Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 394: 130180, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086457

RESUMO

As a dewatering method of high moisture solid waste sludge, biodrying still faces environmental problems such as material loss and greenhouse gas emission in the process of treatment. In this study, biochar and magnesium chloride were used to explore the synergistic effect of enhancing sludge biodrying and reducing greenhouse gas emissions. The highest temperature of biodrying was raised to 68.2 °C within 3 days, extending the longest high-temperature period to 5 days, which reduced the water content to 28.8 % in the single addition of biochar treatment. The complex addition increased the NH4+-N content of materials by 57.49 % and decreased the NO3--N content of materials by 40.62 %. The use of additives significantly reduced the emissions of CO2, CH4, and N2O compared to the no-addition treatment. The increase in dominant Actinomycetes and Chloroflexibacter was the main reason for the reduction in gas emissions.


Assuntos
Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Esgotos , Carvão Vegetal , Resíduos Sólidos , Óxido Nitroso/análise , Solo
2.
Materials (Basel) ; 16(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38138756

RESUMO

Currently, the development of nonmetallic oxygen reduction reaction (ORR) catalysts based on heteroatomic-doped carbon materials is receiving increaseing attention in the field of fuel cells. Here, we used enzymolytic lignin (EL), melamine, and thiourea as carbon, nitrogen, and sulfur sources and NH4Cl as an activator to prepare N- and S-codoped lignin-based polyporous carbon (ELC) by one-step pyrolysis. The prepared lignin-derived biocarbon material (ELC-1-900) possessed a high specific surface area (844 m2 g-1), abundant mesoporous structure, and a large pore volume (0.587 cm3 g-1). The XPS results showed that ELC-1-900 was successfully doped with N and S. ELC-1-900 exhibited extremely high activity and stability in alkaline media for the ORR, with a half-wave potential (E1/2 = 0.88 V) and starting potential (Eonset = 0.98 V) superior to those of Pt/C catalysts and most non-noble-metal catalysts reported in recent studies. In addition, ELC-1-900 showed better ORR stability and methanol tolerance in alkaline media than commercial Pt/C catalysts.

3.
Bioresour Technol ; 347: 126743, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35066127

RESUMO

Substances harmful to photo-fermentative biological hydrogen production (PFHP) were produced during cellulose hydrolysis. This study aimed to evaluate the effect of by-products (5-hydroxymethylfurfural (5-HMF) and furfural) released from lignocellulose during enzymatic hydrolysis process on PFHP. The exist of 5-HMF inhibited the hydrogen production. However, 0.2 g/L furfural improved the hydrogen production by 19 % compared to no addition (511.6 mL) with a maximum concentration of nitrogenase (109.96 IU/L) at 96 h. Furthermore, a 18.7 % enhancement of hydrogen production was also observed when 0.2 g/L 5-HMF and furfural were mixed at a ratio of 1:1, while decrement of hydrogen production at higher addition was observed as well. Through the scatter matrix analysis, it was concluded that 5-HMF and furfural additives had significant effects on PFHP. This study gave an insight into effect of lignocellulosic by-products on biohydrogen production.


Assuntos
Furaldeído , Hidrogênio , Fermentação
4.
Bioresour Technol ; 343: 126088, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34624469

RESUMO

Ionic liquids (ILs) pretreatment has been regarded as a promising green way to treat lignocellulosic biomass. 1-Butyl-3-methylimidazolium tetrafluoroborate ([Bmim]BF4), 1-allyl-3-methylimidazolium chloride ([Amim]Cl), and 1-Butyl-3-methylimidazolium Hydrogen Sulfate ([Bmim]HSO4) with different loadings (2, 4, 8, and 16 g/L) were adopted to pretreat the Arundo donax L.. 16 g/L [Bmim]HSO4 pretreated Arundo donax L. obtained the highest sugar yield of 7.9 g/L during the enzymatic hydrolysis and hydrogen yield of 106.1 mL/g TS during the photo-fermentation, which were 68.8 % and 35.3 % higher than those of untreated Arundo donax L., respectively. Moreover, volatile fatty acids (VFAs) distribution revealed that acetic acid was the main by-product during hydrogen production process with ILs pretreated Arundo donax L.. Besides, the relationship between sugar yield and hydrogen yield was the closest based on scatter matrix analysis. This study helps to understand of correlation between ILs pretreatment with the behavior of bioenergy production.


Assuntos
Líquidos Iônicos , Fermentação , Hidrogênio , Hidrólise , Poaceae
5.
Bioresour Technol ; 344(Pt B): 126302, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34752886

RESUMO

Suitable illumination project would help in achieving high light conversion efficiency (LCE) for photo-fermentation. This study proposed an improvement strategy for LCE of photo-fermentative hydrogen production (PFHP) with a photosynthetic consortium by adopting light-dark duration alternation. For this purpose, 6 projects (continues light, 24 h light + 24 h dark, 24 h dark + 24 h light, 48 h light + 48 h light, 48 h dark + 48 h light, and continues dark) light disturbances were carried out to estimate the strategy. The fluctuation of cell growth (OD660) was corresponded to the light-dark alternation. 24 h dark + 24 h light alternation achieved the maximum hydrogen yield (HY) of 390.9 mL/g TS cell (6.7 % higher than continuous light) and maximum improvement of LCE of 114.7%. Moreover, heat map analysis revealed that the light period after inoculation had the closest relation (Pearson's r = 1) with the average hydrogen production rate (HPR) of photo-fermentation. Besides, decreased dark period after inoculation would increase the hydrogen yield of photo-fermentation.


Assuntos
Hidrogênio , Poaceae , Fermentação , Concentração de Íons de Hidrogênio , Iluminação
6.
ACS Omega ; 6(34): 22301-22310, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34497919

RESUMO

Carbon-alumina composites are prepared for the efficient removal of Cr(VI) from wastewater. Pristine and acid-treated alumina dross (AD and AAD) are copyrolyzed with pine sawdust to form the respective composites, ADPC and AADPC. Excellent absorption properties with Cr(VI) removal efficiency of 95.08% are demonstrated at 60 °C for an initial concentration of 6 µg/mL. The composites combine the merits of char, which provides a high surface-to-volume ratio with abundant functional groups on the surface, and alumina, which provides metal ions for coprecipitation. Carbon structures of pine, char, and composite were analyzed semiquantitatively using 13C NMR by a curve-fitting method. Cr(VI) adsorption is accurately described with chemisorption by the Langmuir isotherm model and a pseudo-second-order kinetic model. The results show that AADPC has more alcohol hydroxyl groups substituted to glucosyl units in amorphous cellulose assigned to the peak at 80 ppm and hemicellulose assigned to peaks at 97 and 101 ppm. Also, it has more phenolic groups in lignin distributed at syringyl units assigned to peaks at 129 and 146 ppm. These oxygen-containing functional groups have a significant influence on Cr(VI) adsorption and reduction to Cr(III) governed by the mechanisms of diffusion, adsorption, complexation, reduction, and coprecipitation. The results of this work provide a new direction for the reuse of biomass and industrial solid wastes to fabricate higher value-added products, i.e., adsorption materials for Cr(VI) removal and stabilization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA