Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 14: 287, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32322187

RESUMO

In contrast to pain processing neurons in the spinal cord, where the importance of chloride conductances is already well established, chloride homeostasis in primary afferent neurons has received less attention. Sensory neurons maintain high intracellular chloride concentrations through balanced activity of Na+-K+-2Cl- cotransporter 1 (NKCC1) and K+-Cl- cotransporter 2 (KCC2). Whereas in other cell types activation of chloride conductances causes hyperpolarization, activation of the same conductances in primary afferent neurons may lead to inhibitory or excitatory depolarization depending on the actual chloride reversal potential and the total amount of chloride efflux during channel or transporter activation. Dorsal root ganglion (DRG) neurons express a multitude of chloride channel types belonging to different channel families, such as ligand-gated, ionotropic γ-aminobutyric acid (GABA) or glycine receptors, Ca2+-activated chloride channels of the anoctamin/TMEM16, bestrophin or tweety-homolog family, CLC chloride channels and transporters, cystic fibrosis transmembrane conductance regulator (CFTR) as well as volume-regulated anion channels (VRACs). Specific chloride conductances are involved in signal transduction and amplification at the peripheral nerve terminal, contribute to excitability and action potential generation of sensory neurons, or crucially shape synaptic transmission in the spinal dorsal horn. In addition, chloride channels can be modified by a plethora of inflammatory mediators affecting them directly, via protein-protein interaction, or through signaling cascades. Since chloride channels as well as mediators that modulate chloride fluxes are regulated in pain disorders and contribute to nociceptor excitation and sensitization it is timely and important to emphasize their critical role in nociceptive primary afferents in this review.

3.
Br J Pharmacol ; 176(15): 2708-2723, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31032878

RESUMO

BACKGROUND AND PURPOSE: The ether-à-go-go (Eag) Kv superfamily comprises closely related Kv 10, Kv 11, and Kv 12 subunits. Kv 11.1 (termed hERG in humans) gained much attention, as drug-induced inhibition of these channels is a frequent cause of sudden death in humans. The exclusive drug sensitivity of Kv 11.1 can be explained by central drug-binding pockets that are absent in most other channels. Currently, it is unknown whether Kv 12 channels are equipped with an analogous drug-binding pocket and whether drug-binding properties are conserved in all Eag superfamily members. EXPERIMENTAL APPROACH: We analysed sensitivity of recombinant Kv 12.1 channels to quinine, a substituted quinoline that blocks Kv 10.1 and Kv 11.1 at low micromolar concentrations. KEY RESULTS: Quinine inhibited Kv 12.1, but its affinity was 10-fold lower than for Kv 11.1. Contrary to Kv 11.1, quinine inhibited Kv 12.1 in a largely voltage-independent manner and induced channel opening at more depolarised potentials. Low sensitivity of Kv 12.1 and characteristics of quinine-dependent inhibition were determined by histidine 462, as site-directed mutagenesis of this residue into the homologous tyrosine of Kv 11.1 conferred Kv 11.1-like quinine block to Kv 12.1(H462Y). Molecular modelling demonstrated that the low affinity of Kv 12.1 was determined by only weak interactions of residues in the central cavity with quinine. In contrast, more favourable interactions can explain the higher quinine sensitivity of Kv 12.1(H462Y) and Kv 11.1 channels. CONCLUSIONS AND IMPLICATIONS: The quinoline-binding "motif" is not conserved within the Eag superfamily, although the overall architecture of these channels is apparently similar. Our findings highlight functional and pharmacological diversity in this group of evolutionary-conserved channels.


Assuntos
Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Histidina/química , Proteínas do Tecido Nervoso/antagonistas & inibidores , Quinina/farmacologia , Animais , Células CHO , Cricetulus , Canal de Potássio ERG1/antagonistas & inibidores , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/fisiologia , Canais de Potássio Éter-A-Go-Go/química , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/fisiologia , Modelos Moleculares , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia
4.
Cell Mol Life Sci ; 75(22): 4235-4250, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29987362

RESUMO

PTEN prevents tumor genesis by antagonizing the PI3 kinase/Akt pathway through D3 site phosphatase activity toward PI(3,4)P2 and PI(3,4,5)P3. The structural determinants of this important specificity remain unknown. Interestingly, PTEN shares remarkable homology to voltage-sensitive phosphatases (VSPs) that dephosphorylate D5 and D3 sites of PI(4,5)P2, PI(3,4)P2, and PI(3,4,5)P3. Since the catalytic center of PTEN and VSPs differ markedly only in TI/gating loop and active site motif, we wondered whether these differences explained the variation of their substrate specificity. Therefore, we introduced mutations into PTEN to mimic corresponding sequences of VSPs and studied phosphatase activity in living cells utilizing engineered, voltage switchable PTENCiV, a Ci-VSP/PTEN chimera that retains D3 site activity of the native enzyme. Substrate specificity of this enzyme was analyzed with whole-cell patch clamp in combination with total internal reflection fluorescence microscopy and genetically encoded phosphoinositide sensors. In PTENCiV, mutating TI167/168 in the TI loop into the corresponding ET pair of VSPs induced VSP-like D5 phosphatase activity toward PI(3,4,5)P3, but not toward PI(4,5)P2. Combining TI/ET mutations with an A126G exchange in the active site removed major sequence variations between PTEN and VSPs and resulted in D5 activity toward PI(4,5)P2 and PI(3,4,5)P3 of PTENCiV. This PTEN mutant thus fully reproduced the substrate specificity of native VSPs. Importantly, the same combination of mutations also induced D5 activity toward PI(3,4,5)P3 in native PTEN demonstrating that the same residues determine the substrate specificity of the tumor suppressor in living cells. Reciprocal mutations in VSPs did not alter their substrate specificity, but reduced phosphatase activity. In summary, A126 in the active site and TI167/168 in the TI loop are essential determinants of PTEN's substrate specificity, whereas additional features might contribute to the enzymatic activity of VSPs.


Assuntos
PTEN Fosfo-Hidrolase/química , PTEN Fosfo-Hidrolase/metabolismo , Alanina/química , Animais , Células CHO , Domínio Catalítico , Linhagem Celular , Cricetulus , Mutação , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositóis/metabolismo , Especificidade por Substrato , Treonina/química
5.
Front Mol Neurosci ; 11: 33, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29479306

RESUMO

Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid involved in numerous physiological and pathophysiological processes. We have previously reported a S1P-induced nocifensive response in mice by excitation of sensory neurons via activation of an excitatory chloride current. The underlying molecular mechanism for the S1P-induced chloride conductance remains elusive. In the present study, we identified two CLCN voltage-gated chloride channels, CLCN3 and CLCN5, which mediated a S1P-induced excitatory Cl- current in sensory neurons by combining RNA-seq, adenovirus-based gene silencing and whole-cell electrophysiological voltage-clamp recordings. Downregulation of CLCN3 and CLCN5 channels by adenovirus-mediated delivery of shRNA dramatically reduced S1P-induced Cl- current and membrane depolarization in sensory neurons. The mechanism of S1P-induced activation of the chloride current involved Rho GTPase but not Rho-associated protein kinase. Although S1P-induced potentiation of TRPV1-mediated ionic currents also involved Rho-dependent process, the lack of correlation of the S1P-activated Cl- current and the potentiation of TRPV1 by S1P suggests that CLCN3 and CLCN5 are necessary components for S1P-induced excitatory Cl- currents but not for the amplification of TRPV1-mediated currents in sensory neurons. This study provides a novel mechanistic insight into the importance of bioactive sphingolipids in nociception.

6.
Proc Natl Acad Sci U S A ; 112(45): 13976-81, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26504226

RESUMO

Although a variety of genetic alterations have been found across cancer types, the identification and functional characterization of candidate driver genetic lesions in an individual patient and their translation into clinically actionable strategies remain major hurdles. Here, we use whole genome sequencing of a prostate cancer tumor, computational analyses, and experimental validation to identify and predict novel oncogenic activity arising from a point mutation in the phosphatase and tensin homolog (PTEN) tumor suppressor protein. We demonstrate that this mutation (p.A126G) produces an enzymatic gain-of-function in PTEN, shifting its function from a phosphoinositide (PI) 3-phosphatase to a phosphoinositide (PI) 5-phosphatase. Using cellular assays, we demonstrate that this gain-of-function activity shifts cellular phosphoinositide levels, hyperactivates the PI3K/Akt cell proliferation pathway, and exhibits increased cell migration beyond canonical PTEN loss-of-function mutants. These findings suggest that mutationally modified PTEN can actively contribute to well-defined hallmarks of cancer. Lastly, we demonstrate that these effects can be substantially mitigated through chemical PI3K inhibitors. These results demonstrate a new dysfunction paradigm for PTEN cancer biology and suggest a potential framework for the translation of genomic data into actionable clinical strategies for targeted patient therapy.


Assuntos
Genes Supressores de Tumor , Proteínas de Neoplasias/genética , PTEN Fosfo-Hidrolase/genética , Monoéster Fosfórico Hidrolases/genética , Neoplasias da Próstata/genética , Análise de Variância , Animais , Sequência de Bases , Células CHO , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Biologia Computacional/métodos , Cricetinae , Cricetulus , Humanos , Immunoblotting , Masculino , Microscopia de Fluorescência , Anotação de Sequência Molecular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Técnicas de Patch-Clamp , Fosfatidilinositóis/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Análise de Sequência de DNA
7.
J Gen Physiol ; 146(1): 51-63, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26123194

RESUMO

The transient receptor potential (TRP) channel TRPM3 is a calcium-permeable cation channel activated by heat and by the neurosteroid pregnenolone sulfate (PregS). TRPM3 is highly expressed in sensory neurons, where it plays a key role in heat sensing and inflammatory hyperalgesia, and in pancreatic ß cells, where its activation enhances glucose-induced insulin release. However, despite its functional importance, little is known about the cellular mechanisms that regulate TRPM3 activity. Here, we provide evidence for a dynamic regulation of TRPM3 by membrane phosphatidylinositol phosphates (PIPs). Phosphatidylinositol 4,5-bisphosphate (PI[4,5]P2) and ATP applied to the intracellular side of excised membrane patches promote recovery of TRPM3 from desensitization. The stimulatory effect of cytosolic ATP on TRPM3 reflects activation of phosphatidylinositol kinases (PI-Ks), leading to resynthesis of PIPs in the plasma membrane. Various PIPs directly enhance TRPM3 activity in cell-free inside-out patches, with a potency order PI(3,4,5)P3 > PI(3,5)P2 > PI(4,5)P2 ≈ PI(3,4)P2 >> PI(4)P. Conversely, TRPM3 activity is rapidly and reversibly inhibited by activation of phosphatases that remove the 5-phosphate from PIPs. Finally, we show that recombinant TRPM3, as well as the endogenous TRPM3 in insuloma cells, is rapidly and reversibly inhibited by activation of phospholipase C-coupled muscarinic acetylcholine receptors. Our results reveal basic cellular mechanisms whereby membrane receptors can regulate TRPM3 activity.


Assuntos
Fosfatidilinositóis/metabolismo , Canais de Cátion TRPM/metabolismo , Trifosfato de Adenosina/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Células HEK293 , Humanos , Hiperalgesia/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Pregnenolona/metabolismo , Células Receptoras Sensoriais/metabolismo
8.
Front Pharmacol ; 6: 68, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25873899

RESUMO

Voltage sensitive phosphatases (VSPs), including engineered voltage sensitive PTEN, are excellent tools to rapidly and reversibly alter the phosphoinositide (PI) content of the plasma membrane in vivo and study the tumor suppressor PTEN. However, widespread adoption of these tools is hampered by the requirement for electrophysiological instrumentation to control the activity of VSPs. Additionally, monitoring and quantifying the PI changes in living cells requires sophisticated microscopy equipment and image analysis. Here we present methods that bypass these obstacles. First, we explore technically simple means for activation of VSPs via extracellularly applied agents or light. Secondly, we characterize methods to monitor PI(4,5)P2 and PI(3,4,5)P3 levels using fluorescence microscopy or photometry in conjunction with translocation or FRET based PI probes, respectively. We then demonstrate the application of these techniques by characterizing the effect of known PTEN mutations on its enzymatic activity, analyzing the effect of PTEN inhibitors, and detecting in real time rapid inhibition of protein kinase B following depletion of PI(3,4,5)P3. Thus, we established an approach that does not only allow for rapidly manipulating and monitoring PI(4,5)P2 and PI(3,4,5)P3 levels in a population of cells, but also facilitates the study of PTEN mutants and pharmacological targeting in mammalian cells.

9.
J Physiol ; 589(Pt 13): 3149-62, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21540350

RESUMO

TASK channels are background K+ channels that contribute to the resting conductance in many neurons. A key feature of TASK channels is the reversible inhibition by Gq-coupled receptors, thereby mediating the dynamic regulation of neuronal activity by modulatory transmitters. The mechanism that mediates channel inhibition is not fully understood. While it is clear that activation of Gαq is required, the immediate signal for channel closure remains controversial. Experimental evidence pointed to either phospholipase C (PLC)-mediated depletion of phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) as the cause for channel closure or to a direct inhibitory interaction of active Gαq with the channel. Here, we address the role of PI(4,5)P2 for G-protein-coupled receptor (GPCR)-mediated TASK inhibition by using recently developed genetically encoded tools to alter phosphoinositide (PI) concentrations in the living cell.When expressed in CHO cells, TASK-1- and TASK-3-mediated currents were not affected by depletion of plasma membrane PI(4,5)P2 either via the voltage-activated phosphatase Ci-VSP or via chemically triggered recruitment of a PI(4,5)P2-5'-phosphatase. Depletion of both PI(4,5)P2 and PI(4)P via membrane recruitment of a novel engineered dual-specificity phosphatase also did not inhibit TASK currents. In contrast, each of these methods produced robust inhibition of the bona fide PI(4,5)P2-dependent channel KCNQ4. Efficient depletion of PI(4,5)P2 and PI(4)P was further confirmed with a fluorescent phosphoinositide sensor. Moreover, TASK channels recovered normally from inhibition by co-expressed muscarinic M1 receptors when resynthesis of PI(4,5)P2 was prevented by depletion of cellular ATP. These results demonstrate that TASK channel activity is independent of phosphoinositide concentrations within the physiological range. Consequently, Gq-mediated inhibition of TASK channels is not mediated by depletion of PI(4,5)P2.


Assuntos
Proteínas do Tecido Nervoso/fisiologia , Fosfatidilinositol 4,5-Difosfato/fisiologia , Monoéster Fosfórico Hidrolases/fisiologia , Canais de Potássio de Domínios Poros em Tandem/fisiologia , Trifosfato de Adenosina/deficiência , Sequência de Aminoácidos , Animais , Células CHO , Cricetinae , Cricetulus , Genes de Troca , Humanos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/antagonistas & inibidores , Fosfatidilinositol 4,5-Difosfato/antagonistas & inibidores , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Receptores Acoplados a Proteínas G/fisiologia
10.
J Biol Chem ; 286(20): 17945-53, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21454672

RESUMO

The recently discovered voltage-sensitive phosphatases (VSPs) hydrolyze phosphoinositides upon depolarization of the membrane potential, thus representing a novel principle for the transduction of electrical activity into biochemical signals. Here, we demonstrate the possibility to confer voltage sensitivity to cytosolic enzymes. By fusing the tumor suppressor PTEN to the voltage sensor of the prototypic VSP from Ciona intestinalis, Ci-VSP, we generated chimeric proteins that are voltage-sensitive and display PTEN-like enzymatic activity in a strictly depolarization-dependent manner in vivo. Functional coupling of the exogenous enzymatic activity to the voltage sensor is mediated by a phospholipid-binding motif at the interface between voltage sensor and catalytic domains. Our findings reveal that the main domains of VSPs and related phosphoinositide phosphatases are intrinsically modular and define structural requirements for coupling of enzymatic activity to a voltage sensor domain. A key feature of this prototype of novel engineered voltage-sensitive enzymes, termed Ci-VSPTEN, is the novel ability to switch enzymatic activity of PTEN rapidly and reversibly. We demonstrate that experimental control of Ci-VSPTEN can be obtained either by electrophysiological techniques or more general techniques, using potassium-induced depolarization of intact cells. Thus, Ci-VSPTEN provides a novel approach for studying the complex mechanism of activation, cellular control, and pharmacology of this important tumor suppressor. Moreover, by inducing temporally precise perturbation of phosphoinositide concentrations, Ci-VSPTEN will be useful for probing the role and specificity of these messengers in many cellular processes and to analyze the timing of phosphoinositide signaling.


Assuntos
Ciona intestinalis/metabolismo , Ativação do Canal Iônico/fisiologia , Potenciais da Membrana/fisiologia , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Animais , Células CHO , Ciona intestinalis/genética , Cricetinae , Cricetulus , PTEN Fosfo-Hidrolase/genética , Proteínas Recombinantes de Fusão/genética , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA