Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(28): e2304020, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37544917

RESUMO

Accurate delineation of glioma infiltrative margins remains a challenge due to the low density of cancer cells in these regions. Here, a hierarchical imaging strategy to define glioma margins by locating the immunosuppressive tumor-associated macrophages (TAMs) is proposed. A pH ratiometric fluorescent probe CP2-M that targets immunosuppressive TAMs by binding to mannose receptor (CD206) is developed, and it subsequently senses the acidic phagosomal lumen, resulting in a remarkable fluorescence enhancement. With assistance of CP2-M, glioma xenografts in mouse models with a tumor-to-background ratio exceeding 3.0 for up to 6 h are successfully visualized. Furthermore, by intra-operatively mapping the pH distribution of exposed tissue after craniotomy, the glioma allograft in rat models is precisely excised. The overall survival of rat models significantly surpasses that achieved using clinically employed fluorescent probes. This work presents a novel strategy for locating glioma margins, thereby improving surgical outcomes for tumors with infiltrative characteristics.


Assuntos
Glioma , Macrófagos Associados a Tumor , Camundongos , Humanos , Ratos , Animais , Glioma/metabolismo , Corantes Fluorescentes , Receptor de Manose
2.
Adv Healthc Mater ; 12(27): e2301000, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37580893

RESUMO

Macrophage performs multiple functions such as pathogen phagocytosis, antigen presentation, and tissue remodeling by polarizing toward a spectrum of phenotypes. Dynamic imaging of macrophage phenotypes is critical for evaluating disease progression and the therapeutic response of drug candidates. However, current technologies cannot identify macrophage phenotypes in vivo. Herein, a surface-enhanced Raman scattering nanoprobe, AH1, which enables the accurate determination of physiological pH with high sensitivity and tissue penetration depth through ratiometric Raman signals is developed. Due to the phenotype-dependent metabolic reprogramming, AH1 can effectively identify macrophage subpopulations by measuring the acidity levels in phagosomes. After intravenous administration, AH1 not only visualizes the spatial distribution of macrophage phenotypes in brain tumors and epileptic regions of mouse models, but also reveals the repolarization of macrophages in brain lesions after drug intervention. This work provides a new tool for dynamically monitoring the disease-associated immune microenvironment and evaluating the efficacy of immune-therapeutics in vivo.


Assuntos
Neoplasias Encefálicas , Epilepsia , Camundongos , Animais , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Macrófagos , Diagnóstico por Imagem , Epilepsia/diagnóstico por imagem , Fenótipo , Análise Espectral Raman/métodos , Microambiente Tumoral
3.
J Am Chem Soc ; 145(22): 12013-12022, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37216464

RESUMO

The shortwave infrared (SWIR) spectral region beyond 1200 nm offers optimal tissue penetration depth and has broad potential in diagnosis, therapy, and surgery. Here, we devised a novel class of fluorochromic scaffold, i.e., a tetra-benzannulated xanthenoid (EC7). EC7 absorbs/emits maximally at 1204/1290 nm in CH2Cl2 and exhibits an unparalleled molar absorptivity of 3.91 × 105 cm-1 M-1 and high transparency to light at 400-900 nm. It also exhibited high resistance toward both photobleaching and symmetry breaking due to its unique structural rigidity. It is feasible for in vivo bioimaging and particularly suitable to couple with the shorter-wavelength analogues for high-contrast multiplexing. High-contrast dual-channel intraoperative imaging of the hepatobiliary system and three-channel in vivo imaging of the intestine, the stomach, and the vasculature were showcased. EC7 is a benchmark fluorochrome for facile biomedical exploitation of the SWIR region beyond 1200 nm.


Assuntos
Corantes Fluorescentes , Raios Infravermelhos , Ondas de Rádio
4.
Angew Chem Int Ed Engl ; 60(50): 26337-26341, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34605146

RESUMO

Inflammation usually results in high-level reactive oxygen species (ROS) and reactive nitrogen species (RNS) not only in acidic tissue but also in alkaline tissue. However, noninvasively in vivo monitoring reactive species specifically within alkaline tissue remains a huge challenge. Here we introduce a dual activatable fluorescent probe PN910 located in the second near-infrared window (NIR-II, 900-1700 nm), which shows high selectivity toward H2 O2 and OONO- at pH beyond 7.4. Then we verified that PN910 could be used for the real-time, specific and accurate monitoring of cystitis and colitis for living animals. This report presents a unique approach to the development of dual activatable probe for in vivo biosensing.


Assuntos
Benzopiranos/química , Técnicas Biossensoriais , Colite/diagnóstico , Cistite/diagnóstico , Corantes Fluorescentes/química , Indóis/química , Animais , Colite/metabolismo , Cistite/metabolismo , Peróxido de Hidrogênio/análise , Raios Infravermelhos , Camundongos , Estrutura Molecular , Nitratos/análise , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
5.
Chem Sci ; 12(31): 10474-10482, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34447540

RESUMO

Fluorescence probes have great potential to empower bioimaging, precision clinical diagnostics and surgery. However, current probes are limited to in vivo high-contrast diagnostics, due to the substantial background interference from tissue scattering and nonspecific activation in blood and normal tissues. Here, we developed a kind of cell endocytosis-activated fluorescence (CEAF) probe, which consists of a hydrophilic polymer unit and an acid pH-sensitive small-molecule fluorescent moiety that operates in the "tissue-transparent" second near-infrared (NIR-II) window. The CEAF probe stably presents in the form of quenched nanoaggregates in water and blood, and can be selectively activated and retained in lysosomes through cell endocytosis, driven by a synergetic mechanism of disaggregation and protonation. In vivo imaging of tumor and inflammation with a passive-targeting and affinity-tagged CEAF probe, respectively, yields highly specific signals with target-to-background ratios over 15 and prolonged observation time up to 35 hours, enabling positive implications for surgical, diagnostic and fundamental biomedical studies.

6.
Angew Chem Int Ed Engl ; 60(10): 5091-5095, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33300662

RESUMO

Monitoring the pH in tumor lesions provides abundant physiological information. However, currently developed pH sensors only achieve sensitive detection in the settled response region around the pH transition point (pHt ). To realize tumor pH monitoring with high sensitivity within a wider response region, reported here are serial pHt adjustable sensors (pTAS) that simply regulate the component ratio of second near-infrared (NIR-II) emission aza-BODIPY (NAB) donor and pH sensitive rhodamine-based pre-acceptor (NRh) in Förster resonance energy transfer system. Combining the pH response regions of pTAS, a twofold widened pH detection range (6.11-7.22) is obtained compared to the pHt settled sensor (6.38-6.94). With an adjustable pHt , in vivo tumor pH increase and decrease processes could be dynamically visualized through dual-channel ratiometric bioimaging within the NIR-II window, with a coefficient of variation under 1 % compared to the standard pH meter.


Assuntos
Neoplasias/metabolismo , Microambiente Tumoral/fisiologia , Animais , Compostos de Boro/síntese química , Compostos de Boro/química , Linhagem Celular Tumoral , Feminino , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Concentração de Íons de Hidrogênio , Camundongos Nus , Monitorização Fisiológica/métodos , Rodaminas/síntese química , Rodaminas/química
7.
Anal Chem ; 91(7): 4771-4779, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30808169

RESUMO

Drug-induced hepatotoxicity represents an important challenge for safety in drug development. The production of peroxynitrite (ONOO-) is proposed as an early sign in the progression of drug-induced hepatotoxicity. Currently, reported ONOO- probes mainly emit in the visible range or the first NIR window, which have limited in vivo biosensing application due to the autofluorescence and photon scattering. Herein, we developed a peroxynitrite activatable second near-infrared window (NIR-II) molecular probe for drug-induced hepatotoxicity monitoring, based on the fusion of an NIR-II fluorescence turn-on benzothiopyrylium cyanines skeleton and the phenyl borate. In the presence of ONOO-, the probe IRBTP-B can turn on its NIR-II fluorescence by yielding its fluorophore IRBTP-O and display good linear response to ONOO-. Tissue phantom study confirmed reliable activated signals could be acquired at a penetration depth up to 5 mm. Using this probe, we disclose the upregulation of ONOO- in a preclinical drug-induced liver injury model and the remediation with N-acetyl cysteine (NAC) in vivo. We expect that this strategy will serve as a general method for the development of an activatable NIR-II probe based on the hydroxyl functionalized reactive sites by analyte-specific triggering.


Assuntos
Técnicas Biossensoriais , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Corantes Fluorescentes/metabolismo , Ácido Peroxinitroso/metabolismo , Acetaminofen , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Fluorescência , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Humanos , Raios Infravermelhos , Camundongos , Camundongos Nus , Ácido Peroxinitroso/química
8.
Chem Commun (Camb) ; 53(79): 10938-10941, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28933460

RESUMO

The development of biocompatible two-photon fluorophores with a large absorption cross-section is challenging, despite the presence of theoretical guidelines. By rendering asymmetric PRODAN dye centrosymmetric, we designed and synthesized a novel class of two-photon fluorophores (TPZ). Their photophysical properties were investigated and their imaging potentials in cells, tissues and zebrafish were showcased.


Assuntos
Corantes Fluorescentes/química , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Naftalenos/química , Imagem Óptica/métodos , Animais , Humanos , Células MCF-7 , Ratos , Espectrometria de Fluorescência/métodos , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA