Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 330: 118254, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38670409

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Gout, a painful joint disease with a prevalence ranging from 0.86% to 2.2% in China over the past decade. Traditional medicine has long utilized the medicinal and edible Piper longum L. (PL) fruit spikes for treating gout and other joint conditions like rheumatoid arthritis. However, the exact mechanisms behind its effectiveness remain unclear. AIM OF THE STUDY: This study aimed to investigate the potential of alcoholic extracts from PL fruit spikes as a safe and effective treatment for gout. We used a combined network pharmacology and experimental validation approach to evaluate the mechanisms behind the anti-gout properties of PL. MATERIALS AND METHODS: UPLC-Q/TOF-MS analysis determined the major components of PL. Subsequently, network pharmacology analysis predicted potential molecular targets and related signaling pathways for the anti-gout activity of PL. Molecular docking simulations further explored the interactions between PL compounds and proteins and characterized the properties of potential bioactive secondary metabolites. Mouse models of air pouch inflammation and hyperuricemia were further established, and the anti-gout mechanism of PL was confirmed by examining the expression of proteins related to the MAPK and PI3K-AKT pathways in the tissue. RESULTS: Our analysis revealed 220 bioactive secondary metabolites within PL extracts. Network pharmacology and molecular docking results indicated that these metabolites primarily combat gout by modulating the PI3K-AKT and MAPK signaling pathways. In vivo experiments have also proven that PL at a dose of 100 mg/kg can optimally reduce acute inflammation of gout and kidney damage caused by high uric acid. The anti-gout mechanism involves the PI3K-AKT/MAPK signaling pathway and its downstream NF-κB pathway. CONCLUSION: This study provides compelling evidence for PL's therapeutic potential in gout management by modulating key inflammatory pathways. The findings offer a strong foundation for future clinical exploration of PL as a gout treatment option.


Assuntos
Gota , Fosfatidilinositol 3-Quinases , Piper , Extratos Vegetais , Proteínas Proto-Oncogênicas c-akt , Animais , Piper/química , Gota/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Camundongos , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Simulação de Acoplamento Molecular , Transdução de Sinais/efeitos dos fármacos , Farmacologia em Rede , Hiperuricemia/tratamento farmacológico , Camundongos Endogâmicos C57BL , Supressores da Gota/farmacologia , Supressores da Gota/uso terapêutico , Supressores da Gota/isolamento & purificação , Frutas/química , Modelos Animais de Doenças , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo
2.
Org Lett ; 23(5): 1611-1615, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33577342

RESUMO

An iron-catalyzed α,ß-dehydrogenation of carbonyl compounds was developed. A broad spectrum of carbonyls or analogues, such as aldehyde, ketone, lactone, lactam, amine, and alcohol, could be converted to their α,ß-unsaturated counterparts in a simple one-step reaction with high yields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA