Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Mol Metab ; 66: 101624, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36341906

RESUMO

OBJECTIVE: Lifelong insulin replacement remains the mainstay of type 1 diabetes treatment. Genetic FoxO1 ablation promotes enteroendocrine cell (EECs) conversion into glucose-responsive ß-like cells. Here, we tested whether chemical FoxO1 inhibitors can generate ß-like gut cells. METHODS: We used Ngn3-or Villin-driven FoxO1 ablation to capture the distinctive developmental effects of FoxO1 on EEC pool. We combined FoxO1 ablation with Notch inhibition to enhance the expansion of EEC pool. We tested the ability of an orally available small molecule of FoxO1 inhibitor, Cpd10, to phenocopy genetic ablation of FoxO1. We evaluated the therapeutic impact of genetic ablation or chemical inhibition of FoxO1 on insulin-deficient diabetes in Ins2Akita/+ mice. RESULTS: Pan-intestinal epithelial FoxO1 ablation expanded the EEC pool, induced ß-like cells, and improved glucose tolerance in Ins2Akita/+ mice. This genetic effect was phenocopied by Cpd10. Cpd10 induced ß-like cells that released insulin in response to glucose in gut organoids, and this effect was enhanced by the Notch inhibitor, DBZ. In Ins2Akita/+ mice, a five-day course of either Cpd10 or DBZ induced intestinal insulin-immunoreactive ß-like cells, lowered glycemia, and increased plasma insulin levels without apparent adverse effects. CONCLUSION: These results provide proof of principle of gut cell conversion into ß-like cells by a small molecule FoxO1 inhibitor, paving the way for clinical applications.


Assuntos
Diabetes Mellitus , Células Secretoras de Insulina , Animais , Camundongos , Células Enteroendócrinas , Proteína Forkhead Box O1/genética , Glucose/farmacologia , Insulina/genética , Organoides , Receptores Notch/antagonistas & inibidores
2.
Mol Metab ; 66: 101618, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36283677

RESUMO

OBJECTIVES: Insulin treatment remains the sole effective intervention for Type 1 Diabetes. Here, we investigated the therapeutic potential of converting intestinal epithelial cells to insulin-producing, glucose-responsive ß-like cells by targeted inhibition of FOXO1. We have previously shown that this can be achieved by genetic ablation in gut Neurogenin3 progenitors, adenoviral or shRNA-mediated inhibition in human gut organoids, and chemical inhibition in Akita mice, a model of insulin-deficient diabetes. METHODS: We profiled two novel FOXO1 inhibitors in reporter gene assays, and hepatocyte gene expression studies, and in vivo pyruvate tolerance test (PTT) for their activity and specificity. We evaluated their glucose-lowering effect in mice rendered insulin-deficient by administration of streptozotocin. RESULTS: We provide evidence that two novel FOXO1 inhibitors, FBT432 and FBT374 have glucose-lowering and gut ß-like cell-inducing properties in mice. FBT432 is also highly effective in combination with a Notch inhibitor in this model. CONCLUSION: The data add to a growing body of evidence suggesting that FOXO1 inhibition be pursued as an alternative treatment to insulin administration in diabetes.


Assuntos
Diabetes Mellitus Experimental , Proteína Forkhead Box O1 , Animais , Camundongos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Proteína Forkhead Box O1/antagonistas & inibidores , Glucose/metabolismo , Insulina/metabolismo , Estreptozocina
3.
JCI Insight ; 6(16)2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34283813

RESUMO

Energy balance is controlled by interconnected brain regions in the hypothalamus, brainstem, cortex, and limbic system. Gene expression signatures of these regions can help elucidate the pathophysiology underlying obesity. RNA sequencing was conducted on P56 C57BL/6NTac male mice and E14.5 C57BL/6NTac embryo punch biopsies in 16 obesity-relevant brain regions. The expression of 190 known obesity-associated genes (monogenic, rare, and low-frequency coding variants; GWAS; syndromic) was analyzed in each anatomical region. Genes associated with these genetic categories of obesity had localized expression patterns across brain regions. Known monogenic obesity causal genes were highly enriched in the arcuate nucleus of the hypothalamus and developing hypothalamus. The obesity-associated genes clustered into distinct "modules" of similar expression profile, and these were distinct from expression modules formed by similar analysis with genes known to be associated with other disease phenotypes (type 1 and type 2 diabetes, autism, breast cancer) in the same energy balance-relevant brain regions.


Assuntos
Encéfalo/metabolismo , Metabolismo Energético/genética , Obesidade/metabolismo , Animais , Embrião de Mamíferos , Regulação da Expressão Gênica , Predisposição Genética para Doença , Masculino , Camundongos , Obesidade/genética , RNA-Seq
4.
Obesity (Silver Spring) ; 29 Suppl 1: S9-S24, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33759395

RESUMO

Although many persons with obesity can lose weight by lifestyle (diet and physical activity) therapy, successful long-term weight loss is difficult to achieve, and most people who lose weight regain their lost weight over time. The neurohormonal, physiological, and behavioral factors that promote weight recidivism are unclear and complex. The National Institute of Diabetes and Digestive and Kidney Diseases convened a workshop in June 2019, titled "The Physiology of the Weight-Reduced State," to explore the mechanisms and integrative physiology of adaptations in appetite, energy expenditure, and thermogenesis that occur in the weight-reduced state and that may oppose weight-loss maintenance. The proceedings from the first session of this workshop are presented here. Drs. Michael Rosenbaum, Kevin Hall, and Rudolph Leibel discussed the physiological factors that contribute to weight regain; Dr. Michael Lowe discussed the biobehavioral issues involved in weight-loss maintenance; Dr. John Jakicic discussed the influence of physical activity on long-term weight-loss maintenance; and Dr. Louis Aronne discussed the ability of drug therapy to maintain weight loss.


Assuntos
Adaptação Fisiológica/fisiologia , Comportamentos Relacionados com a Saúde/fisiologia , Obesidade/terapia , Redução de Peso/fisiologia , Apetite/fisiologia , Manutenção do Peso Corporal/fisiologia , Dieta , Metabolismo Energético/fisiologia , Exercício Físico/fisiologia , Humanos , Estilo de Vida , National Institute of Diabetes and Digestive and Kidney Diseases (U.S.)/organização & administração , Obesidade/metabolismo , Termogênese/fisiologia , Estados Unidos
5.
Mol Metab ; 49: 101187, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33577983

RESUMO

OBJECTIVE: Forkhead box protein O1 (FOXO1) plays a key role in regulating hepatic glucose production, but investigations of FOXO1 inhibition as a potential therapeutic approach have been hampered by a lack of selective chemical inhibitors. By profiling structurally diverse FOXO1 inhibitors, the current study validates FOXO1 as a viable target for the treatment of diabetes. METHODS: Using reporter gene assays, hepatocyte gene expression studies, and in vivo studies in mice, we profiled our leading tool compound 10 and a previously characterized FOXO1 inhibitor, AS1842856 (AS). RESULTS: We show that AS has significant FOXO1-independent effects, as demonstrated by testing in FOXO1-deficient cell lines and animals, while compound 10 is highly selective for FOXO1 both in vitro and in vivo and fails to elicit any effect in genetic models of FOXO1 ablation. Chronic administration of compound 10 improved insulin sensitivity and glucose control in db/db mice without causing weight gain. Furthermore, chronic compound 10 treatment combined with FGF21 led to synergistic glucose lowering in lean, streptozotocin-induced diabetic mice. CONCLUSIONS: We show that the widely used AS compound has substantial off-target activities and that compound 10 is a superior tool molecule for the investigation of FOXO1 function. In addition, we provide preclinical evidence that selective FOXO1 inhibition has potential therapeutic benefits for diabetes as a monotherapy or in combination with FGF21.


Assuntos
Glicemia/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Proteína Forkhead Box O1/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Proteína Forkhead Box O1/efeitos dos fármacos , Proteína Forkhead Box O1/genética , Glucose/metabolismo , Hepatócitos/metabolismo , Resistência à Insulina , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Quinolonas/farmacologia
6.
J Clin Invest ; 131(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33630762

RESUMO

Bardet-Biedl syndrome (BBS) is a rare autosomal recessive disorder caused by mutations in genes encoding components of the primary cilium and is characterized by hyperphagic obesity. To investigate the molecular basis of obesity in human BBS, we developed a cellular model of BBS using induced pluripotent stem cell-derived (iPSC-derived) hypothalamic arcuate-like neurons. BBS mutations BBS1M390R and BBS10C91fsX95 did not affect neuronal differentiation efficiency but caused morphological defects, including impaired neurite outgrowth and longer primary cilia. Single-cell RNA sequencing of BBS1M390R hypothalamic neurons identified several downregulated pathways, including insulin and cAMP signaling and axon guidance. Additional studies demonstrated that BBS1M390R and BBS10C91fsX95 mutations impaired insulin signaling in both human fibroblasts and iPSC-derived neurons. Overexpression of intact BBS10 fully restored insulin signaling by restoring insulin receptor tyrosine phosphorylation in BBS10C91fsX95 neurons. Moreover, mutations in BBS1 and BBS10 impaired leptin-mediated p-STAT3 activation in iPSC-derived hypothalamic neurons. Correction of the BBS mutation by CRISPR rescued leptin signaling. POMC expression and neuropeptide production were decreased in BBS1M390R and BBS10C91fsX95 iPSC-derived hypothalamic neurons. In the aggregate, these data provide insights into the anatomic and functional mechanisms by which components of the BBSome in CNS primary cilia mediate effects on energy homeostasis.


Assuntos
Síndrome de Bardet-Biedl/metabolismo , Chaperoninas/metabolismo , Hipotálamo/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação de Sentido Incorreto , Neurônios/metabolismo , Sistemas do Segundo Mensageiro , Substituição de Aminoácidos , Animais , Síndrome de Bardet-Biedl/genética , Chaperoninas/genética , AMP Cíclico/genética , AMP Cíclico/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/genética
7.
Cell Mol Gastroenterol Hepatol ; 11(3): 667-682, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33069917

RESUMO

BACKGROUND & AIMS: Inflammatory bowel disease (IBD) is a polygenic disorder characterized principally by dysregulated inflammation impacting the gastrointestinal tract. However, there also is increasing evidence for a clinical association with stress and depression. Given the role of the hypothalamus in stress responses and in the pathogenesis of depression, useful insights could be gleaned from understanding its genetic role in IBD. METHODS: We conducted genetic correlation analyses on publicly available genome-wide association study summary statistics for depression and IBD traits to identify genetic commonalities. We used partitioned linkage disequilibrium score regression, leveraging our ATAC sequencing and promoter-focused Capture C data, to measure enrichment of IBD single-nucleotide polymorphisms within promoter-interacting open chromatin regions of human embryonic stem cell-derived hypothalamic-like neurons (HNs). Using the same data sets, we performed variant-to-gene mapping to implicate putative IBD effector genes in HNs. To contrast these results, we similarly analyzed 3-dimensional genomic data generated in epithelium-derived colonoids from rectal biopsy specimens from donors without pathologic disease noted at the time of colonoscopy. Finally, we conducted enrichment pathway analyses on the implicated genes to identify putative IBD dysfunctional pathways. RESULTS: We found significant genetic correlations (rg) of 0.122 with an adjusted P (Padj) = 1.4 × 10-4 for IBD: rg = 0.122; Padj = 2.5 × 10-3 for ulcerative colitis and genetic correlation (rg) = 0.094; Padj = 2.5 × 10-3 for Crohn's disease, and significant approximately 4-fold (P = .005) and approximately 7-fold (P = .03) enrichment of IBD single-nucleotide polymorphisms in HNs and colonoids, respectively. We implicated 25 associated genes in HNs, among which CREM, CNTF, and RHOA encode key regulators of stress. Seven genes also additionally were implicated in the colonoids. We observed an overall enrichment for immune and hormonal signaling pathways, and a colonoid-specific enrichment for microbiota-relevant terms. CONCLUSIONS: Our results suggest that the hypothalamus warrants further study in the context of IBD pathogenesis.


Assuntos
Depressão/genética , Predisposição Genética para Doença , Hipotálamo/fisiopatologia , Doenças Inflamatórias Intestinais/genética , Estresse Psicológico/genética , Eixo Encéfalo-Intestino , Estudos de Casos e Controles , Mapeamento Cromossômico , Conjuntos de Dados como Assunto , Depressão/fisiopatologia , Estudo de Associação Genômica Ampla , Humanos , Sistema Hipotálamo-Hipofisário/fisiopatologia , Hipotálamo/citologia , Doenças Inflamatórias Intestinais/fisiopatologia , Desequilíbrio de Ligação , Neurônios , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Estresse Psicológico/fisiopatologia
8.
JCI Insight ; 5(17)2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32879135

RESUMO

Prader-Willi syndrome (PWS) is a developmental disorder caused by loss of maternally imprinted genes on 15q11-q13, including melanoma antigen gene family member L2 (MAGEL2). The clinical phenotypes of PWS suggest impaired hypothalamic neuroendocrine function; however, the exact cellular defects are unknown. Here, we report deficits in secretory granule (SG) abundance and bioactive neuropeptide production upon loss of MAGEL2 in humans and mice. Unbiased proteomic analysis of Magel2pΔ/m+ mice revealed a reduction in components of SG in the hypothalamus that was confirmed in 2 PWS patient-derived neuronal cell models. Mechanistically, we show that proper endosomal trafficking by the MAGEL2-regulated WASH complex is required to prevent aberrant lysosomal degradation of SG proteins and reduction of mature SG abundance. Importantly, loss of MAGEL2 in mice, NGN2-induced neurons, and human patients led to reduced neuropeptide production. Thus, MAGEL2 plays an important role in hypothalamic neuroendocrine function, and cellular defects in this pathway may contribute to PWS disease etiology. Moreover, these findings suggest unanticipated approaches for therapeutic intervention.


Assuntos
Antígenos de Neoplasias/fisiologia , Hipotálamo/patologia , Neurônios/patologia , Neuropeptídeos/metabolismo , Síndrome de Prader-Willi/fisiopatologia , Proteínas/metabolismo , Proteínas/fisiologia , Vesículas Secretórias/patologia , Animais , Feminino , Humanos , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Fenótipo , Transporte Proteico , Proteínas/genética , Proteoma/análise , Proteoma/metabolismo , Vesículas Secretórias/metabolismo
9.
Sci Adv ; 6(11): eaay8937, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32195347

RESUMO

Expressed in the small intestine, retinol-binding protein 2 (RBP2) facilitates dietary retinoid absorption. Rbp2-deficient (Rbp2-/- ) mice fed a chow diet exhibit by 6-7 months-of-age higher body weights, impaired glucose metabolism, and greater hepatic triglyceride levels compared to controls. These phenotypes are also observed when young Rbp2-/- mice are fed a high fat diet. Retinoids do not account for the phenotypes. Rather, RBP2 is a previously unidentified monoacylglycerol (MAG)-binding protein, interacting with the endocannabinoid 2-arachidonoylglycerol (2-AG) and other MAGs with affinities comparable to retinol. X-ray crystallographic studies show that MAGs bind in the retinol binding pocket. When challenged with an oil gavage, Rbp2-/- mice show elevated mucosal levels of 2-MAGs. This is accompanied by significantly elevated blood levels of the gut hormone GIP (glucose-dependent insulinotropic polypeptide). Thus, RBP2, in addition to facilitating dietary retinoid absorption, modulates MAG metabolism and likely signaling, playing a heretofore unknown role in systemic energy balance.


Assuntos
Peso Corporal , Polipeptídeo Inibidor Gástrico/metabolismo , Mucosa Intestinal/metabolismo , Monoglicerídeos/metabolismo , Proteínas Celulares de Ligação ao Retinol/metabolismo , Transdução de Sinais , Animais , Dieta Hiperlipídica , Polipeptídeo Inibidor Gástrico/genética , Camundongos , Camundongos Knockout , Proteínas Celulares de Ligação ao Retinol/genética
10.
Mol Metab ; 23: 37-50, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30876866

RESUMO

OBJECTIVE: We hypothesized that DA and L-DOPA derived from nutritional tyrosine and the resultant observed postprandial plasma excursions of L-DOPA and DA might affect glucose tolerance via their ability to be taken-up by beta cells and inhibit glucose-stimulated ß-cell insulin secretion. METHODS: To investigate a possible circuit between meal-stimulated 3,4-dihydroxy-L-phenylalanine (L-DOPA) and dopamine (DA) production in the GI tract and pancreatic ß-cells, we: 1) mapped GI mucosal expression of tyrosine hydroxylase (TH) and aromatic amino acid decarboxylase (AADC); 2) measured L-DOPA and DA content of GI mucosal tissues following meal challenges with different L-tyrosine (TYR) content, 3) determined whether meal TYR content impacts plasma insulin and glucose excursions; and 4) characterized postprandial plasma excursions of L-DOPA and DA in response to meal tyrosine content in rodents and a population of bariatric surgery patients. Next, we characterized: 1) the metabolic transformation of TYR and L-DOPA into DA in vitro using purified islet tissue; 2) the metabolic transformation of orally administrated stable isotope labeled TYR into pancreatic DA, and 3) using a nuclear medicine technique, we studied endocrine beta cells in situ release and binding of DA in response to a glucose challenge. RESULTS: We demonstrate in rodents that intestinal content and circulatory concentrations L-DOPA and DA, plasma glucose and insulin are responsive to the tyrosine (TYR) content of a test meal. Intestinal expression of two enzymes, Tyrosine hydroxylase (TH) and Aromatic Amino acid Decarboxylase (AADC), essential to the transformation of TYR to DA was mapped and the metabolism of metabolism of TYR to DA was traced in human islets and a rodent beta cell line in vitro and from gut to the pancreas in vivo. Lastly, we show that ß cells secrete and bind DA in situ in response to glucose stimulation. CONCLUSIONS: We provide proof-of-principle evidence for the existence of a novel postprandial circuit of glucose homeostasis dependent on nutritional tyrosine. DA and L-DOPA derived from nutritional tyrosine may serve to defend against hypoglycemia via inhibition of glucose-stimulated ß-cell insulin secretion as proposed by the anti-incretin hypothesis.


Assuntos
Descarboxilases de Aminoácido-L-Aromático/metabolismo , Glicemia/análise , Dopamina/metabolismo , Trato Gastrointestinal/metabolismo , Levodopa/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Tirosina/metabolismo , Animais , Linhagem Celular , Estudos Transversais , Feminino , Teste de Tolerância a Glucose , Homeostase , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Masculino , Nutrientes , Obesidade/sangue , Obesidade/cirurgia , Período Pós-Prandial , Ratos , Ratos Endogâmicos Lew , Suínos , Tirosina/farmacologia
11.
Sci Rep ; 9(1): 4965, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30899071

RESUMO

Type I diabetes (T1D) is caused by immune-mediated destruction of pancreatic beta cells. This process is triggered, in part, by specific (aa 9-23) epitopes of the insulin Β chain. Previously, fish insulins were used clinically in patients allergic to bovine or porcine insulin. Fish and human insulin differ by two amino acids in the critical immunogenic region (aa 9-23) of the B chain. We hypothesized that ß cells synthesizing fish insulin would be less immunogenic in a mouse model of T1D. Transgenic NOD mice in which Greater Amberjack fish (Seriola dumerili) insulin was substituted for the insulin 2 gene were generated (mouse Ins1-/- mouse Ins2-/- fish Ins2+/+). In these mice, pancreatic islets remained free of autoimmune attack. To determine whether such reduction in immunogenicity is sufficient to protect ß cells from autoimmunity upon transplantation, we transplanted fish Ins2 transgenic (expressing solely Seriola dumerili Ins2), NOD, or B16:A-dKO islets under the kidney capsules of 5 weeks old female NOD wildtype mice. The B:Y16A Β chain substitution has been previously shown to be protective of T1D in NOD mice. NOD mice receiving Seriola dumerili transgenic islet transplants showed a significant (p = 0.004) prolongation of their euglycemic period (by 6 weeks; up to 18 weeks of age) compared to un-manipulated female NOD (diabetes onset at 12 weeks of age) and those receiving B16:A-dKO islet transplants (diabetes onset at 12 weeks of age). These data support the concept that specific amino acid sequence modifications can reduce insulin immunogenicity. Additionally, our study shows that alteration of a single epitope is not sufficient to halt an ongoing autoimmune response. Which, and how many, T cell epitopes are required and suffice to perpetuate autoimmunity is currently unknown. Such studies may be useful to achieve host tolerance to ß cells by inactivating key immunogenic epitopes of stem cell-derived ß cells intended for transplantation.


Assuntos
Células Secretoras de Insulina/imunologia , Insulina/genética , Sequência de Aminoácidos , Animais , Linfócitos T CD4-Positivos/imunologia , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/terapia , Epitopos/imunologia , Humanos , Insulina/química , Células Secretoras de Insulina/ultraestrutura , Transplante das Ilhotas Pancreáticas , Rim/imunologia , Ativação Linfocitária/imunologia , Camundongos Endogâmicos NOD , Camundongos Transgênicos
12.
J Lipid Res ; 59(8): 1446-1460, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29934339

RESUMO

SNPs in the first intron of α-ketoglutarate-dependent dioxygenase (FTO) convey effects on adiposity by mechanisms that remain unclear, but appear to include modulation of expression of FTO itself, as well as other genes in cisFTO expression is lower in fibroblasts and iPSC-derived neurons of individuals segregating for FTO obesity risk alleles. We employed in vitro adipogenesis models to investigate the molecular mechanisms by which Fto affects adipocyte development and function. Fto expression was upregulated during adipogenesis, and was required for the maintenance of CEBPB and Cebpd/CEBPD expression in murine and human adipocytes in vitro. Fto knockdown decreased the number of 3T3-L1 cells that differentiated into adipocytes as well as the amount of lipid per mature adipocyte. This effect on adipocyte programming was conveyed, in part, by modulation of CCAAT enhancer binding protein (C/ebp)ß-regulated transcription. We found that Fto also affected Cebpd transcription by demethylating DNA N6-methyldeoxyadenosine in the Cebpd promoter. Fto is permissive for adipogenesis and promotes maintenance of lipid content in mature adipocytes by enabling C/ebpß-driven transcription and expression of Cebpd These findings are consistent with the loss of fat mass in mice segregating for a dominant-negative Fto allele.


Assuntos
Adenosina/análogos & derivados , Adipócitos/citologia , Adipogenia/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , DNA/metabolismo , Metabolismo dos Lipídeos/genética , Células 3T3-L1 , Adenosina/metabolismo , Adipócitos/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/deficiência , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Animais , DNA/genética , Metilação de DNA , Proteínas da Matriz Extracelular/metabolismo , Técnicas de Silenciamento de Genes , Camundongos , Proteínas de Neoplasias/metabolismo , Fosforilação/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/metabolismo , Transdução de Sinais/genética
13.
PLoS One ; 13(5): e0197548, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29847571

RESUMO

We have previously reported that Ildr2 knockdown via adenovirally-delivered shRNA causes hepatic steatosis in mice. In the present study we investigated hepatic biochemical and anatomic phenotypes of Cre-mediated Ildr2 knock-out mice. Liver-specific Ildr2 knock-out mice were generated in C57BL/6J mice segregating for a floxed (exon 1) allele of Ildr2, using congenital and acute (10-13-week-old male mice) Cre expression. In addition, Ildr2 shRNA was administered to Ildr2 knock-out mice to test the effects of Ildr2 shRNA, per se, in the absence of Ildr2 expression. RNA sequencing was performed on livers of these knockdown and knockout mice. Congenital and acute liver-specific and hepatocyte-specific knockout mice did not develop hepatic steatosis. However, administration of Ildr2 shRNA to Ildr2 knock-out mice did cause hepatic steatosis, indicating that the Ildr2 shRNA had apparent "off-target" effects on gene(s) other than Ildr2. RNA sequencing and BLAST sequence alignment revealed Dgka as a candidate gene mediating these "off-target" effects. Ildr2 shRNA is 63% homologous to the Dgka gene, and Dgka expression decreased only in mice displaying hepatic steatosis. Dgka encodes diacylglycerol kinase (DGK) alpha, one of a family of DGKs which convert diacylglycerides to phosphatidic acid for second messenger signaling. Dgka knockdown mice would be expected to accumulate diacylglyceride, contributing to the observed hepatic steatosis. We conclude that ILDR2 plays a negligible role in hepatic steatosis. Rather, hepatic steatosis observed previously in Ildr2 knockdown mice was likely due to shRNA targeting of Dgka and/or other "off-target" genes. We propose that the gene candidates identified in this follow-up study may lead to identification of novel regulators of hepatic lipid metabolism.


Assuntos
Proteínas de Membrana/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Diacilglicerol Quinase/genética , Diacilglicerol Quinase/metabolismo , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Hepatócitos/metabolismo , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/patologia , RNA Interferente Pequeno/genética , Análise de Sequência de RNA , Triglicerídeos/metabolismo
14.
Diabetes ; 67(1): 26-35, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28931519

RESUMO

ß-Cells derived from stem cells hold great promise for cell replacement therapy for diabetes. Here we examine the ability of nuclear transfer embryonic stem cells (NT-ESs) derived from a patient with type 1 diabetes to differentiate into ß-cells and provide a source of autologous islets for cell replacement. NT-ESs differentiate in vitro with an average efficiency of 55% into C-peptide-positive cells, expressing markers of mature ß-cells, including MAFA and NKX6.1. Upon transplantation in immunodeficient mice, grafted cells form vascularized islet-like structures containing MAFA/C-peptide-positive cells. These ß-cells adapt insulin secretion to ambient metabolite status and show normal insulin processing. Importantly, NT-ES-ß-cells maintain normal blood glucose levels after ablation of the mouse endogenous ß-cells. Cystic structures, but no teratomas, were observed in NT-ES-ß-cell grafts. Isogenic induced pluripotent stem cell lines showed greater variability in ß-cell differentiation. Even though different methods of somatic cell reprogramming result in stem cell lines that are molecularly indistinguishable, full differentiation competence is more common in ES cell lines than in induced pluripotent stem cell lines. These results demonstrate the suitability of NT-ES-ß-cells for cell replacement for type 1 diabetes and provide proof of principle for therapeutic cloning combined with cell therapy.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/terapia , Células-Tronco Embrionárias/citologia , Células Secretoras de Insulina/citologia , Animais , Glicemia/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/imunologia , Células-Tronco Embrionárias/fisiologia , Feminino , Citometria de Fluxo , Glucose/farmacologia , Proteínas de Homeodomínio/metabolismo , Humanos , Hospedeiro Imunocomprometido , Imuno-Histoquímica , Insulina/metabolismo , Células Secretoras de Insulina/fisiologia , Fatores de Transcrição Maf Maior/metabolismo , Masculino , Camundongos
15.
Nature ; 543(7645): 385-390, 2017 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28273060

RESUMO

Bone has recently emerged as a pleiotropic endocrine organ that secretes at least two hormones, FGF23 and osteocalcin, which regulate kidney function and glucose homeostasis, respectively. These findings have raised the question of whether other bone-derived hormones exist and what their potential functions are. Here we identify, through molecular and genetic analyses in mice, lipocalin 2 (LCN2) as an osteoblast-enriched, secreted protein. Loss- and gain-of-function experiments in mice demonstrate that osteoblast-derived LCN2 maintains glucose homeostasis by inducing insulin secretion and improves glucose tolerance and insulin sensitivity. In addition, osteoblast-derived LCN2 inhibits food intake. LCN2 crosses the blood-brain barrier, binds to the melanocortin 4 receptor (MC4R) in the paraventricular and ventromedial neurons of the hypothalamus and activates an MC4R-dependent anorexigenic (appetite-suppressing) pathway. These results identify LCN2 as a bone-derived hormone with metabolic regulatory effects, which suppresses appetite in a MC4R-dependent manner, and show that the control of appetite is an endocrine function of bone.


Assuntos
Regulação do Apetite/fisiologia , Osso e Ossos/metabolismo , Lipocalina-2/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Osso e Ossos/citologia , AMP Cíclico/metabolismo , Ingestão de Alimentos/fisiologia , Feminino , Fator de Crescimento de Fibroblastos 23 , Glucose/metabolismo , Homeostase , Hipotálamo/citologia , Hipotálamo/metabolismo , Insulina/metabolismo , Resistência à Insulina , Secreção de Insulina , Masculino , Camundongos , Neurônios/metabolismo , Obesidade/metabolismo , Osteoblastos/metabolismo , Núcleo Hipotalâmico Paraventricular/citologia , Magreza/metabolismo
16.
J Clin Invest ; 127(1): 293-305, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27941249

RESUMO

Prader-Willi syndrome (PWS) is caused by a loss of paternally expressed genes in an imprinted region of chromosome 15q. Among the canonical PWS phenotypes are hyperphagic obesity, central hypogonadism, and low growth hormone (GH). Rare microdeletions in PWS patients define a 91-kb minimum critical deletion region encompassing 3 genes, including the noncoding RNA gene SNORD116. Here, we found that protein and transcript levels of nescient helix loop helix 2 (NHLH2) and the prohormone convertase PC1 (encoded by PCSK1) were reduced in PWS patient induced pluripotent stem cell-derived (iPSC-derived) neurons. Moreover, Nhlh2 and Pcsk1 expression were reduced in hypothalami of fasted Snord116 paternal knockout (Snord116p-/m+) mice. Hypothalamic Agrp and Npy remained elevated following refeeding in association with relative hyperphagia in Snord116p-/m+ mice. Nhlh2-deficient mice display growth deficiencies as adolescents and hypogonadism, hyperphagia, and obesity as adults. Nhlh2 has also been shown to promote Pcsk1 expression. Humans and mice deficient in PC1 display hyperphagic obesity, hypogonadism, decreased GH, and hypoinsulinemic diabetes due to impaired prohormone processing. Here, we found that Snord116p-/m+ mice displayed in vivo functional defects in prohormone processing of proinsulin, pro-GH-releasing hormone, and proghrelin in association with reductions in islet, hypothalamic, and stomach PC1 content. Our findings suggest that the major neuroendocrine features of PWS are due to PC1 deficiency.


Assuntos
Hormônio Liberador de Hormônio do Crescimento/metabolismo , Neurônios/metabolismo , Síndrome de Prader-Willi/metabolismo , Proinsulina/metabolismo , Pró-Proteína Convertase 1/deficiência , Precursores de Proteínas/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Feminino , Hormônio Liberador de Hormônio do Crescimento/genética , Humanos , Hiperfagia/genética , Hiperfagia/metabolismo , Hiperfagia/patologia , Hipogonadismo/genética , Hipogonadismo/metabolismo , Hipogonadismo/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Camundongos Knockout , Neurônios/patologia , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/patologia , Proinsulina/genética , Precursores de Proteínas/genética , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo
17.
Stem Cell Res ; 17(3): 526-530, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27789403

RESUMO

Prader-Willi syndrome (PWS) is a syndromic obesity caused by loss of paternal gene expression in an imprinted interval on 15q11.2-q13. Induced pluripotent stem cells were generated from skin cells of three large deletion PWS patients and one unique microdeletion PWS patient. We found that genes within the PWS region, including SNRPN and NDN, showed persistence of DNA methylation after iPSC reprogramming and differentiation to neurons. Genes within the PWS minimum critical deletion region remain silenced in both PWS large deletion and microdeletion iPSC following reprogramming. PWS iPSC and their relevant differentiated cell types could provide in vitro models of PWS.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Síndrome de Prader-Willi/patologia , Animais , Diferenciação Celular , Linhagem Celular , Reprogramação Celular , Hibridização Genômica Comparativa , Metilação de DNA , Fibroblastos/citologia , Dosagem de Genes , Genótipo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Camundongos , Camundongos Endogâmicos NOD , Neurônios/citologia , Neurônios/metabolismo , Síndrome de Prader-Willi/genética , Pele/citologia , Teratoma/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Centrais de snRNP/genética
18.
Biochem Biophys Res Commun ; 477(4): 712-716, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27353377

RESUMO

A diabetes susceptibility gene, immunoglobulin-like domain containing receptor 2 (Ildr2), encodes a transmembrane protein localized to the endoplasmic reticulum membrane that is closely related to hepatic lipid metabolism. The livers of ob/ob mice in which Ildr2 is transiently overexpressed are relieved of hepatic steatosis. However, the molecular mechanisms through which ILDR2 affects these changes in hepatic lipid metabolism remain unknown. This study aimed to identify ILDR2-interacting proteins to further elucidate the molecular mechanisms underlying the role of ILDR2 in lipid homeostasis. We purified ILDR2-containing protein complexes using tandem affinity purification tagging and identified ZNF70, a member of the Kruppel C2H2-type zinc finger protein family, as a novel ILDR2-interacting protein. We demonstrated that ZNF70 interacts with ZFP64 and activates HES1 transcription by binding to the HES1 promoter. In addition, HES1 gene expression is increased in ILDR2-knockdown HepG2 cells, in which ZNF70 is translocated from the cytoplasm to the nucleus, suggesting that ZNF70 migration to the nucleus after dissociating from the ILDR2-ZNF70 complex activates HES1 transcription. These results support a novel link between ILDR2 and HES1 gene expression and suggest that ILDR2 is involved in a novel pathway in hepatic steatosis.


Assuntos
Núcleo Celular/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas de Membrana/metabolismo , Transporte Proteico/fisiologia , Fatores de Transcrição HES-1/metabolismo , Dedos de Zinco/fisiologia , Sítios de Ligação , Células HEK293 , Células Hep G2 , Humanos , Ligação Proteica , Transdução de Sinais/fisiologia , Fatores de Transcrição HES-1/química
19.
J Clin Invest ; 126(5): 1897-910, 2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-27064284

RESUMO

Noncoding polymorphisms in the fat mass and obesity-associated (FTO) gene represent common alleles that are strongly associated with effects on food intake and adiposity in humans. Previous studies have suggested that the obesity-risk allele rs8050136 in the first intron of FTO alters a regulatory element recognized by the transcription factor CUX1, thereby leading to decreased expression of FTO and retinitis pigmentosa GTPase regulator-interacting protein-1 like (RPGRIP1L). Here, we evaluated the effects of rs8050136 and another potential CUX1 element in rs1421085 on expression of nearby genes in human induced pluripotent stem cell-derived (iPSC-derived) neurons. There were allele-dosage effects on FTO, RPGRIP1L, and AKT-interacting protein (AKTIP) expression, but expression of other vicinal genes, including IRX3, IRX5, and RBL2, which have been implicated in mediating functional effects, was not altered. In vivo manipulation of CUX1, Fto, and/or Rpgrip1l expression in mice affected adiposity in a manner that was consistent with CUX1 influence on adiposity via remote effects on Fto and Rpgrip1l expression. In support of a mechanism, mice hypomorphic for Rpgrip1l exhibited hyperphagic obesity, as the result of diminished leptin sensitivity in Leprb-expressing neurons. Together, the results of this study indicate that the effects of FTO-associated SNPs on energy homeostasis are due in part to the effects of these genetic variations on hypothalamic FTO, RPGRIP1L, and possibly other genes.


Assuntos
Alelos , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Regulação da Expressão Gênica , Íntrons , Obesidade , Polimorfismo de Nucleotídeo Único , Proteínas , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Animais , Proteínas do Citoesqueleto , Metabolismo Energético/genética , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Humanos , Hipotálamo/metabolismo , Hipotálamo/patologia , Camundongos , Camundongos Transgênicos , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Proteínas/genética , Proteínas/metabolismo , Proteína p130 Retinoblastoma-Like/biossíntese , Proteína p130 Retinoblastoma-Like/genética , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA