneration of periodontal tissue in patients with periodontitis.

15.
BMJ Open ; 12(12): e066828, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36523235

RESUMO

INTRODUCTION: Postoperative pulmonary complications (PPCs) are the most common complications following thoracoscopic surgery, resulting in increased hospital costs and perioperative mortality. Studies have shown that intravenous lidocaine infusion can exert its anti-inflammatory properties by reducing the release of proinflammatory cytokines. This study is designed to investigate whether intraoperative intravenous lidocaine infusion can reduce the incidence of PPCs in adult patients undergoing video-assisted thoracoscopic lung resection surgery. METHODS AND ANALYSIS: This single-centre, double-blinded study will enrol 366 patients scheduled for video-assisted thoracoscopic lung resection surgery. Patients will be randomly assigned to the lidocaine or placebo infusion group in a 1: 1 ratio. The lidocaine group will receive lidocaine intravenously during the intraoperative period, while the placebo group will be administered normal saline at an equal volume, infusion rate and timing. The primary outcome is the incidence of PPCs within 7 days following surgery. The secondary outcomes are quality of postoperative recovery 40 scores; length of hospital stay (determined by the number of days from admission to discharge); incidence of moderate to severe pain within 24 and 48 hours at rest and when coughing; incidence of additional rescue analgesics use and incidence of adverse events. ETHICS AND DISSEMINATION: The study was reviewed and approved by the Ethics Committee of Sichuan Provincial People's Hospital (approval no. 20222241). Written informed consent will be obtained from all patients before randomisation. The results of this trial will be disseminated in a peer-reviewed journal. TRIAL REGISTRATION NUMBER: ChiCTR2200061979.


Assuntos
Dor Pós-Operatória , Cirurgia Torácica Vídeoassistida , Adulto , Humanos , Cirurgia Torácica Vídeoassistida/efeitos adversos , Dor Pós-Operatória/tratamento farmacológico , Dor Pós-Operatória/prevenção & controle , Lidocaína/uso terapêutico , Complicações Pós-Operatórias/tratamento farmacológico , Pulmão/cirurgia , Infusões Intravenosas , Método Duplo-Cego , Anestésicos Locais , Ensaios Clínicos Controlados Aleatórios como Assunto
16.
Cancers (Basel) ; 14(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36497459

RESUMO

Glioma is the most common primary malignancy of the central nervous system (CNS), and 50% of patients present with glioblastoma (GBM), which is the most aggressive type. Currently, the most popular therapies are progressive chemotherapy and treatment with temozolomide (TMZ), but the median survival of glioma patients is still low as a result of the emergence of drug resistance, so we urgently need to find new therapies. A growing number of studies have shown that the diversity, bioactivity, and manipulability of microorganisms make microbial therapy a promising approach for cancer treatment. However, the many studies on the research progress of microorganisms and their derivatives in the development and treatment of glioma are scattered, and nobody has yet provided a comprehensive summary of them. Therefore, in this paper, we review the research progress of microorganisms and their derivatives in the development and treatment of glioma and conclude that it is possible to treat glioma by exogenous microbial therapies and targeting the gut-brain axis. In this article, we discuss the prospects and pressing issues relating to these therapies with the aim of providing new ideas for the treatment of glioma.

17.
Front Pharmacol ; 13: 1071897, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36506514

RESUMO

Ferroptosis is a newly identified form of cell death that differs from autophagy, apoptosis and necrosis, and its molecular characteristics include iron-dependent lipid reactive oxygen species accumulation, mitochondrial morphology changes, and membrane permeability damage. These characteristics are closely related to various human diseases, especially tumors of the nervous system. Glioblastoma is the most common primary malignant tumor of the adult central nervous system, and the 5-year survival rate is only 4%-5%. This study reviewed the role and mechanism of ferroptosis in glioblastoma and the research status and progress on ferroptosis as a potential therapeutic target. The mechanism of ferroptosis is related to the intracellular iron metabolism level, lipid peroxide content and glutathione peroxidase 4 activity. It is worth exploring how ferroptosis can be applied in disease treatment; however, the relation between ferroptosis and other apoptosis methods is poorly understood and methods of applying ferroptosis to drug-resistant tumors are insufficient. Ferroptosis is a promising therapeutic target for glioblastoma. In-depth studies of its mechanism of action in glioblastoma and applications for clinical treatment are expected to provide insights for glioblastoma patients.

18.
Nat Commun ; 13(1): 6944, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376325

RESUMO

Therapeutic responses of non-small cell lung cancer (NSCLC) to epidermal growth factor receptor (EGFR) - tyrosine kinase inhibitors (TKIs) are known to be associated with EGFR mutations. However, a proportion of NSCLCs carrying EGFR mutations still progress on EGFR-TKI underlining the imperfect correlation. Structure-function-based approaches have recently been reported to perform better in retrospectively predicting patient outcomes following EGFR-TKI treatment than exon-based method. Here, we develop a multicolor fluorescence-activated cell sorting (FACS) with an EGFR-TKI-based fluorogenic probe (HX103) to profile active-EGFR in tumors. HX103-based FACS shows an overall agreement with gene mutations of 82.6%, sensitivity of 81.8% and specificity of 83.3% for discriminating EGFR-activating mutations from wild-type in surgical specimens from NSCLC patients. We then translate HX103 to the clinical studies for prediction of EGFR-TKI sensitivity. When integrating computed tomography imaging with HX103-based FACS, we find a high correlation between EGFR-TKI therapy response and probe labeling. These studies demonstrate HX103-based FACS provides a high predictive performance for response to EGFR-TKI, suggesting the potential utility of an EGFR-TKI-based probe in precision medicine trials to stratify NSCLC patients for EGFR-TKI treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Estudos Retrospectivos , Receptores ErbB/genética , Inibidores de Proteínas Quinases/efeitos adversos , Mutação
19.
Front Oncol ; 12: 999555, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36276060

RESUMO

Background and purpose: Radiotherapy (RT) is a double-edged sword in regulating immune responses. This study aimed to investigate the impact of thoracic RT on circulating eosinophils and its association with patient outcomes in non-small cell lung cancer (NSCLC). Materials and methods: This retrospective study included 240 patients with advanced NSCLC treated with definitive thoracic RT from January 2012 to January 2020. Statistics included Kaplan-Meier analysis of overall survival (OS) and progression-free survival (PFS), multivariate Cox analyses to identify significant variables, and Spearman's correlation to qualify the relationship between dose-volume histogram (DVH) parameters and EIR. Results: Absolute eosinophil counts (AECs) showed an increasing trend during RT and an obvious peak in the 1st month after RT. Thresholds of eosinophil increase ratio (EIR) at the 1st month after RT for both OS and PFS were 1.43. Patients with high EIR above 1.43 experienced particularly favorable clinical outcomes (five-year OS: 21% versus 10%, P<0.0001; five-year PFS: 10% versus 8%, P=0.014), but may not derive PFS benefit from the addition of chemotherapy to RT. The higher a patient's EIR, the larger the potential benefit in the absence of chemotherapy. DVH parameters including heart mean dose and heart V10 were negatively associated with EIR. None of these DVH parameters was correlated with the clinical outcomes. Conclusion: EIR may serve as a potential biomarker to predict OS and PFS in NSCLC patients treated with RT. These findings require prospective studies to evaluate the role of such prognostic marker to identify patients at risk to tailor interventions.

20.
Front Oncol ; 12: 966011, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212498

RESUMO

Background: The 2019 novel coronavirus disease (COVID-19) strongly affects health care activities in countries around the world. The diagnosis and treatment of cancer have also been involved, and elderly head and neck squamous carcinoma is one of them. This study aimed to assess the impact of COVID-19 on elderly patients with head and neck squamous cell carcinoma (HNSCC) in our center. Methods: This retrospective study analyzed the clinical characteristics of 400 HNSCC patients over 65 years of age, calculated their treatment interruption rates, and compared the time of delayed diagnosis. Results: The rate of elderly patients with HNSCC with a delayed diagnosis was higher in the "during COVID-19 pandemic" group (DCOV19 group) than in the "during COVID-19 pandemic" group (BCOV19 group), and the difference was statistically significant (p=0.0017). There was a substantial difference in the rate of treatment interruption between the two groups (p=0.002). Conclusions: This is the first study to explore the effect of the COVID-19 pandemic on visits and treatment interruptions in elderly patients with HNSCC. The current impact of the COVID-19 pandemic on HNSCC treatment has resulted in reductions and delays in diagnosing cancer and providing treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA