Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 11(5): 1316-1334, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34123255

RESUMO

There is an alarming scarcity of novel chemical matter with bioactivity against multidrug-resistant Gram-negative bacterial pathogens. Cystobactamids, recently discovered natural products from myxobacteria, are an exception to this trend. Their unusual chemical structure, composed of oligomeric para-aminobenzoic acid moieties, is associated with a high antibiotic activity through the inhibition of gyrase. In this study, structural determinants of cystobactamid's antibacterial potency were defined at five positions, which were varied using three different synthetic routes to the cystobactamid scaffold. The potency against Acinetobacter baumannii could be increased ten-fold to an MIC (minimum inhibitory concentration) of 0.06 µg mL-1, and the previously identified spectrum gap of Klebsiella pneumoniae could be closed compared to the natural products (MIC of 0.5 µg mL-1). Proteolytic degradation of cystobactamids by the resistance factor AlbD was prevented by an amide-triazole replacement. Conjugation of cystobactamid's N-terminal tetrapeptide to a Bodipy moiety induced the selective localization of the fluorophore for bacterial imaging purposes. Finally, a first in vivo proof of concept was obtained in an E. coli infection mouse model, where derivative 22 led to the reduction of bacterial loads (cfu, colony-forming units) in muscle, lung and kidneys by five orders of magnitude compared to vehicle-treated mice. These findings qualify cystobactamids as highly promising lead structures against infections caused by Gram-positive and Gram-negative bacterial pathogens.

2.
PLoS One ; 11(2): e0148108, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26828796

RESUMO

The flavin-dependent enzyme pyranose oxidase catalyses the oxidation of several pyranose sugars at position C-2. In a second reaction step, oxygen is reduced to hydrogen peroxide. POx is of interest for biocatalytic carbohydrate oxidations, yet it was found that the enzyme is rapidly inactivated under turnover conditions. We studied pyranose oxidase from Trametes multicolor (TmPOx) inactivated either during glucose oxidation or by exogenous hydrogen peroxide using mass spectrometry. MALDI-MS experiments of proteolytic fragments of inactivated TmPOx showed several peptides with a mass increase of 16 or 32 Da indicating oxidation of certain amino acids. Most of these fragments contain at least one methionine residue, which most likely is oxidised by hydrogen peroxide. One peptide fragment that did not contain any amino acid residue that is likely to be oxidised by hydrogen peroxide (DAFSYGAVQQSIDSR) was studied in detail by LC-ESI-MS/MS, which showed a +16 Da mass increase for Phe454. We propose that oxidation of Phe454, which is located at the flexible active-site loop of TmPOx, is the first and main step in the inactivation of TmPOx by hydrogen peroxide. Oxidation of methionine residues might then further contribute to the complete inactivation of the enzyme.


Assuntos
Desidrogenases de Carboidrato/química , Desidrogenases de Carboidrato/metabolismo , Fenilalanina/metabolismo , Trametes/enzimologia , Sequência de Aminoácidos , Domínio Catalítico , Ativação Enzimática , Estabilidade Enzimática , Peróxido de Hidrogênio/metabolismo , Cinética , Espectrometria de Massas , Metionina/metabolismo , Modelos Moleculares , Conformação Molecular , Dados de Sequência Molecular , Oxirredução , Peptídeos/química , Especificidade por Substrato
3.
PLoS One ; 9(6): e100116, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24967652

RESUMO

A gene coding for galactose 6-oxidase from Fusarium oxysporum G12 was cloned together with its native preprosequence and a C-terminal His-tag, and successfully expressed both in Escherichia coli and Pichia pastoris. The enzyme was subsequently purified and characterized. Among all tested substrates, the highest catalytic efficiency (kcat/Km) was found with 1-methyl-ß-D-galactopyranoside (2.2 mM(-1) s(-1)). The Michaelis constant (Km) for D-galactose was determined to be 47 mM. Optimal pH and temperature for the enzyme activity were 7.0 and 40°C, respectively, and the enzyme was thermoinactivated at temperatures above 50°C. GalOx contains a unique metalloradical complex consisting of a copper atom and a tyrosine residue covalently attached to the sulphur of a cysteine. The correct formation of this thioether bond during the heterologous expression in E. coli and P. pastoris could be unequivocally confirmed by MALDI mass spectrometry, which offers a convenient alternative to prove this Tyr-Cys crosslink, which is essential for the catalytic activity of GalOx.


Assuntos
Escherichia coli/genética , Fusarium/enzimologia , Galactose Oxidase/genética , Galactose Oxidase/metabolismo , Pichia/genética , Sequência de Aminoácidos , Clonagem Molecular , Éteres/química , Fusarium/genética , Galactose Oxidase/química , Galactose Oxidase/isolamento & purificação , Expressão Gênica , Concentração de Íons de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica
4.
FEBS J ; 274(3): 879-94, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17227387

RESUMO

We purified an extracellular pyranose dehydrogenase (PDH) from the basidiomycete fungus Agaricus xanthoderma using ammonium sulfate fractionation and ion-exchange and hydrophobic interaction chromatography. The native enzyme is a monomeric glycoprotein (5% carbohydrate) containing a covalently bound FAD as its prosthetic group. The PDH polypeptide consists of 575 amino acids and has a molecular mass of 65 400 Da as determined by MALDI MS. On the basis of the primary structure of the mature protein, PDH is a member of the glucose-methanol-choline oxidoreductase family. We constructed a homology model of PDH using the 3D structure of glucose oxidase from Aspergillus niger as a template. This model suggests a novel type of bi-covalent flavinylation in PDH, 9-S-cysteinyl, 8-alpha-N3-histidyl FAD. The enzyme exhibits a broad sugar substrate tolerance, oxidizing structurally different aldopyranoses including monosaccharides and oligosaccharides as well as glycosides. Its preferred electron donor substrates are D-glucose, D-galactose, L-arabinose, and D-xylose. As shown by in situ NMR analysis, D-glucose and D-galactose are both oxidized at positions C2 and C3, yielding the corresponding didehydroaldoses (diketoaldoses) as the final reaction products. PDH shows no detectable activity with oxygen, and its reactivity towards electron acceptors is rather limited, reducing various substituted benzoquinones and complexed metal ions. The azino-bis-(3-ethylbenzthiazolin-6-sulfonic acid) cation radical and the ferricenium ion are the best electron acceptors, as judged by the catalytic efficiencies (k(cat)/K(m)). The enzyme may play a role in lignocellulose degradation.


Assuntos
Agaricus/enzimologia , Desidrogenases de Carboidrato/metabolismo , Proteínas Fúngicas/metabolismo , Monossacarídeos/metabolismo , Agaricus/genética , Sequência de Aminoácidos , Desidrogenases de Carboidrato/genética , Desidrogenases de Carboidrato/isolamento & purificação , Celulose/metabolismo , Eletroforese em Gel de Poliacrilamida , Estabilidade Enzimática , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Galactose/química , Galactose/metabolismo , Concentração de Íons de Hidrogênio , Focalização Isoelétrica , Cinética , Lignina/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Monossacarídeos/química , Oxirredução , Estrutura Secundária de Proteína , Alinhamento de Sequência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrofotometria/métodos , Especificidade por Substrato , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA