Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Cell Rep ; 42(8): 1333-1344, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37355482

RESUMO

KEY MESSAGE: Overexpression of JcGAST1 promotes plant growth but inhibits pistil development. The pyrimidine box and CGTCA motif of the JcGAST1 promoter were responsible for the GA and MeJA responses. Members of the gibberellic acid-stimulated Arabidopsis (GASA) gene family play roles in plant growth and development, particularly in flower induction and seed development. However, there is still relatively limited knowledge of GASA genes in Jatropha curcas. Herein, we identified a GASA family gene from Jatropha curcas, namely, JcGAST1, which encodes a protein containing a conserved GASA domain. Sequence alignment showed that the JcGAST1 protein shares 76% sequence identity and 80% sequence similarity with SlGAST1. JcGAST1 had higher expression and protein levels in the female flowers than in the male flowers. Overexpression of JcGAST1 in tobacco promotes plant growth but inhibits pistil development. JcGAST1 expression was upregulated by GA and downregulated by MeJA. Promoter analysis indicated that the pyrimidine box and CGTCA motif were the GA- and MeJA-responsive elements of the JcGAST1 promoter. Using a Y1H screen, six transcription factors were found to interact with the pyrimidine box, and three transcription factors were found to interact with the CGTCA motif. Overall, the results of this study improve our understanding of the JcGAST1 gene and provide useful information for further studies.


Assuntos
Arabidopsis , Jatropha , Jatropha/genética , Jatropha/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regiões Promotoras Genéticas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Plant Sci ; 314: 111099, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34895537

RESUMO

Abiotic and biotic stresses are the major factors limiting plant growth. Arabidopsis E3 SUMO ligase SIZ1 plays an essential role in plant stress tolerance. Herein, we identified a SIZ/PAIS-type protein in pepper (Capsicum annuum), namely CaSIZ1, which shares 60 % sequence identity with AtSIZ1. The stems and flowers of pepper had a relatively higher expression of CaSIZ1 than the fruits, leaves, and roots. ABA and NaCl treatments induced CaSIZ1. CaSIZ1 protein was localized in the nucleus and partially rescued the dwarf and ABA-sensitive phenotypes of Atsiz1-2, suggesting the functional replacement of CaSIZ1 with AtSIZ1. We found that CaSIZ1 interacted with CaABI5, and ABA promoted the accumulation of SUMO conjugates in pepper. CaSIZ1 knockdown did not only reduce ABA-induced SUMOylation, but also attenuated the salt tolerance of pepper. Overall, the results of this study suggest that CaSIZ1 has a significant role in ABA-induced SUMOylation and stress response.


Assuntos
Ácido Abscísico/metabolismo , Capsicum/genética , Capsicum/metabolismo , Estresse Salino/efeitos dos fármacos , Tolerância ao Sal/genética , Sumoilação/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Sumoilação/genética , Nicotiana/genética , Nicotiana/metabolismo , Verduras/genética , Verduras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA