Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Soc Nephrol ; 35(3): 281-298, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38200648

RESUMO

SIGNIFICANCE STATEMENT: This study sheds light on the central role of adenine nucleotide translocase 2 (ANT2) in the pathogenesis of obesity-induced CKD. Our data demonstrate that ANT2 depletion in renal proximal tubule cells (RPTCs) leads to a shift in their primary metabolic program from fatty acid oxidation to aerobic glycolysis, resulting in mitochondrial protection, cellular survival, and preservation of renal function. These findings provide new insights into the underlying mechanisms of obesity-induced CKD and have the potential to be translated toward the development of targeted therapeutic strategies for this debilitating condition. BACKGROUND: The impairment in ATP production and transport in RPTCs has been linked to the pathogenesis of obesity-induced CKD. This condition is characterized by kidney dysfunction, inflammation, lipotoxicity, and fibrosis. In this study, we investigated the role of ANT2, which serves as the primary regulator of cellular ATP content in RPTCs, in the development of obesity-induced CKD. METHODS: We generated RPTC-specific ANT2 knockout ( RPTC-ANT2-/- ) mice, which were then subjected to a 24-week high-fat diet-feeding regimen. We conducted comprehensive assessment of renal morphology, function, and metabolic alterations of these mice. In addition, we used large-scale transcriptomics, proteomics, and metabolomics analyses to gain insights into the role of ANT2 in regulating mitochondrial function, RPTC physiology, and overall renal health. RESULTS: Our findings revealed that obese RPTC-ANT2-/- mice displayed preserved renal morphology and function, along with a notable absence of kidney lipotoxicity and fibrosis. The depletion of Ant2 in RPTCs led to a fundamental rewiring of their primary metabolic program. Specifically, these cells shifted from oxidizing fatty acids as their primary energy source to favoring aerobic glycolysis, a phenomenon mediated by the testis-selective Ant4. CONCLUSIONS: We propose a significant role for RPTC-Ant2 in the development of obesity-induced CKD. The nullification of RPTC-Ant2 triggers a cascade of cellular mechanisms, including mitochondrial protection, enhanced RPTC survival, and ultimately the preservation of kidney function. These findings shed new light on the complex metabolic pathways contributing to CKD development and suggest potential therapeutic targets for this condition.


Assuntos
Rim , Insuficiência Renal Crônica , Masculino , Animais , Camundongos , Proteínas de Transporte da Membrana Mitocondrial , Fibrose , Trifosfato de Adenosina , Insuficiência Renal Crônica/etiologia
3.
JCI Insight ; 8(7)2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36809274

RESUMO

Diabetes is associated with increased risk for kidney disease, heart failure, and mortality. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) prevent these adverse outcomes; however, the mechanisms involved are not clear. We generated a roadmap of the metabolic alterations that occur in different organs in diabetes and in response to SGLT2i. In vivo metabolic labeling with 13C-glucose in normoglycemic and diabetic mice treated with or without dapagliflozin, followed by metabolomics and metabolic flux analyses, showed that, in diabetes, glycolysis and glucose oxidation are impaired in the kidney, liver, and heart. Treatment with dapagliflozin failed to rescue glycolysis. SGLT2 inhibition increased glucose oxidation in all organs; in the kidney, this was associated with modulation of the redox state. Diabetes was associated with altered methionine cycle metabolism, evident by decreased betaine and methionine levels, whereas treatment with SGLT2i increased hepatic betaine along with decreased homocysteine levels. mTORC1 activity was inhibited by SGLT2i along with stimulation of AMPK in both normoglycemic and diabetic animals, possibly explaining the protective effects against kidney, liver, and heart diseases. Collectively, our findings suggest that SGLT2i induces metabolic reprogramming orchestrated by AMPK-mTORC1 signaling with common and distinct effects in various tissues, with implications for diabetes and aging.


Assuntos
Diabetes Mellitus Experimental , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Camundongos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Transportador 2 de Glucose-Sódio/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Betaína , Glucose , Sódio/metabolismo , Metionina
4.
Am J Physiol Endocrinol Metab ; 323(2): E133-E144, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35723227

RESUMO

Mammalian target of rapamycin (mTOR) kinase is an essential hub where nutrients and growth factors converge to control cellular metabolism. mTOR interacts with different accessory proteins to form complexes 1 and 2 (mTORC), and each complex has different intracellular targets. Although mTORC1's role in ß-cells has been extensively studied, less is known about mTORC2's function in ß-cells. Here, we show that mice with constitutive and inducible ß-cell-specific deletion of RICTOR (ßRicKO and ißRicKO mice, respectively) are glucose intolerant due to impaired insulin secretion when glucose is injected intraperitoneally. Decreased insulin secretion in ßRicKO islets was caused by abnormal actin polymerization. Interestingly, when glucose was administered orally, no difference in glucose homeostasis and insulin secretion were observed, suggesting that incretins are counteracting the mTORC2 deficiency. Mechanistically, glucagon-like peptide-1 (GLP-1), but not gastric inhibitory polypeptide (GIP), rescued insulin secretion in vivo and in vitro by improving actin polymerization in ßRicKO islets. In conclusion, mTORC2 regulates glucose-stimulated insulin secretion by promoting actin filament remodeling.NEW & NOTEWORTHY The current studies uncover a novel mechanism linking mTORC2 signaling to glucose-stimulated insulin secretion by modulation of the actin filaments. This work also underscores the important role of GLP-1 in rescuing defects in insulin secretion by modulating actin polymerization and suggests that this effect is independent of mTORC2 signaling.


Assuntos
Actinas , Insulina , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glucose/metabolismo , Glucose/farmacologia , Insulina/metabolismo , Secreção de Insulina , Mamíferos/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Serina-Treonina Quinases TOR/metabolismo
5.
Cancers (Basel) ; 13(24)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34944946

RESUMO

(1) Background: Neuroendocrine neoplasms of the lung (LNENs, lung carcinoids) are often diagnosed at an advanced stage when they are not surgically curable, and treatment options are limited. One of the approved options for treating inoperable tumors is everolimus-an mTOR inhibitor (mTORi). Activation of mTOR, among many other effects, inhibits autophagy, which is a cell survival mechanism in general, and in tumor cells in particular. Everolimus may paradoxically encourage cancer cell survival. In practice, the drug inhibits tumor development. Chloroquine (CQ) is a known antimalarial compound that inhibits autophagy. Our research is focused on the hypothesis that autophagy plays a key role in the development of tumor resistance to mTORi, and that the addition of autophagy inhibitors to mTORi exerts a synergistic effect on suppressing tumor cell proliferation. We have recently demonstrated that the combination of CQ with different mTORi increases their potency compared with mTORi alone in both in vitro and in vivo models of pancreatic NENs. In this study, we examined the effects of CQ and mTORi on in vitro and in vivo LNEN models. Aims: Testing the effects of CQ together with mTORi on cell proliferation, apoptosis, and autophagy in in vitro and in vivo LNEN models. (2) Methods: The NCI-H727 LNEN cells were treated with CQ ± mTORi. Cells' viability and proliferation were measured using XTT and Ki-67 FACS staining. The effects of the treatments on the mTOR pathway and autophagy were examined using Western blotting. Cytotoxicity was measured using a cytotoxicity kit; apoptosis was measured by PI FACS staining and Western blotting. We further established an LNEN subcutaneous murine xenograft model and evaluated the effects of the drugs on tumor growth. (3) Results: CQ alone suppressed LNEN cells' viability and proliferation and increased their cytotoxicity and apoptosis; these effects were augmented when CQ was added to an mTORi. We also showed the possible mechanisms for these results: on the one hand we could see a decrease in P62 levels and the absence of LC3-II (both inversely related to autophagy) following treatment with the mTORi, and on the other hand we could demonstrate an increase in their levels when CQ was added. The effect was less apparent in the murine xenograft model. (4) Conclusions: By inhibiting autophagy and inducing apoptosis, CQ suppresses tumor cell growth in LNENs. CQ potentiates mTORi effects, implying that further studies are needed in order to elucidate its possible role in tumor inhibition in patients with LNENs.

6.
Antioxidants (Basel) ; 10(8)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34439408

RESUMO

Decreased insulin secretion, associated with pancreatic ß-cell failure, plays a critical role in many human diseases including diabetes, obesity, and cancer. While numerous studies linked ß-cell failure with enhanced levels of reactive oxygen species (ROS), the development of diabetes associated with hereditary conditions that result in iron overload, e.g., hemochromatosis, Friedreich's ataxia, and Wolfram syndrome type 2 (WFS-T2; a mutation in CISD2, encoding the [2Fe-2S] protein NAF-1), underscores an additional link between iron metabolism and ß-cell failure. Here, using NAF-1-repressed INS-1E pancreatic cells, we observed that NAF-1 repression inhibited insulin secretion, as well as impaired mitochondrial and ER structure and function. Importantly, we found that a combined treatment with the cell permeant iron chelator deferiprone and the glutathione precursor N-acetyl cysteine promoted the structural repair of mitochondria and ER, decreased mitochondrial labile iron and ROS levels, and restored glucose-stimulated insulin secretion. Additionally, treatment with the ferroptosis inhibitor ferrostatin-1 decreased cellular ROS formation and improved cellular growth of NAF-1 repressed pancreatic cells. Our findings reveal that suppressed expression of NAF-1 is associated with the development of ferroptosis-like features in pancreatic cells, and that reducing the levels of mitochondrial iron and ROS levels could be used as a therapeutic avenue for WFS-T2 patients.

8.
J Cell Sci ; 131(15)2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30002135

RESUMO

AMPK-mTORC1 signaling senses nutrient availability, thereby regulating autophagy. Surprisingly, we found that, in ß-cells, the AMPK activator 5-amino-4-imidazolecarboxamide ribofuranoside (AICAR) inhibited, rather than stimulated, autophagy. AICAR is an intermediate in the generation of inosine monophosphate, with subsequent conversion to other purine nucleotides. Adenosine regulated autophagy in a concentration-dependent manner: at high concentrations, it mimicked the AICAR effect on autophagy, whereas at low concentrations it stimulated autophagy through its cognate A1 receptor. Adenosine regulation of autophagy was independent of AMPK or mTORC1 activity. Adenosine kinase (ADK) is the principal enzyme for metabolic adenosine clearance. ADK knockdown and pharmacological inhibition of the enzyme markedly stimulated autophagy in an adenosine A1 receptor-dependent manner. High-concentration adenosine increased insulin secretion in a manner sensitive to treatment with the autophagy inducer Tat-beclin1, and inhibition of autophagy augmented secretion. In conclusion, high concentrations of AICAR or adenosine inhibit autophagy, whereas physiological concentrations of adenosine or inhibition of adenosine clearance by ADK stimulate autophagy via the adenosine receptor. Adenosine might thus be an autocrine regulator of autophagy, independent of AMPK-mTORC1 signaling. Adenosine regulates insulin secretion, in part, through modulation of autophagy.


Assuntos
Nucleotídeos de Adenina/metabolismo , Autofagia/fisiologia , Células Secretoras de Insulina/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Trifosfato de Adenosina , Animais , Western Blotting , Linhagem Celular , Imunofluorescência , Células Hep G2 , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/citologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
9.
Endocr Relat Cancer ; 25(6): 677-686, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29636368

RESUMO

Patients with neuroendocrine neoplasms (NENs) often require systemic treatment, which is frequently limited by the emergence of drug resistance. mTOR inhibitors (mTORi), such as RAD001 (everolimus), have been shown to inhibit neoplasm progression. mTORi stimulates autophagy, a degradation pathway that might promote the survival of neoplasm cells that are exposed to anti-cancer therapy. Chloroquine (CQ), a well-known anti-malarial and anti-rheumatic drug, suppresses autophagy. Based on our previous results, we hypothesized that CQ may enhance the anti-tumorigenic effects of mTORi by inhibiting autophagy and we aimed to examine the anti-tumorigenic effect of CQ, alone or in combination with RAD001. We established a NEN subcutaneous xenograft mouse model and evaluated the effect of the drugs on tumor growth, mTOR pathway, autophagy and apoptosis. CQ alone and in combination with RAD001 significantly decreased neoplasm volume. Histopathological analysis revealed that the combination of CQ and RAD001 markedly inhibited mTOR activity and neoplasm cell growth, along with accumulation of autophagosomes and increased apoptosis. In conclusion, CQ enhances the anti-tumorigenic effect of RAD001 in vivo by inhibiting autophagy. Clinical trials addressing the effects of CQ therapy on neoplasm progression in patients with NENs, mainly in those treated with mTORi, are warranted.


Assuntos
Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Cloroquina/uso terapêutico , Everolimo/uso terapêutico , Imunossupressores/uso terapêutico , Tumores Neuroendócrinos/tratamento farmacológico , Animais , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos Nus , Tumores Neuroendócrinos/metabolismo , Tumores Neuroendócrinos/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
PLoS One ; 11(10): e0165417, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27780242

RESUMO

Cytochrome-c-oxidase (COX) deficiency is a frequent cause of mitochondrial disease and is associated with a wide spectrum of clinical phenotypes. We studied mitochondrial function and biogenesis in fibroblasts derived from the Cohen (CDs) rat, an animal model of COX deficiency. COX activity in CDs-fibroblasts was 50% reduced compared to control rat fibroblasts (P<0.01). ROS-production in CDs fibroblasts increased, along with marked mitochondrial fragmentation and decreased mitochondrial membrane-potential, indicating mitochondrial dysfunction. Surprisingly, cellular ATP content, oxygen consumption rate (OCR) and the extracellular acidification rate (ECAR) were unchanged. To clarify the discrepancy between mitochondrial dysfunction and ATP production, we studied mitochondrial biogenesis and turnover. The content of mitochondria was higher in CDs-fibroblasts. Consistently, AMPK activity and the expression of NRF1-target genes, NRF2 and PGC1-α that mediate mitochondrial biogenesis were increased (P<0.01 vs control fibroblast). In CDs-fibrobalsts, the number of autophagosomes (LC3+ puncta) containing mitochondria in CDs fibroblasts was similar to that in control fibroblasts, suggesting that mitophagy was intact. Altogether, our findings demonstrate that mitochondrial dysfunction and oxidative stress are associated with an increase in mitochondrial biogenesis, resulting in preservation of ATP generation.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/genética , Mitocôndrias/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Acetil-CoA Carboxilase/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Células Cultivadas , Citrato (si)-Sintase/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Potencial da Membrana Mitocondrial , Microscopia de Fluorescência , Mitocôndrias/patologia , Mitofagia , Estresse Oxidativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
11.
Sci Rep ; 6: 31222, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27526875

RESUMO

Type 2 Diabetes (T2DM) affects more than 300 million people worldwide. One of the hallmarks of T2DM is peripheral insulin resistance, in part due to unproductive insulin signaling through the insulin receptor. The insulin receptor (INSR) exists as two isoforms, INSR-A and INSR-B, which results from skipping or inclusion of exon 11 respectively. What determines the relative abundance of the different insulin receptor splice variants is unknown. Moreover, it is not yet clear what the physiological roles of each of the isoforms are in normal and diseased beta cells. In this study, we show that insulin induces INSR exon 11 inclusion in pancreatic beta cells in both human and mouse. This occurs through activation of the Ras-MAPK/ERK signaling pathway and up-regulation of the splicing factor SRSF1. Induction of exon 11 skipping by a splice-site competitive antisense oligonucleotide inhibited the MAPK-ERK signaling pathway downstream of the insulin receptor, sensitizing the pancreatic ß-cell line MIN6 to stress-induced apoptosis and lipotoxicity. These results assign to insulin a regulatory role in INSR alternative splicing through the Ras-MAPK/ERK signaling pathway. We suggest that in beta cells, INSR-B has a protective role, while INSR-A expression sensitizes beta cells to programmed cell death.


Assuntos
Processamento Alternativo , Antígenos CD/biossíntese , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Sistema de Sinalização das MAP Quinases , Receptor de Insulina/biossíntese , Animais , Antígenos CD/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Humanos , Insulina/genética , Células Secretoras de Insulina/patologia , Camundongos , Receptor de Insulina/genética
12.
J Clin Endocrinol Metab ; 101(10): 3592-3599, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27459537

RESUMO

CONTEXT: Type 2 Wolfram syndrome (T2-WFS) is a neuronal and ß-cell degenerative disorder caused by mutations in the CISD2 gene. The mechanisms underlying ß-cell dysfunction in T2-WFS are not known, and treatments that effectively improve diabetes in this context are lacking. OBJECTIVE: Unraveling the mechanisms of ß-cell dysfunction in T2-WFS and the effects of treatment with GLP-1 receptor agonist (GLP-1-RA). DESIGN AND SETTING: A case report and in vitro mechanistic studies. PATIENT AND METHODS: We treated an insulin-dependent T2-WFS patient with the GLP-1-RA exenatide for 9 weeks. An iv glucose/glucagon/arginine stimulation test was performed off-drug before and after intervention. We generated a cellular model of T2-WFS by shRNA knockdown of CISD2 (nutrient-deprivation autophagy factor-1 [NAF-1]) in rat insulinoma cells and studied the mechanisms of ß-cell dysfunction and the effects of GLP-1-RA. RESULTS: Treatment with exenatide resulted in a 70% reduction in daily insulin dose with improved glycemic control, as well as an off-drug 7-fold increase in maximal insulin secretion. NAF-1 repression in INS-1 cells decreased insulin content and glucose-stimulated insulin secretion, while maintaining the response to cAMP, and enhanced the accumulation of labile iron and reactive oxygen species in mitochondria. Remarkably, treatment with GLP-1-RA and/or the iron chelator deferiprone reversed these defects. CONCLUSION: NAF-1 deficiency leads to mitochondrial labile iron accumulation and oxidative stress, which may contribute to ß-cell dysfunction in T2-WFS. Treatment with GLP-1-RA and/or iron chelation improves mitochondrial function and restores ß-cell function. Treatment with GLP-1-RA, probably aided by iron chelation, should be considered in WFS and other forms of diabetes associated with iron dysregulation.


Assuntos
Senilidade Prematura/tratamento farmacológico , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Perda Auditiva Neurossensorial/tratamento farmacológico , Hipoglicemiantes/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Doenças Mitocondriais/tratamento farmacológico , Atrofia Óptica/tratamento farmacológico , Peptídeos/farmacologia , Peçonhas/farmacologia , Animais , Exenatida , Feminino , Humanos , Hipoglicemiantes/administração & dosagem , Peptídeos/administração & dosagem , Ratos , Peçonhas/administração & dosagem
13.
Neuroendocrinology ; 103(6): 724-37, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26619207

RESUMO

BACKGROUND: Everolimus (RAD001), an mTORC1 inhibitor, demonstrated promising, but limited, anticancer effects in neuroendocrine tumors (NETs). Torin1 (a global mTOR inhibitor) and NVP-BEZ235 (a PI3K/mTOR inhibitor) seem to be more effective than RAD001. Autophagy, a degradation pathway that may promote tumor growth, is regulated by mTOR; mTOR inhibition results in stimulation of autophagy. Chloroquine (CQ) inhibits autophagy. AIM: To explore the effect of CQ alone or in combination with RAD001, Torin1 or NVP-BEZ235 on autophagy and on NET cell viability, proliferation and apoptosis. METHODS: The NET cell line BON1 was treated with CQ with or without different mTOR inhibitors. siRNA against ATG5/7 was used to genetically inhibit autophagy. Cellular viability was examined by XTT, proliferation by Ki-67 staining and cell cycles by flow cytometry. Apoptosis was analyzed by Western blotting for cleaved caspase 3 and staining for annexin V; autophagy was evaluated by Western blotting and immunostaining for LC3. RESULTS: RAD001, Torin1, NVP-BEZ235 and CQ all decreased BON1 cell viability. The effect of RAD001 was smaller than that of the other mTOR inhibitors or CQ. Torin1 and NVP-BEZ235 markedly inhibited cell proliferation, without inducing apoptosis. CQ similarly decreased cell proliferation, while robustly increasing apoptosis. Treatment with Torin1 or NVP-BEZ235 together with CQ was additive on viability, without increasing CQ-induced apoptosis. Inhibition of autophagy by ATG5/7 knockdown increased apoptosis in the presence or absence of mTOR inhibitors, mimicking the CQ effects. CONCLUSION: CQ inhibits NET growth by inducing apoptosis and by inhibiting cell proliferation, probably via inhibition of autophagy. CQ may potentiate the antitumor effect of mTOR inhibitors.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Cloroquina/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Everolimo/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imidazóis/farmacologia , Antígeno Ki-67/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Tumores Neuroendócrinos/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinolinas/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Fatores de Tempo
14.
J Biol Chem ; 290(34): 20934-20946, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26139601

RESUMO

The tumor suppressor liver kinase B1 (LKB1) is an important regulator of pancreatic ß cell biology. LKB1-dependent phosphorylation of distinct AMPK (adenosine monophosphate-activated protein kinase) family members determines proper ß cell polarity and restricts ß cell size, total ß cell mass, and glucose-stimulated insulin secretion (GSIS). However, the full spectrum of LKB1 effects and the mechanisms involved in the secretory phenotype remain incompletely understood. We report here that in the absence of LKB1 in ß cells, GSIS is dramatically and persistently improved. The enhancement is seen both in vivo and in vitro and cannot be explained by altered cell polarity, increased ß cell number, or increased insulin content. Increased secretion does require membrane depolarization and calcium influx but appears to rely mostly on a distal step in the secretion pathway. Surprisingly, enhanced GSIS is seen despite profound defects in mitochondrial structure and function in LKB1-deficient ß cells, expected to greatly diminish insulin secretion via the classic triggering pathway. Thus LKB1 is essential for mitochondrial homeostasis in ß cells and in parallel is a powerful negative regulator of insulin secretion. This study shows that ß cells can be manipulated to enhance GSIS to supra-normal levels even in the face of defective mitochondria and without deterioration over months.


Assuntos
Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Mitocôndrias/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Regulação da Expressão Gênica , Glucose/farmacologia , Ácido Glutâmico/metabolismo , Humanos , Insulina/agonistas , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/patologia , Camundongos , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Fosforilação , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Tamoxifeno/toxicidade , Técnicas de Cultura de Tecidos
15.
J Cell Mol Med ; 19(8): 1887-99, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25754218

RESUMO

Vascular endothelial cell (VEC) senescence is considered an early event in the development of atherosclerotic lesions. Stressful stimuli, in particular oxidative stress, have been linked to premature senescence in the vasculature. Foam cells are a major source of reactive oxygen species and may play a role in the induction of VEC senescence; hence, we investigated their involvement in the induction of VEC senescence in a co-culture transwell system. Primary bovine aortic endothelial cells, exposed to the secretome of THP-1 monocyte-derived foam cells, were analysed for the induction of senescence. Senescence associated ß-galactosidase activity and the expression of p16 and p21 were increased, whereas phosphorylated retinoblastoma protein was reduced. This senescent phenotype was mediated by 4-hydroxnonenal (4-HNE), a lipid peroxidation product secreted from foam cells; scavenging of 4-HNE in the co-culture medium blunted this effect. Furthermore, both foam cells and 4-HNE increased the expression of the pro-oxidant thioredoxin-interacting protein (TXNIP). Molecular manipulation of TXNIP expression confirmed its involvement in foam cell-induced senescence. Previous studies showed that peroxisome proliferator-activated receptor (PPAR)δ was activated by 4-hydroalkenals, such as 4-HNE. Pharmacological interventions supported the involvement of the 4-HNE-PPARδ axis in the induction of TXNIP and VEC senescence. The association of TXNIP with VEC senescence was further supported by immunofluorescent staining of human carotid plaques in which the expression of both TXNIP and p21 was augmented in endothelial cells. Collectively, these findings suggest that foam cell-released 4-HNE activates PPARδ in VEC, leading to increased TXNIP expression and consequently to senescence.


Assuntos
Aldeídos/farmacologia , Proteínas de Transporte/metabolismo , Senescência Celular/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Espumosas/metabolismo , Animais , Biomarcadores/metabolismo , Bovinos , Linhagem Celular , Técnicas de Cocultura , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Imunofluorescência , Células Espumosas/citologia , Células Espumosas/efeitos dos fármacos , Sequestradores de Radicais Livres/farmacologia , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Modelos Biológicos , PPAR delta/metabolismo , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia
16.
Diabetes Care ; 36(5): 1361-7, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23393216

RESUMO

OBJECTIVE: To study the association between vitamin D status and the risk of incident impaired fasting glucose (IFG) and diabetes in a population-based cohort of diabetes-free subjects. RESEARCH DESIGN AND METHODS: In a historical prospective cohort study of subjects from the Clalit Health Services database, which includes information on nearly 4 million people, diabetes-free subjects aged 40-70 years with serum 25-hydroxycholecalciferol (25-OHD) measurements available were followed for 2 years to assess the development of IFG and diabetes in five 25-OHD subgroups: ≥25, 25.1-37.5, 37.6-50, 50.1-75, and >75 nmol/L. RESULTS: The baseline cohort included 117,960 adults: 83,526 normoglycemic subjects and 34,434 subjects with IFG. During follow-up, 8,629 subjects (10.3% of the normoglycemic group) developed IFG, and 2,162 subjects (1.8% of the total cohort) progressed to diabetes. A multivariable model adjusted for age, sex, population group, immigrant status, BMI, season of vitamin D measurement, LDL and HDL cholesterol, triglycerides, estimated glomerular filtration rate, history of hypertension or cardiovascular disease, Charlson comorbidity index, smoking, and socioeconomic status revealed an inverse association between 25-OHD and the risk of progression to IFG and diabetes. The odds of transitioning from normoglycemia to IFG, from normoglycemia to diabetes, and from IFG to diabetes in subjects with a 25-OHD level ≤25 nmol/L were greater than those of subjects with a 25-OHD level >75 nmol/L [odds ratio 1.13 (95% CI 1.03-1.24), 1.77 (1.11-2.83), and 1.43 (1.16-1.76), respectively]. CONCLUSIONS: Vitamin D deficiency appears to be an independent risk factor for the development of IFG and diabetes.


Assuntos
Calcifediol/sangue , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Jejum/sangue , Intolerância à Glucose/sangue , Intolerância à Glucose/epidemiologia , Adulto , Idoso , Glicemia/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores de Risco
17.
Ann Thorac Surg ; 90(6): 1825-32, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21095319

RESUMO

BACKGROUND: The impact of intensive insulin therapy on the clinical outcomes of hospitalized patients is highly controversial. We used a protocol based on dynamic insulin administration targeted to achieve moderately tight glycemic control and tested its impact on clinical outcomes after cardiac surgery. METHODS: Patients with diabetes mellitus or random blood glucose greater than 150 mg/dL were treated in the intensive care unit with intravenous insulin, followed by a multi-injection protocol consisting of 4 glargine/aspart insulin injections in the ward, with a glycemic target of 110 to 150 mg/dL. The study cohort (n = 410) consisted of consecutive patients undergoing cardiothoracic surgery. Control patients (n = 207) were admitted during the first 8 months and treated according to standard of care. The intervention group of patients (n = 203) were operated on during the following 8 months. The main outcome measures were glycemic control and the rate of postsurgery infections. RESULTS: During the intervention, mean blood glucose ± SD was 151 ± 19 mg/dL and 157 ± 32 mg/dL in the intensive care unit and ward, respectively, versus 166 ± 27 mg/dL and 184 ± 46 mg/dL during the control period (p < 0.0001). The incidence of hypoglycemia (blood glucose less than 60 mg/dL) was low and similar in the two groups (2.5% control versus 3% intervention). Intensive insulin treatment decreased the risk for infection from 11% to 5% (56% risk reduction, p = 0.018), mainly by reducing the incidence of graft harvest site infection (6.9% versus 2.5%, p = 0.034). The incidence of atrial fibrillation after coronary artery bypass graft surgery decreased from 30% to 18% (39% risk reduction; p = 0.042). CONCLUSIONS: Moderate-intensity dynamic blood glucose control after cardiac surgery is effective and safe, and is associated with improved clinical outcomes.


Assuntos
Glicemia/metabolismo , Procedimentos Cirúrgicos Cardíacos , Diabetes Mellitus/tratamento farmacológico , Hipoglicemia/prevenção & controle , Insulina/administração & dosagem , Monitorização Fisiológica/métodos , Cuidados Pós-Operatórios/métodos , Diabetes Mellitus/sangue , Relação Dose-Resposta a Droga , Feminino , Seguimentos , Cardiopatias/complicações , Cardiopatias/cirurgia , Humanos , Hipoglicemia/sangue , Hipoglicemiantes/administração & dosagem , Infusões Intravenosas , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Resultado do Tratamento
18.
PLoS One ; 4(3): e4954, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19305497

RESUMO

BACKGROUND: Palmitate is a potent inducer of endoplasmic reticulum (ER) stress in beta-cells. In type 2 diabetes, glucose amplifies fatty-acid toxicity for pancreatic beta-cells, leading to beta-cell dysfunction and death. Why glucose exacerbates beta-cell lipotoxicity is largely unknown. Glucose stimulates mTORC1, an important nutrient sensor involved in the regulation of cellular stress. Our study tested the hypothesis that glucose augments lipotoxicity by stimulating mTORC1 leading to increased beta-cell ER stress. PRINCIPAL FINDINGS: We found that glucose amplifies palmitate-induced ER stress by increasing IRE1alpha protein levels and activating the JNK pathway, leading to increased beta-cell apoptosis. Moreover, glucose increased mTORC1 activity and its inhibition by rapamycin decreased beta-cell apoptosis under conditions of glucolipotoxicity. Inhibition of mTORC1 by rapamycin did not affect proinsulin and total protein synthesis in beta-cells incubated at high glucose with palmitate. However, it decreased IRE1alpha expression and signaling and inhibited JNK pathway activation. In TSC2-deficient mouse embryonic fibroblasts, in which mTORC1 is constitutively active, mTORC1 regulated the stimulation of JNK by ER stressors, but not in response to anisomycin, which activates JNK independent of ER stress. Finally, we found that JNK inhibition decreased beta-cell apoptosis under conditions of glucolipotoxicity. CONCLUSIONS/SIGNIFICANCE: Collectively, our findings suggest that mTORC1 mediates glucose amplification of lipotoxicity, acting through activation of ER stress and JNK. Thus, mTORC1 is an important transducer of ER stress in beta-cell glucolipotoxicity. Moreover, in stressed beta-cells mTORC1 inhibition decreases IRE1alpha protein expression and JNK activity without affecting ER protein load, suggesting that mTORC1 regulates the beta-cell stress response to glucose and fatty acids by modulating the synthesis and activity of specific proteins involved in the execution of the ER stress response. This novel paradigm may have important implications for understanding beta-cell failure in type 2 diabetes.


Assuntos
Retículo Endoplasmático/efeitos dos fármacos , Glucose/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Palmitatos/farmacologia , Fatores de Transcrição/metabolismo , Animais , Antibióticos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Cicloeximida/farmacologia , Diabetes Mellitus Tipo 2/metabolismo , Retículo Endoplasmático/metabolismo , Ativação Enzimática , Gerbillinae , Células Secretoras de Insulina/citologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas de Membrana/metabolismo , Camundongos , Complexos Multiproteicos , Estresse Oxidativo/fisiologia , Palmitatos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Inibidores da Síntese de Proteínas/farmacologia , Proteínas , Transdução de Sinais/fisiologia , Sirolimo/farmacologia , Serina-Treonina Quinases TOR , Fatores de Transcrição/genética
19.
Redox Rep ; 12(6): 246-56, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17961296

RESUMO

Both type 1 and type 2 diabetes (insulin-dependent and non-insulin dependent diabetes, respectively) are associated with increased risk for microvascular and macrovascular complications including retinopathy, neuropathy, nephropathy and atherosclerosis. Type 2 diabetes markedly increases the risk for cardiovascular morbidity and mortality, which has major public health implications. In this review, molecular mechanisms pertaining to diabetes-induced heart pathology are addressed.


Assuntos
Complicações do Diabetes/patologia , Cardiopatias/etiologia , Cardiopatias/prevenção & controle , Precondicionamento Isquêmico Miocárdico , Miocárdio/patologia , Trifosfato de Adenosina/química , Animais , Humanos , Modelos Biológicos , Modelos Químicos , Estresse Oxidativo , Canais de Potássio/química , Ratos , Espécies Reativas de Oxigênio , Transdução de Sinais
20.
Endocrinology ; 147(11): 5110-8, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16916949

RESUMO

Succinate stimulates insulin secretion and proinsulin biosynthesis. We studied the effects of reduced nicotinamide adenine dinucleotide phosphate (NADPH)-modulating pathways on glucose- and succinate-stimulated insulin secretion and proinsulin biosynthesis in the rat and the insulin-resistant Psammomys obesus. Disruption of the anaplerotic pyruvate/malate shuttle by phenylacetic acid inhibited glucose- and succinate-stimulated insulin secretion and succinate-stimulated proinsulin biosynthesis in both species. In contrast, phenylacetic acid failed to inhibit glucose-stimulated proinsulin biosynthesis in P. obesus islets. Inhibition of the NADPH-consuming enzyme neuronal nitric oxide synthase (nNOS) with l-N(G)-nitro-l-arginine methyl ester or with N(G)-monomethyl-l-arginine(G) doubled succinate-stimulated insulin secretion in rat islets, suggesting that succinate- and nNOS-derived signals interact to regulate insulin secretion. In contrast, nNOS inhibition had no effect on succinate-stimulated proinsulin biosynthesis in both species. In P. obesus islets, insulin secretion was not stimulated by succinate in the absence of glucose, whereas proinsulin biosynthesis was increased 5-fold. Conversely, under stimulating glucose levels, succinate doubled insulin secretion, indicating glucose-dependence. Pyruvate ester and inhibition of nNOS partially mimicked the permissive effect of glucose on succinate-stimulated insulin secretion, suggesting that anaplerosis-derived signals render the beta-cells responsive to succinate. We conclude that beta-cell anaplerosis via pyruvate carboxylase is important for glucose- and succinate-stimulated insulin secretion and for succinate-stimulated proinsulin biosynthesis. In P. obesus, pyruvate/malate shuttle dependent and independent pathways that regulate proinsulin biosynthesis coexist; the latter can maintain fuel stimulated biosynthetic activity when the succinate-dependent pathway is inhibited. nNOS signaling is a negative regulator of insulin secretion, but not of proinsulin biosynthesis.


Assuntos
Insulina/metabolismo , Proinsulina/biossíntese , Ácido Succínico/farmacologia , 1-Metil-3-Isobutilxantina/farmacologia , Animais , Ciclo do Ácido Cítrico , AMP Cíclico/fisiologia , Gerbillinae , Glucose/farmacologia , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Malatos/metabolismo , NADP/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Ácido Pirúvico/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA