Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1161: 193-217, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31562631

RESUMO

Headache is a common complaint after mild traumatic brain injury (mTBI). Changes in the CNS lipidome were previously associated with acrolein-induced headache in rodents. mTBI caused similar headache-like symptoms in rats; therefore, we tested the hypothesis that mTBI might likewise alter the lipidome. Using a stereotaxic impactor, rats were given either a single mTBI or a series of 4 mTBIs 48 h apart. 72 h later for single mTBI and 7 days later for repeated mTBI, the trigeminal ganglia (TG), trigeminal nucleus (TNC), and cerebellum (CER) were isolated. Using HPLC/MS/MS, ~80 lipids were measured in each tissue and compared to sham controls. mTBI drove widespread alterations in lipid levels. Single mTBI increased arachidonic acid and repeated mTBI increased prostaglandins in all 3 tissue types. mTBI affected multiple TRPV agonists, including N-arachidonoyl ethanolamine (AEA), which increased in the TNC and CER after single mTBI. After repeated mTBI, AEA increased in the TG, but decreased in the TNC. Common to all tissue types in single and repeated mTBI was an increase the AEA metabolite, N-arachidonoyl glycine, a potent activator of microglial migration. Changes in the CNS lipidome associated with mTBI likely play a role in headache and in long-term neurodegenerative effects of repeated mTBI.


Assuntos
Lesões Encefálicas Traumáticas , Sistema Nervoso Central , Cefaleia , Inflamação , Lipídeos , Neoplasias , Animais , Lesões Encefálicas Traumáticas/fisiopatologia , Sistema Nervoso Central/fisiopatologia , Cefaleia/fisiopatologia , Inflamação/fisiopatologia , Lipídeos/química , Lipídeos/genética , Lipídeos/fisiologia , Neoplasias/fisiopatologia , Ratos
2.
J Cachexia Sarcopenia Muscle ; 10(4): 844-859, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31035309

RESUMO

BACKGROUND: Muscle wasting, anorexia, and metabolic dysregulation are common side-effects of cytotoxic chemotherapy, having a dose-limiting effect on treatment efficacy, and compromising quality of life and mortality. Extracts of Cannabis sativa, and analogues of the major phytocannabinoid Δ9-tetrahydrocannabinol, have been used to ameliorate chemotherapy-induced appetite loss and nausea for decades. However, psychoactive side-effects limit their clinical utility, and they have little efficacy against weight loss. We recently established that the non-psychoactive phytocannabinoid cannabigerol (CBG) stimulates appetite in healthy rats, without neuromotor side-effects. The present study assessed whether CBG attenuates anorexia and/or other cachectic effects induced by the broad-spectrum chemotherapy agent cisplatin. METHODS: An acute cachectic phenotype was induced in adult male Lister-hooded rats by 6 mg/kg (i.p.) cisplatin. In total 66 rats were randomly allocated to groups receiving vehicle only, cisplatin only, or cisplatin and 60 or 120 mg/kg CBG (po, b.i.d.). Feeding behavior, bodyweight and locomotor activity were recorded for 72 hours, at which point rats were sacrificed for post-mortem analyses. Myofibre atrophy, protein synthesis and autophagy dysregulation were assessed in skeletal muscle, plasma metabolic profiles were obtained by untargeted 1H-NMR metabonomics, and levels of endocannabinoid-like lipoamines quantified in plasma and hypothalami by targeted HPLC-MS/MS lipidomics. RESULTS: CBG (120 mg/kg) modestly increased food intake, predominantly at 36-60hrs (p<0.05), and robustly attenuated cisplatin-induced weight loss from 6.3% to 2.6% at 72hrs (p<0.01). Cisplatin-induced skeletal muscle atrophy was associated with elevated plasma corticosterone (3.7 vs 13.1ng/ml, p<0.01), observed selectively in MHC type IIx (p<0.05) and IIb (p<0.0005) fibres, and was reversed by pharmacological rescue of dysregulated Akt/S6-mediated protein synthesis and autophagy processes. Plasma metabonomic analysis revealed cisplatin administration produced a wide-ranging aberrant metabolic phenotype (Q2Y=0.5380, p=0.001), involving alterations to glucose, amino acid, choline and lipid metabolism, citrate cycle, gut microbiome function, and nephrotoxicity, which were partially normalized by CBG treatment (Q2Y=0.2345, p=0.01). Lipidomic analysis of hypothalami and plasma revealed extensive cisplatin-induced dysregulation of central and peripheral lipoamines (29/79 and 11/26 screened, respectively), including reversible elevations in systemic N-acyl glycine concentrations which were negatively associated with the anti-cachectic effects of CBG treatment. CONCLUSIONS: Endocannabinoid-like lipoamines may have hitherto unrecognized roles in the metabolic side-effects associated with chemotherapy, with the N-acyl glycine subfamily in particular identified as a potential therapeutic target and/or biomarker of anabolic interventions. CBG-based treatments may represent a novel therapeutic option for chemotherapy-induced cachexia, warranting investigation in tumour-bearing cachexia models.


Assuntos
Caquexia/induzido quimicamente , Canabinoides/uso terapêutico , Hipotálamo/efeitos dos fármacos , Espectroscopia de Ressonância Magnética/métodos , Animais , Canabinoides/farmacologia , Modelos Animais de Doenças , Humanos , Masculino , Projetos Piloto , Ratos
3.
Exp Eye Res ; 182: 74-84, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30905716

RESUMO

CB2R receptors have demonstrated beneficial effects in wound healing in several models. We therefore investigated a potential role of CB2R receptors in corneal wound healing. We examined the functional contribution of CB2R receptors to the course of wound closure in an in vivo murine model. We additionally examined corneal expression of CB2R receptors in mouse and the consequences of their activation on cellular signaling, migration and proliferation in cultured bovine corneal epithelial cells (CECs). Using a novel mouse model, we provide evidence that corneal injury increases CB2R receptor expression in cornea. The CB2R agonist JWH133 induces chemorepulsion in cultured bovine CECs but does not alter CEC proliferation. The signaling profile of CB2R activation is activating MAPK and increasing cAMP accumulation, the latter perhaps due to Gs-coupling. Lipidomic analysis in bovine cornea shows a rise in acylethanolamines including the endocannabinoid anandamide 1 h after injury. In vivo, CB2R deletion and pharmacological block result in a delayed course of wound closure. In summary, we find evidence that CB2R receptor promoter activity is increased by corneal injury and that these receptors are required for the normal course of wound closure, possibly via chemorepulsion.


Assuntos
Lesões da Córnea/metabolismo , Receptores de Canabinoides/fisiologia , Cicatrização/fisiologia , Animais , Canabinoides/farmacologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Quimiotaxia/fisiologia , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/fisiologia , Epitélio Corneano/metabolismo , Camundongos , Receptores de Canabinoides/metabolismo , Transdução de Sinais/fisiologia
4.
Cannabis Cannabinoid Res ; 3(1): 228-241, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30515459

RESUMO

Introduction: Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are bioactive cannabinoids. We recently showed that acute THC administration drives region-dependent changes in the mouse brain lipidome. This study tested the hypothesis that cell lines representing cell types present in the central nervous system (CNS), neurons (N18 cells), astrocytes (C6 glioma cells), and microglia (BV2 cells) would respond differently to THC, CBD, or their combination. This experimental strategy also allowed us to test the hypothesis that THC and CBD are metabolized differently if presented in combination and to test the hypothesis that responses to CBD are not like the fatty acid amide hydrolase (FAAH) inhibitor URB597. Finally, we tested the hypothesis that CBD's CNS effects would differ in the N-acyl phosphatidyl ethanolamine-specific phospholipase D (NAPE-PLD) knockout (KO) compared to wild-type (WT) mice. Methods: N18, C6, and BV2 cells were stimulated with 1 µM THC, 1 µM CBD, 1 µM THC:CBD, 1 µM URB597, or vehicle for 2 h and lipids extracted. Adult female WT and NAPE-PLD KO mice were injected with 3 mg/kg CBD or vehicle i.p., brains collected 2 h later, eight brain regions dissected, and lipids extracted. Extracted lipids were characterized and quantified using high-pressure liquid chromatography coupled with tandem mass spectrometry (HPLC/MS/MS). Results: Lipid levels in each cell type were differentially affected by THC, CBD, or THC:CBD with a few exceptions. In all cell lines, THC increased levels of arachidonic acid and CBD increased levels of N-acyl ethanolamines (NAEs), including N-arachidonoyl ethanolamine. More THC remained when cells were coincubated with CBD; however, levels of THC metabolites were cell-type dependent. CBD and URB597 caused very different lipid profiles in the cell-based assays with the primary similarity being increases in NAEs. CBD increased levels of NAEs in the WT hippocampus, cerebellum, thalamus, cortex, midbrain, and brainstem; however, NAEs did not increase in any brain region after CBD in NAPE-PLD KO mice. Conclusions: CBD and THC differentially modify the lipidome of the brain and CNS-type cell lines. Increases in NAEs observed after CBD treatment had previously been attributed to FAAH inhibition; however, data here suggest the alternative hypothesis that CBD is activating NAPE-PLD to increase NAE levels.

5.
Mol Cell Endocrinol ; 437: 120-129, 2016 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-27524411

RESUMO

Endometriosis is a painful condition characterized by growth of endometrial cysts outside the uterus. Here, we tested the hypothesis that peripheral innervation and prostaglandin levels contribute to endometriosis-associated pain. Female Sprague-Dawley rats (n = 16) were surgically instrumented by transplanting uterine tissue onto mesenteric arteries within the peritoneal cavity to create a model of endometriosis which forms extra-uterine endometrial cysts and vaginal hyperalgesia. Our results describe a significant positive correlation between endometriosis-induced vaginal hyperalgesia and cyst innervation density (sensory, r = 0.70, p = 0.003; sympathetic, r = 0.55, p = 0.03), vaginal canal sympathetic innervation density (r = 0.80, p = 0.003), and peritoneal fluid levels of the prostaglandins PGE2 (r = 0.65, p = 0.01) and PGF2α (r = 0.63, p = 0.02). These results support the involvement of cyst innervation and prostaglandins in endometriosis-associated pain. We also describe how sympathetic innervation density of the vaginal canal is an important predictor of vaginal hyperalgesia.


Assuntos
Cistos/patologia , Endometriose/complicações , Endometriose/patologia , Hiperalgesia/complicações , Hiperalgesia/patologia , Prostaglandinas/metabolismo , Vagina/inervação , Vagina/patologia , Animais , Líquido Ascítico/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Cistos/complicações , Feminino , Ratos Sprague-Dawley , Útero/inervação , Útero/patologia
6.
J Clin Invest ; 126(8): 2941-54, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27454290

RESUMO

Inflammation and oxidative stress are known risk factors for preterm birth (PTB); however, the mechanisms and pathways that influence this condition are not fully described. Previously, we showed that mTORC1 signaling is increased in mice harboring a uterine-specific deletion of transformation-related protein 53 (p53d/d mice), which exhibit premature decidual senescence that triggers spontaneous and inflammation-induced PTB. Treatment with the mTORC1 inhibitor rapamycin reduced the incidence of PTB in the p53d/d mice. Decidual senescence with heightened mTORC1 signaling is also a signature of human PTB. Here, we have identified an underlying mechanism for PTB and a potential therapeutic strategy for treating the condition. Treatment of pregnant p53d/d mice with either the antidiabetic drug metformin or the antioxidant resveratrol activated AMPK signaling and inhibited mTORC1 signaling in decidual cells. Both metformin and resveratrol protected against spontaneous and inflammation-induced PTB in p53d/d females. Using multiple approaches, we determined that p53 interacts with sestrins to coordinate an inverse relationship between AMPK and mTORC1 signaling that determines parturition timing. This signature was also observed in human decidual cells. Together, these results reveal that p53-dependent coordination of AMPK and mTORC1 signaling controls parturition timing and suggest that metformin and resveratrol have therapeutic potential to prevent PTB.


Assuntos
Proteínas Quinases Ativadas por AMP/fisiologia , Decídua/fisiologia , Complexos Multiproteicos/fisiologia , Proteínas Nucleares/fisiologia , Parto/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Animais , Antioxidantes/metabolismo , Sítios de Ligação , Senescência Celular , Feminino , Humanos , Inflamação , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Transgênicos , Estresse Oxidativo , Peroxidases , Gravidez , Nascimento Prematuro , Transdução de Sinais , Regulação para Cima , Útero/fisiologia
7.
Mol Pain ; 122016.
Artigo em Inglês | MEDLINE | ID: mdl-27178246

RESUMO

Fatty-acid amide hydrolase (FAAH) is the major enzyme responsible for degradation of anandamide, an endocannabinoid. Pharmacological inhibition or genetic deletion of FAAH (FAAH KO) produces antinociception in preclinical pain models that is largely attributed to anandamide-induced activation of cannabinoid receptors. However, FAAH metabolizes a wide range of structurally related, biologically active lipid signaling molecules whose functions remain largely unknown. Some of these endogenous lipids, including anandamide itself, may exert pro-nociceptive effects under certain conditions. In our study, FAAH KO mice exhibited a characteristic analgesic phenotype in the tail flick test and in both formalin and carrageenan models of inflammatory nociception. Nonetheless, intradermal injection of the transient receptor potential channel V1 (TRPV1) agonist capsaicin increased nocifensive behavior as well as mechanical and heat hypersensitivity in FAAH KO relative to wild-type mice. This pro-nociceptive phenotype was accompanied by increases in capsaicin-evoked Fos-like immunoreactive (FLI) cells in spinal dorsal horn regions implicated in nociceptive processing and was attenuated by CB1 (AM251) and TRPV1 (AMG9810) antagonists. When central sensitization was established, FAAH KO mice displayed elevated levels of anandamide, other fatty-acid amides, and endogenous TRPV1 agonists in both paw skin and lumbar spinal cord relative to wild-type mice. Capsaicin decreased spinal cord 2-AG levels and increased arachidonic acid and prostaglandin E2 levels in both spinal cord and paw skin irrespective of genotype. Our studies identify a previously unrecognized pro-nociceptive phenotype in FAAH KO mice that was unmasked by capsaicin challenge. The heightened nociceptive response was mediated by CB1 and TRPV1 receptors and accompanied by enhanced spinal neuronal activation. Moreover, genetic deletion of FAAH has a profound impact on the peripheral and central lipidome. Thus, genetic deletion of FAAH may predispose animals to increased sensitivity to certain types of pain. More work is necessary to determine whether such changes could explain the lack of efficacy of FAAH inhibitors in clinical trials.


Assuntos
Amidoidrolases/deficiência , Nociceptividade , Acrilamidas/farmacologia , Acrilamidas/uso terapêutico , Amidoidrolases/metabolismo , Analgesia , Animais , Ácido Araquidônico/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Capsaicina/administração & dosagem , Carragenina , Modelos Animais de Doenças , Etanolaminas/metabolismo , Formaldeído , Genótipo , Hiperalgesia/complicações , Hiperalgesia/tratamento farmacológico , Hiperalgesia/patologia , Inflamação/complicações , Inflamação/tratamento farmacológico , Inflamação/patologia , Injeções Intraperitoneais , Ligantes , Vértebras Lombares/metabolismo , Vértebras Lombares/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nociceptividade/efeitos dos fármacos , Dor/complicações , Dor/tratamento farmacológico , Dor/patologia , Limiar da Dor/efeitos dos fármacos , Fenótipo , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Proteínas Proto-Oncogênicas c-fos/metabolismo , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/metabolismo , Pele/metabolismo , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Corno Dorsal da Medula Espinal/patologia , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/metabolismo
8.
J Basic Clin Physiol Pharmacol ; 27(3): 247-52, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26565552

RESUMO

BACKGROUND: Rates of osteoporosis are significantly lower in regions of the world where olive oil consumption is a dietary cornerstone. Olive oil may represent a source of oleoyl serine (OS), which showed efficacy in animal models of osteoporosis. Here, we tested the hypothesis that OS as well as structurally analogous N-acyl amide and 2-acyl glycerol lipids are present in the following cooking oils: olive, walnut, canola, high heat canola, peanut, safflower, sesame, toasted sesame, grape seed, and smart balance omega. METHODS: Methanolic lipid extracts from each of the cooking oils were partially purified on C-18 solid-phase extraction columns. Extracts were analyzed with high-performance liquid chromatography-tandem mass spectrometry, and 33 lipids were measured in each sample, including OS and bioactive analogs. RESULTS: Of the oils screened here, walnut oil had the highest number of lipids detected (22/33). Olive oil had the second highest number of lipids detected (20/33), whereas grape-seed and high-heat canola oil were tied for lowest number of detected lipids (6/33). OS was detected in 8 of the 10 oils tested and the levels were highest in olive oil, suggesting that there is something about the olive plant that enriches this lipid. CONCLUSIONS: Cooking oils contain varying levels of bioactive lipids from the N-acyl amide and 2-acyl glycerol families. Olive oil is a dietary source of OS, which may contribute to lowered prevalence of osteoporosis in countries with high consumption of this oil.


Assuntos
Lipídeos/química , Azeite de Oliva/análise , Azeite de Oliva/química , Óleos de Plantas/análise , Óleos de Plantas/química , Serina/química , Animais , Culinária , Dieta , Osteoporose/prevenção & controle , Óleo de Brassica napus , Ratos , Ratos Wistar
9.
Mol Cell Endocrinol ; 411: 214-22, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25958042

RESUMO

Genital tract infections are a common complication of human pregnancy that can result in miscarriage. We have previously shown that a lipopolysaccharide (LPS) induces embryonic resorption in a murine model of inflammatory miscarriage. This is accompanied by a dramatic decrease in systemic progesterone levels associated with a robust pro-inflammatory response that results in embryo resorption. Here, we tested the hypothesis that the endogenous cannabinoid system (eCS), through cannabinoid receptor 1 (CB1), plays a role in regulating progesterone levels and, therefore, the pro-inflammatory response. We show that LPS treatment in pregnant mice causes significant changes in the eCS ligands, which are reversed by progesterone treatment. We further show the CB1-KO mice maintain higher plasma progesterone levels after LPS treatment, which is associated with a feebler uterine inflammatory response and a significant drop in embryo resorption. These data suggest that manipulation of CB1 receptors and/or ligands is a potential therapeutic avenue to decrease infection-induced miscarriage.


Assuntos
Perda do Embrião/metabolismo , Endocanabinoides/metabolismo , Lipopolissacarídeos , Progesterona/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Animais , Modelos Animais de Doenças , Perda do Embrião/induzido quimicamente , Feminino , Camundongos , Camundongos Knockout , Gravidez , Receptor CB1 de Canabinoide/genética
10.
J Clin Invest ; 123(9): 4063-75, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23979163

RESUMO

There are currently more than 15 million preterm births each year. We propose that gene-environment interaction is a major contributor to preterm birth. To address this experimentally, we generated a mouse model with uterine deletion of Trp53, which exhibits approximately 50% incidence of spontaneous preterm birth due to premature decidual senescence with increased mTORC1 activity and COX2 signaling. Here we provide evidence that this predisposition provoked preterm birth in 100% of females exposed to a mild inflammatory insult with LPS, revealing the high significance of gene-environment interactions in preterm birth. More intriguingly, preterm birth was rescued in LPS-treated Trp53-deficient mice when they were treated with a combination of rapamycin (mTORC1 inhibitor) and progesterone (P4), without adverse effects on maternal or fetal health. These results provide evidence for the cooperative contributions of two sites of action (decidua and ovary) toward preterm birth. Moreover, a similar signature of decidual senescence with increased mTORC1 and COX2 signaling was observed in women undergoing preterm birth. Collectively, our findings show that superimposition of inflammation on genetic predisposition results in high incidence of preterm birth and suggest that combined treatment with low doses of rapamycin and P4 may help reduce the incidence of preterm birth in high-risk women.


Assuntos
Decídua/metabolismo , Interação Gene-Ambiente , Nascimento Prematuro/prevenção & controle , 20-Hidroxiesteroide Desidrogenases/metabolismo , Animais , Celecoxib , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Citocinas/metabolismo , Decídua/efeitos dos fármacos , Decídua/imunologia , Quimioterapia Combinada , Feminino , Expressão Gênica , Glicoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Lipopolissacarídeos/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Transgênicos , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/metabolismo , Ovário/efeitos dos fármacos , Ovário/imunologia , Ovário/patologia , Gravidez , Nascimento Prematuro/genética , Nascimento Prematuro/imunologia , Progesterona/farmacologia , Pirazóis/farmacologia , Receptores da Prolactina/metabolismo , Transdução de Sinais , Sirolimo/farmacologia , Sulfonamidas/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA