Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(3): e1012100, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38527094

RESUMO

The coronavirus papain-like protease (PLpro) is crucial for viral replicase polyprotein processing. Additionally, PLpro can subvert host defense mechanisms by its deubiquitinating (DUB) and deISGylating activities. To elucidate the role of these activities during SARS-CoV-2 infection, we introduced mutations that disrupt binding of PLpro to ubiquitin or ISG15. We identified several mutations that strongly reduced DUB activity of PLpro, without affecting viral polyprotein processing. In contrast, mutations that abrogated deISGylating activity also hampered viral polyprotein processing and when introduced into the virus these mutants were not viable. SARS-CoV-2 mutants exhibiting reduced DUB activity elicited a stronger interferon response in human lung cells. In a mouse model of severe disease, disruption of PLpro DUB activity did not affect lethality, virus replication, or innate immune responses in the lungs. This suggests that the DUB activity of SARS-CoV-2 PLpro is dispensable for virus replication and does not affect innate immune responses in vivo. Interestingly, the DUB mutant of SARS-CoV replicated to slightly lower titers in mice and elicited a diminished immune response early in infection, although lethality was unaffected. We previously showed that a MERS-CoV mutant deficient in DUB and deISGylating activity was strongly attenuated in mice. Here, we demonstrate that the role of PLpro DUB activity during infection can vary considerably between highly pathogenic coronaviruses. Therefore, careful considerations should be taken when developing pan-coronavirus antiviral strategies targeting PLpro.


Assuntos
COVID-19 , Proteases Semelhantes à Papaína de Coronavírus , Humanos , Animais , Camundongos , Proteases Semelhantes à Papaína de Coronavírus/genética , SARS-CoV-2/metabolismo , Imunidade Inata , Papaína/genética , Papaína/metabolismo , Peptídeo Hidrolases/metabolismo , Replicação Viral , Poliproteínas
2.
Microbiol Spectr ; 11(3): e0327322, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37212560

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in 2019, and the resulting pandemic has already caused the death of over 6 million people. There are currently few antivirals approved for treatment of the 2019 coronavirus disease (COVID-19), and more options would be beneficial, not only now but also to increase our preparedness for future coronavirus outbreaks. Honokiol is a small molecule from magnolia trees for which several biological effects have been reported, including anticancer and anti-inflammatory activities. Honokiol has also been shown to inhibit several viruses in cell culture. In this study, we determined that honokiol protected Vero E6 cells from SARS-CoV-2-mediated cytopathic effect, with a 50% effective concentration of 7.8 µM. In viral load reduction assays, honokiol decreased viral RNA copies as well as viral infectious progeny titers. The compound also inhibited SARS-CoV-2 replication in the more relevant human A549 cells expressing angiotensin converting enzyme 2 and transmembrane protease serine 2. Time-of-addition and other assays showed that honokiol inhibited virus replication at a post-entry step of the replication cycle. Honokiol was also effective against more recent variants of SARS-CoV-2, including Omicron, and it inhibited other human coronaviruses as well. Our study suggests that honokiol is an interesting molecule to be evaluated further in animal studies and, when successful, maybe even in clinical trials to investigate its effect on virus replication and pathogenic (inflammatory) host responses. IMPORTANCE Honokiol is a compound that shows both anti-inflammatory and antiviral effects, and therefore its effect on SARS-CoV-2 infection was assessed. This small molecule inhibited SARS-CoV-2 replication in various cell-based infection systems, with up to an ~1,000-fold reduction in virus titer. In contrast to earlier reports, our study clearly showed that honokiol acts on a postentry step of the replication cycle. Honokiol also inhibited different recent SARS-CoV-2 variants and other human coronaviruses (Middle East respiratory syndrome CoV and SARS-CoV), demonstrating its broad spectrum of antiviral activity. The anticoronavirus effect, combined with its anti-inflammatory properties, make honokiol an interesting compound to be further explored in animal coronavirus infection models.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Antivirais/farmacologia , Técnicas de Cultura de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA