Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202406651, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38781352

RESUMO

Organic phosphorescent materials are excellent candidates for use in tumor imaging. However, a systematic comparison of the effects of the intensity, lifetime, and wavelength of phosphorescent emissions on bioimaging performance has not yet been undertaken. In addition, there have been few reports on organic phosphorescent materials that specifically distinguish tumors from normal tissues. This study addresses these gaps and reveals that longer lifetimes effectively increase the signal intensity, whereas longer wavelengths enhance the penetration depth. Conversely, a strong emission intensity with a short lifetime does not necessarily yield robust imaging signals. Building upon these findings, an organo-phosphorescent material with a lifetime of 0.94 s was designed for tumor imaging. Remarkably, the phosphorescent signals of various organic nanoparticles are nearly extinguished in blood-rich organs because of the quenching effect of iron ions. Moreover, for the first time, we demonstrated that iron ions universally quench the phosphorescence of organic room-temperature phosphorescent materials, which is an inherent property of such substances. Leveraging this property, both the normal liver and hepatitis tissues exhibit negligible phosphorescent signals, whereas liver tumors display intense phosphorescence. Therefore, phosphorescent materials, unlike chemiluminescent or fluorescent materials, can exploit this unique inherent property to selectively distinguish liver tumor tissues from normal tissues without additional modifications or treatments.

2.
Nat Commun ; 13(1): 186, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013474

RESUMO

Organic near-infrared room temperature phosphorescence materials have unparalleled advantages in bioimaging due to their excellent penetrability. However, limited by the energy gap law, the near-infrared phosphorescence materials (>650 nm) are very rare, moreover, the phosphorescence lifetimes of these materials are very short. In this work, we have obtained organic room temperature phosphorescence materials with long wavelengths (600/657-681/732 nm) and long lifetimes (102-324 ms) for the first time through the guest-host doped strategy. The guest molecule has sufficient conjugation to reduce the lowest triplet energy level and the host assists the guest in exciton transfer and inhibits the non-radiative transition of guest excitons. These materials exhibit good tissue penetration in bioimaging. Thanks to the characteristic of long lifetime and long wavelength emissive phosphorescence materials, the tumor imaging in living mice with a signal to background ratio value as high as 43 is successfully realized. This work provides a practical solution for the construction of organic phosphorescence materials with both long wavelengths and long lifetimes.


Assuntos
Corantes Fluorescentes/síntese química , Substâncias Luminescentes/síntese química , Linfonodos/diagnóstico por imagem , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Imagem Óptica/métodos , Animais , Benzofenonas/química , Corantes Fluorescentes/análise , Corantes Fluorescentes/farmacocinética , Substâncias Luminescentes/análise , Substâncias Luminescentes/farmacocinética , Linfonodos/metabolismo , Linfonodos/patologia , Camundongos , Neoplasias/metabolismo , Neoplasias/patologia , Pirenos/química , Piridinas/química , Espectroscopia de Luz Próxima ao Infravermelho
3.
Chem Commun (Camb) ; 56(88): 13638-13641, 2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33063078

RESUMO

A star-shaped triphenylamine-benzene-1,3,5-tricarbohydrazide molecule with a twisted molecular conformation was found to display amazing multifunctional optical properties. The design of peripheral triphenylamine units and a central benzene connected with hydrazide groups leads to the formation of rare polymorphic properties in the presence of multiple flexible chains. Two polymorphs with different fluorescence colors exhibited bathochromic mechanofluorochromic activities with high contrast due to a crystalline-to-amorphous transition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA