Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38543100

RESUMO

Nonsense mutations that generate a premature termination codon (PTC) can induce both the accelerated degradation of mutated mRNA compared with the wild type version of the mRNA or the production of a truncated protein. One of the considered therapeutic strategies to bypass PTCs is their "readthrough" based on small-molecule drugs. These molecules promote the incorporation of a near-cognate tRNA at the PTC position through the native polypeptide chain. In this review, we detailed the various existing strategies organized according to pharmacological molecule types through their different mechanisms. The positive results that followed readthrough molecule testing in multiple neuromuscular disorder models indicate the potential of this approach in peripheral neuropathies.

2.
Biomedicines ; 11(10)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37893174

RESUMO

Nonsense-mediated mRNA decay (NMD) is a quality control mechanism that degrades mRNAs carrying a premature termination codon. Its inhibition, alone or in combination with other approaches, could be exploited to develop therapies for genetic diseases caused by a nonsense mutation. This, however, requires molecules capable of inhibiting NMD effectively without inducing toxicity. We have built a new screening system and used it to identify and validate two new molecules that can inhibit NMD at least as effectively as cycloheximide, a reference NMD inhibitor molecule. These new NMD inhibitors show no cellular toxicity at tested concentrations and have a working concentration between 6.2 and 12.5 µM. We have further validated this NMD-inhibiting property in a physiopathological model of lung cancer in which the TP53 gene carries a nonsense mutation. These new molecules may potentially be of interest in the development of therapies for genetic diseases caused by a nonsense mutation.

3.
Mol Ther ; 31(4): 970-985, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36641622

RESUMO

Nonsense mutations are responsible for around 10% of cases of genetic diseases, including cystic fibrosis. 2,6-diaminopurine (DAP) has recently been shown to promote efficient readthrough of UGA premature stop codons. In this study, we show that DAP can correct a nonsense mutation in the Cftr gene in vivo in a new CF mouse model, in utero, and through breastfeeding, thanks, notably, to adequate pharmacokinetic properties. DAP turns out to be very stable in plasma and is distributed throughout the body. The ability of DAP to correct various endogenous UGA nonsense mutations in the CFTR gene and to restore its function in mice, in organoids derived from murine or patient cells, and in cells from patients with cystic fibrosis reveals the potential of such readthrough-stimulating molecules in developing a therapeutic approach. The fact that correction by DAP of certain nonsense mutations reaches a clinically relevant level, as judged from previous studies, makes the use of this compound all the more attractive.


Assuntos
Códon sem Sentido , Fibrose Cística , Camundongos , Animais , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Códon de Terminação/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética
4.
Nucleic Acids Res ; 49(19): 11022-11037, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34634811

RESUMO

Nonsense-mediated mRNA decay (NMD) is a highly regulated quality control mechanism through which mRNAs harboring a premature termination codon are degraded. It is also a regulatory pathway for some genes. This mechanism is subject to various levels of regulation, including phosphorylation. To date only one kinase, SMG1, has been described to participate in NMD, by targeting the central NMD factor UPF1. Here, screening of a kinase inhibitor library revealed as putative NMD inhibitors several molecules targeting the protein kinase AKT1. We present evidence demonstrating that AKT1, a central player in the PI3K/AKT/mTOR signaling pathway, plays an essential role in NMD, being recruited by the UPF3X protein to phosphorylate UPF1. As AKT1 is often overactivated in cancer cells and as this should result in increased NMD efficiency, the possibility that this increase might affect cancer processes and be targeted in cancer therapy is discussed.


Assuntos
Códon sem Sentido , Degradação do RNAm Mediada por Códon sem Sentido , Proteínas Proto-Oncogênicas c-akt/genética , RNA Helicases/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Transativadores/genética , Proliferação de Células , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Biblioteca Gênica , Genes Reporter , Células HEK293 , Células HeLa , Humanos , Luciferases/genética , Luciferases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Helicases/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Transativadores/metabolismo
5.
Nat Commun ; 11(1): 1509, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32198346

RESUMO

Nonsense mutations cause about 10% of genetic disease cases, and no treatments are available. Nonsense mutations can be corrected by molecules with nonsense mutation readthrough activity. An extract of the mushroom Lepista inversa has recently shown high-efficiency correction of UGA and UAA nonsense mutations. One active constituent of this extract is 2,6-diaminopurine (DAP). In Calu-6 cancer cells, in which TP53 gene has a UGA nonsense mutation, DAP treatment increases p53 level. It also decreases the growth of tumors arising from Calu-6 cells injected into immunodeficient nude mice. DAP acts by interfering with the activity of a tRNA-specific 2'-O-methyltransferase (FTSJ1) responsible for cytosine 34 modification in tRNATrp. Low-toxicity and high-efficiency UGA nonsense mutation correction make DAP a good candidate for the development of treatments for genetic diseases caused by nonsense mutations.


Assuntos
2-Aminopurina/análogos & derivados , 2-Aminopurina/farmacologia , Códon sem Sentido/efeitos dos fármacos , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Mutação/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genes p53/genética , Células HEK293 , Células HeLa , Humanos , Lepisma/química , Camundongos , Camundongos Nus , RNA de Transferência/genética , tRNA Metiltransferases/metabolismo
6.
Oncogenesis ; 7(9): 70, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30228267

RESUMO

Nonsense-mediated mRNA decay (NMD) is responsible for the degradation of mRNAs with a premature termination codon (PTC). The role of this system in cancer is still quite poorly understood. In the present study, we evaluated the functional consequences of NMD activity in a subgroup of colorectal cancers (CRC) characterized by high levels of mRNAs with a PTC due to widespread instability in microsatellite sequences (MSI). In comparison to microsatellite stable (MSS) CRC, MSI CRC expressed increased levels of two critical activators of the NMD system, UPF1/2 and SMG1/6/7. Suppression of NMD activity led to the re-expression of dozens of PTC mRNAs. Amongst these, several encoded mutant proteins with putative deleterious activity against MSI tumorigenesis (e.g., HSP110DE9 chaperone mutant). Inhibition of NMD in vivo using amlexanox reduced MSI tumor growth, but not that of MSS tumors. These results suggest that inhibition of the oncogenic activity of NMD may be an effective strategy for the personalized treatment of MSI CRC.

7.
PLoS One ; 12(11): e0187930, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29131862

RESUMO

About 10% of patients with a genetic disease carry a nonsense mutation causing their pathology. A strategy for correcting nonsense mutations is premature termination codon (PTC) readthrough, i.e. incorporation of an amino acid at the PTC position during translation. PTC-readthrough-activating molecules appear as promising therapeutic tools for these patients. Unfortunately, the molecules shown to induce PTC readthrough show low efficacy, probably because the mRNAs carrying a nonsense mutation are scarce, as they are also substrates of the quality control mechanism called nonsense-mediated mRNA decay (NMD). The screening systems previously developed to identify readthrough-promoting molecules used cDNA constructs encoding mRNAs immune to NMD. As the molecules identified were not selected for the ability to correct nonsense mutations on NMD-prone PTC-mRNAs, they could be unsuitable for the context of nonsense-mutation-linked human pathologies. Here, a screening system based on an NMD-prone mRNA is described. It should be suitable for identifying molecules capable of efficiently rescuing the expression of human genes harboring a nonsense mutation. This system should favor the discovery of candidate drugs for treating genetic diseases caused by nonsense mutations. One hit selected with this screening system is presented and validated on cells from three cystic fibrosis patients.


Assuntos
Códon sem Sentido , Predisposição Genética para Doença , Sequência de Bases , Códon de Terminação , Fibrose Cística/genética , Fibrose Cística/terapia , Células HeLa , Humanos , Degradação do RNAm Mediada por Códon sem Sentido , RNA Mensageiro/genética
8.
Orphanet J Rare Dis ; 7: 58, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22938201

RESUMO

BACKGROUND: Nonsense mutations are at the origin of many cancers and inherited genetic diseases. The consequence of nonsense mutations is often the absence of mutant gene expression due to the activation of an mRNA surveillance mechanism called nonsense-mediated mRNA decay (NMD). Strategies to rescue the expression of nonsense-containing mRNAs have been developed such as NMD inhibition or nonsense mutation readthrough. METHODS: Using a dedicated screening system, we sought molecules capable to block NMD. Additionally, 3 cell lines derived from patient cells and harboring a nonsense mutation were used to study the effect of the selected molecule on the level of nonsense-containing mRNAs and the synthesis of proteins from these mutant mRNAs. RESULTS: We demonstrate here that amlexanox, a drug used for decades, not only induces an increase in nonsense-containing mRNAs amount in treated cells, but also leads to the synthesis of the full-length protein in an efficient manner. We also demonstrated that these full length proteins are functional. CONCLUSIONS: As a result of this dual activity, amlexanox may be useful as a therapeutic approach for diseases caused by nonsense mutations.


Assuntos
Aminopiridinas/farmacologia , Códon sem Sentido/efeitos dos fármacos , Degradação do RNAm Mediada por Códon sem Sentido/efeitos dos fármacos , Western Blotting , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Códon sem Sentido/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Imunofluorescência , Células HeLa , Humanos , Degradação do RNAm Mediada por Códon sem Sentido/genética , Ligação Proteica/efeitos dos fármacos
9.
Proc Natl Acad Sci U S A ; 108(28): 11572-7, 2011 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-21709220

RESUMO

The MHC class I antigen presentation pathway allows the immune system to distinguish between self and nonself. Despite extensive research on the processing of antigenic peptides, little is known about their origin. Here, we show that mRNAs carrying premature stop codons that prevent the production of full-length proteins via the nonsense-mediated decay pathway still produce a majority of peptide substrates for the MHC class I pathway by a noncanonical mRNA translation process. Blocking the interaction of the translation initiation factor eIF4E with the cap structure suppresses the synthesis of full-length proteins but has only a limited effect on the production of antigenic peptides. These results reveal an essential cell biological function for a class of translation products derived during the pioneer round of mRNA translation and will have important implications for understanding how the immune system detects cells harboring pathogens and generates tolerance.


Assuntos
Apresentação de Antígeno , Antígenos de Histocompatibilidade Classe I/biossíntese , Antígenos de Histocompatibilidade Classe I/genética , RNA Mensageiro/genética , Animais , Sequência de Bases , Linhagem Celular , Fator de Iniciação 4E em Eucariotos/metabolismo , Genes MHC Classe I , Células HEK293 , Células HeLa , Humanos , Camundongos , Modelos Imunológicos , Iniciação Traducional da Cadeia Peptídica , Peptídeos/genética , Peptídeos/imunologia , Biossíntese de Proteínas , Capuzes de RNA/genética , RNA Mensageiro/metabolismo , Tolerância a Antígenos Próprios/genética , Tolerância a Antígenos Próprios/imunologia
10.
Mol Cell ; 14(5): 585-98, 2004 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-15175154

RESUMO

Members of the PI 3-kinase-related kinase (PIKK) family function in mitogenic and stress-induced signaling pathways in eukaryotic cells. Here, we characterize the newest PIKK family member, hSMG-1, as a genotoxic stress-activated protein kinase that displays some functional overlap with the related kinase, ATM, in human cells. Both ATM and hSMG-1 phosphorylate Ser/Thr-Gln-containing target sequences in the checkpoint protein p53 and the nonsense-mediated mRNA decay (NMD) protein hUpf1. Expression of hSMG-1 is required for optimal p53 activation after cellular exposure to genotoxic stress, and depletion of hSMG-1 leads to spontaneous DNA damage and increased sensitivity to ionizing radiation (IR). Moreover, IR exposure triggers hUpf1 phosphorylation at Ser/Thr-Gln motifs, and both ATM and hSMG-1 contribute to these phosphorylation events. Finally, NMD is suppressed in hSMG-1- but not ATM-deficient cells. These results indicate that hSMG-1 plays important roles in the maintenance of both genome and transcriptome integrity in human cells.


Assuntos
Dano ao DNA/genética , Proteínas Quinases/fisiologia , Estabilidade de RNA/genética , RNA Mensageiro/metabolismo , Motivos de Aminoácidos/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular , Dano ao DNA/efeitos da radiação , Proteínas de Ligação a DNA , Instabilidade Genômica/genética , Instabilidade Genômica/efeitos da radiação , Células HeLa , Humanos , Metaloendopeptidases , Dados de Sequência Molecular , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Helicases , RNA Mensageiro/genética , Radiação Ionizante , Transativadores/genética , Transativadores/metabolismo , Transcrição Gênica/genética , Transcrição Gênica/efeitos da radiação , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor
11.
J Biol Chem ; 278(35): 32943-53, 2003 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-12826680

RESUMO

The CD44 gene alternative exons v8, v9, and v10 are frequently spliced as a block by epithelial cells. By transfecting minigenes containing only one of these alternative exons, we show that splicing of each of them is under cell type-specific control. By using minigenes carrying short block mutations within exons v8 and v9, we detected a candidate exon splicing enhancer in each of these exons. These candidates activated splicing in vitro of a heterologous transcript and are thus true exon splicing enhancers. We analyzed further a v9 exon splicing enhancer covering approximately 30 nucleotides. This enhancer can be UV cross-linked to SR proteins of 35 and 20 kDa in HeLa nuclear extract. By using individual recombinant SR proteins for UV cross-linking in S100 extract, these proteins were identified as 9G8, ASF/SF2, and SRp20. S100 complementation studies using recombinant 9G8, ASF/SF2, and SRp20 showed that all three proteins can activate splicing in vitro of a heterologous exon containing the v9 enhancer; the strongest activation was obtained with 9G8. Progressive truncation of the 30-nucleotide enhancer leads to a progressive decrease in splicing activation. We propose that 9G8, ASF/SF2, SRp20, and possibly other non-SR proteins cooperate in vivo to activate v9 exon splicing.


Assuntos
Receptores de Hialuronatos/química , Receptores de Hialuronatos/genética , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas de Ligação a RNA/metabolismo , Processamento Alternativo , Sequência de Bases , Núcleo Celular/metabolismo , Elementos Facilitadores Genéticos , Células Epiteliais/metabolismo , Éxons , Teste de Complementação Genética , Células HeLa , Humanos , Receptores de Hialuronatos/biossíntese , Íntrons , Modelos Genéticos , Dados de Sequência Molecular , Mutação , Plasmídeos/metabolismo , Ligação Proteica , RNA Mensageiro/metabolismo , Proteínas Recombinantes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Processamento de Serina-Arginina , Transfecção , Raios Ultravioleta
12.
EMBO J ; 21(13): 3536-45, 2002 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-12093754

RESUMO

Newly spliced mRNAs in mammalian cells are characterized by a complex of proteins at exon-exon junctions. This complex recruits Upf3 and Upf2, which function in nonsense-mediated mRNA decay (NMD). Both Upf proteins are detected on mRNA bound by the major nuclear cap-binding proteins CBP80/CBP20 but not mRNA bound by the major cytoplasmic cap-binding protein eIF4E. These and other data indicate that NMD targets CBP80-bound mRNA during a 'pioneer' round of translation, but whether nuclear eIF4E also binds nascent but dead-end transcripts is unclear. Here we provide evidence that nuclear CBP80 but not nuclear eIF4E is readily detected in association with intron-containing RNA and the C-terminal domain of RNA polymerase II. Consistent with this evidence, we demonstrate that RNPS1, Y14, SRm160, REF/Aly, TAP, Upf3X and Upf2 are detected in the nuclear fraction on CBP80-bound but not eIF4E-bound mRNA. Each of these proteins is also detected on CBP80-bound mRNA in the cytoplasmic fraction, indicating a presence on mRNA after export. The dynamics of mRNP composition before and after mRNA export are discussed.


Assuntos
Antígenos Nucleares , Proteínas Associadas à Matriz Nuclear , Fatores de Iniciação de Peptídeos/metabolismo , Capuzes de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas , Animais , Antígenos Transformantes de Poliomavirus/genética , Transporte Biológico , Células COS/metabolismo , Chlorocebus aethiops , Citoplasma/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fator de Iniciação 4E em Eucariotos , Éxons/genética , Globinas/genética , Íntrons/genética , Substâncias Macromoleculares , Proteínas Nucleares/metabolismo , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Proteínas de Ligação ao Cap de RNA , RNA Polimerase II/metabolismo , Precursores de RNA/metabolismo , Vírus 40 dos Símios/genética , Fatores de Transcrição/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA