Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Biosens Bioelectron ; 258: 116337, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38703495

RESUMO

Recruiting circulating cells based on interactions between surface receptors and corresponding ligands holds promise for capturing cells with specific adhesive properties. Our study investigates the adhesion of skin cells to specific lectins, particularly focusing on advancements in lectin-based biosensors with diagnostic potential. We explore whether we can successfully capture normal skin (melanocytes and keratinocytes) and melanoma (WM35, WM115, WM266-4) cells in a low-shear flow environment by coating surfaces with lectins. Specifically, we coated surfaces with Dolichos biflorus (DBA) and Maackia Amurensis (MAL) lectins, which were used to detect and capture specific skin cells from the flow of cell mixture. Alterations in glycan expression (confirmed by fluorescent microscopy) demonstrated that DBA binds predominantly to normal skin cells, while MAL interacts strongly with melanoma cells. Assessing adhesion under static and dynamic low-shear stress conditions (up to 30 mPa) underscores the reliability of DBA and MAL as markers for discriminating specific cell type. Melanocytes and keratinocytes adhere to DBA-coated surfaces, while melanoma cells prefer MAL-coated surfaces. A comprehensive analysis encompassing cell shape, cytoskeleton, and focal adhesions shows the independence of our approach from the inherent characteristics of cells, thus demonstrating its robustness. Our results carry practical implications for lectin-biosensor designs, emphasizing the significance of glycan-based discrimination of pathologically altered cells. Combined with microfluidics, it demonstrates the value of cell adhesion as a discriminant of cancer-related changes, with potential applications spanning diagnostics, therapeutic interventions, and advanced biomedical technologies.


Assuntos
Técnicas Biossensoriais , Adesão Celular , Neoplasias Cutâneas , Humanos , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Glicosilação , Neoplasias Cutâneas/patologia , Melanoma/patologia , Melanoma/diagnóstico , Queratinócitos/citologia , Pele/patologia , Pele/química , Lectinas/química , Lectinas/metabolismo , Linhagem Celular Tumoral , Melanócitos/citologia , Melanócitos/metabolismo , Microfluídica/métodos , Técnicas Analíticas Microfluídicas/instrumentação
2.
Chemphyschem ; 25(2): e202300505, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38009440

RESUMO

Proteins can alter their shape when interacting with a surface. This study explores how bovine serum albumin (BSA) modifies structurally when it adheres to a gold surface, depending on the protein concentration and pH. We verified that the gold surface induces significant structural modifications to the BSA molecule using circular dichroism, infrared spectroscopy, and atomic force microscopy. Specifically, adsorbed molecules displayed increased levels of disordered structures and ß-turns, with fewer α-helices than the native structure. MP-SPR spectroscopy demonstrated that the protein molecules preferred a planar orientation during adsorption. Molecular dynamics simulations revealed that the interaction between cysteines exposed to the outside of the molecule and the gold surface was vital, especially at pH=3.5. The macroscopic properties of the protein film observed by AFM and contact angles confirm the flexible nature of the protein itself. Notably, structural transformation is joined with the degree of hydration of protein layers.


Assuntos
Ouro , Soroalbumina Bovina , Ouro/química , Soroalbumina Bovina/química , Propriedades de Superfície , Estrutura Secundária de Proteína , Dicroísmo Circular , Adsorção
3.
Artigo em Inglês | MEDLINE | ID: mdl-37889219

RESUMO

The present study investigates silicone transfer occurring during microcontact printing (µCP) of lectins with polydimethylsiloxane (PDMS) stamps and its impact on the adhesion of cells. Static adhesion assays and single-cell force spectroscopy (SCFS) are used to compare adhesion of nonmalignant (HCV29) and cancer (HT1376) bladder cells, respectively, to high-affinity lectin layers (PHA-L and WGA, respectively) prepared by physical adsorption and µCP. The chemical composition of the µCP lectin patterns was monitored by time-of-flight secondary ion mass spectrometry (ToF-SIMS). We show that the amount of transferred silicone in the µCP process depends on the preprocessing of the PDMS stamps. It is revealed that silicone contamination within the patterned lectin layers inhibits the adhesion of bladder cells, and the work of adhesion is lower for µCP lectins than for drop-cast lectins. The binding capacity of microcontact printed lectins was larger when the PDMS stamps were treated with UV ozone plasma as compared to sonication in ethanol and deionized water. ToF-SIMS data show that ozone-based treatment of PDMS stamps used for µCP of lectin reduces the silicone contamination in the imprinting protocol regardless of stamp geometry (flat vs microstructured). The role of other possible contributors, such as the lectin conformation and organization of lectin layers, is also discussed.

4.
Nanoscale ; 15(40): 16371-16380, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37789717

RESUMO

Atomic force microscopy (AFM) has become indispensable for studying biological and medical samples. More than two decades of experiments have revealed that cancer cells are softer than healthy cells (for measured cells cultured on stiff substrates). The softness or, more precisely, the larger deformability of cancer cells, primarily independent of cancer types, could be used as a sensitive marker of pathological changes. The wide application of biomechanics in clinics would require designing instruments with specific calibration, data collection, and analysis procedures. For these reasons, such development is, at present, still very limited, hampering the clinical exploitation of mechanical measurements. Here, we propose a standardized operational protocol (SOP), developed within the EU ITN network Phys2BioMed, which allows the detection of the biomechanical properties of living cancer cells regardless of the nanoindentation instruments used (AFMs and other indenters) and the laboratory involved in the research. We standardized the cell cultures, AFM calibration, measurements, and data analysis. This effort resulted in a step-by-step SOP for cell cultures, instrument calibration, measurements, and data analysis, leading to the concordance of the results (Young's modulus) measured among the six EU laboratories involved. Our results highlight the importance of the SOP in obtaining a reproducible mechanical characterization of cancer cells and paving the way toward exploiting biomechanics for diagnostic purposes in clinics.


Assuntos
Técnicas de Cultura de Células , Módulo de Elasticidade , Microscopia de Força Atômica/métodos , Fenômenos Biomecânicos
5.
ACS Appl Mater Interfaces ; 15(30): 35962-35972, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37489588

RESUMO

Atomic force microscopy (AFM) has been used to study the mechanical properties of cells, in particular, malignant cells. Softening of various cancer cells compared to their nonmalignant counterparts has been reported for various cell types. However, in most AFM studies, the pericellular layer was ignored. As was shown, it could substantially change the measured cell rigidity and miss important information on the physical properties of the pericellular layer. Here we take into account the pericellular layer by using the brush model to do the AFM indentation study of bladder epithelial bladder nonmalignant (HCV29) and cancerous (TCCSUP) cells. It allows us to measure not only the quasistatic Young's modulus of the cell body but also the physical properties of the pericellular layer (the equilibrium length and grafting density). We found that the inner pericellular brush was longer for cancer cells, but its grafting density was similar to that found for nonmalignant cells. The outer brush was much shorter and less dense for cancer cells. Furthermore, we demonstrate a method to convert the obtained physical properties of the pericellular layer into biochemical language better known to the cell biology community. It is done by using heparinase I and neuraminidase enzymatic treatments that remove specific molecular parts of the pericellular layer. The presented here approach can also be used to decipher the molecular composition of not only pericellular but also other molecular layers.


Assuntos
Estrutura Molecular , Módulo de Elasticidade , Microscopia de Força Atômica/métodos
6.
Cells ; 12(13)2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37443716

RESUMO

The spread of tumor cells and the formation of distant metastasis remain the main causes of mortality in cancer patients. However, the mechanisms governing the release of cells from micro-environmental constraints remain unclear. E-cadherin negatively controls the invasion of epithelial cells by maintaining cell-cell contacts. Furthermore, the inactivation of E-cadherin triggers invasion in vitro. However, the role of E-cadherin is complex, as metastasizing cells maintain E-cadherin expression, which appears to have a positive role in the survival of tumor cells. In this report, we present a novel mechanism delineating how E-cadherin function is modulated to promote invasion. We have previously shown that E-cadherin is associated with p100AmotL2, which is required for radial actin formation and the transmission of mechanical force. Here, we present evidence that p60AmotL2, which is expressed in invading tumor cells, binds to the p100AmotL2 isoform and uncouples the mechanical constraint of radial actin filaments. We show for the first time that the coupling of E-cadherin to the actin cytoskeleton via p100AmotL2 is directly connected to the nuclear membrane. The expression of p60AmotL2 inactivates this connection and alters the properties of the nuclear lamina, potentiating the invasion of cells into micropores of the extracellular matrix. In summary, we propose that the balance of the two AmotL2 isoforms is important in the modulation of E-cadherin function and that an imbalance of this axis promotes ameboid cell invasion.


Assuntos
Amoeba , Humanos , Amoeba/metabolismo , Caderinas/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Células Epiteliais/metabolismo
7.
Cell Signal ; 109: 110742, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37268164

RESUMO

Melanoma is relatively resistant to chemotherapy, and no targeted therapies are fully effective. The most common mutations in melanoma result in hyperactivation of the mitogen-activated protein kinase (MAPK) and PI3K/AKT/ mTOR pathways responsible for initiating and controlling oncogenic protein translation. This makes both the signaling pathways potentially important therapeutic targets in melanoma. Our studies were carried out on human melanoma cell lines WM793 and 1205 LU with similar genomic alteration (BRAFV600E and PTEN loss). We used a highly specific PI3K/mTOR inhibitor, dactolisib (NVP-BEZ235), and Mnk inhibitor - CGP57380 alone and in combination. Here, we explore the mechanism of action of these drugs alone and in combination, as well as their effect on the viability and invasiveness of melanoma cells. Although when used independently, both drugs suppressed cell proliferation and migration, their combination has additional antitumor effects. We demonstrate that simultaneous inhibition of both pathways may prevent possible drug resistance.


Assuntos
Antineoplásicos , Melanoma , Quinolinas , Humanos , Inibidores de MTOR , Fosfatidilinositol 3-Quinases/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Fator de Iniciação 4E em Eucariotos/metabolismo , Linhagem Celular Tumoral , Serina-Treonina Quinases TOR/metabolismo , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Quinolinas/farmacologia , Proliferação de Células
8.
Int J Mol Sci ; 24(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37175920

RESUMO

Aberrant expression of glycans, i.e., oligosaccharide moiety covalently attached to proteins or lipids, is characteristic of various cancers, including urothelial ones. The binding of lectins to glycans is classified as molecular recognition, which makes lectins a strong tool for understanding their role in developing diseases. Here, we present a quantitative approach to tracing glycan-lectin interactions in cells, from the initial to the steady phase of adhesion. The cell adhesion was measured between urothelial cell lines (non-malignant HCV29 and carcinoma HT1376 and T24 cells) and lectin-coated surfaces. Depending on the timescale, single-cell force spectroscopy, and adhesion assays conducted in static and flow conditions were applied. The obtained results reveal that the adhesion of urothelial cells to two specific lectins, i.e., phytohemagglutinin-L and wheat germ agglutinin, was specific and selective. Thus, these lectins can be applied to selectively capture, identify, and differentiate between cancer types in a label-free manner. These results open up the possibility of designing lectin-based biosensors for diagnostic or prognostic purposes and developing strategies for drug delivery that could target cancer-associated glycans.


Assuntos
Lectinas , Neoplasias da Bexiga Urinária , Humanos , Lectinas/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Fito-Hemaglutininas/farmacologia , Aglutininas do Germe de Trigo , Polissacarídeos/metabolismo
9.
J Biomech ; 144: 111346, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36252307

RESUMO

The stiffening or softening of cancers observed in nanoindentation experiments has been recognized as a marker of cancer-related changes. In bladder cancers, continuous stretching/destretching is observed due to its functionality, indicating that shear forces dominate the mechanical response of these cells. Thus, nanoindentation and microrheological measurements conducted in parallel allow for a fully reliable mechanomarker of cancer progression. Here, bladder cancer cell lines, i.e., non-malignant cell cancer of the ureter (HCV29), bladder carcinoma (HT1376), and transitional cell carcinoma (T24), were studied. Nanoindentation and microrheological experiments were conducted on individual cells, cell monolayers, and spheroids that were formed using non-adherent surface plates. The results show that nanoindentation experiments can only differentiate between non-malignant HCV29 (stiffer) and cancerous HT1376 and T24 (softer) cells. Applying microrheology recognizes the type of grade 3 bladder cancers (carcinoma HT1376 or transitional cell carcinoma T24 cells). We showed that actin filaments are a vital element defining the rheological properties of spheroids. Differences in mechanical properties of cell monolayers could be associated with thick actin bundles and intercellular connections, with some extracellular matrix (ECM) contributing to the stiffening of such monolayers. Our findings demonstrate that a complete image of how cancer cells respond to mechanical stress (compressive and shear forces) can only be obtained after microrheological measurements using the transition frequency separating elastic and viscous regimes as a non-labeled biomarker of bladder cancer progression.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Humanos , Carcinoma de Células de Transição/patologia , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Células Epiteliais/metabolismo , Bexiga Urinária , Matriz Extracelular/metabolismo
10.
Sci Rep ; 12(1): 16276, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175469

RESUMO

Although complex, the biological processes underlying ischemic stroke are better known than those related to biomechanical alterations of single cells. Mechanisms of biomechanical changes and their relations to the molecular processes are crucial for understanding the function and dysfunction of the brain. In our study, we applied atomic force microscopy (AFM) to quantify the alterations in biomechanical properties in neuroblastoma SH-SY5Y cells subjected to oxygen and glucose deprivation (OGD) and reoxygenation (RO). Obtained results reveal several characteristics. Cell viability remained at the same level, regardless of the OGD and RO conditions, but, in parallel, the metabolic activity of cells decreased with OGD duration. 24 h RO did not recover the metabolic activity fully. Cells subjected to OGD appeared softer than control cells. Cell softening was strongly present in cells after 1 h of OGD and with longer OGD duration, and in RO conditions, cells recovered their mechanical properties. Changes in the nanomechanical properties of cells were attributed to the remodelling of actin filaments, which was related to cofilin-based regulation and impaired metabolic activity of cells. The presented study shows the importance of nanomechanics in research on ischemic-related pathological processes such as stroke.


Assuntos
Células-Tronco Neurais , Neuroblastoma , Fatores de Despolimerização de Actina , Glucose , Humanos , Oxigênio
11.
Philos Trans A Math Phys Eng Sci ; 380(2232): 20210346, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-35909354

RESUMO

The determination of mechanical properties of living cells as an indicator of cancer progression has become possible with the development of local measurement techniques such as atomic force microscopy (AFM). Its most important advantage is a nanoscopic character, implying that very local alterations can be quantified. The results gathered from AFM measurements of various cancers show that, for most cancers, individual cells are characterized by the lower apparent Young's modulus, denoting higher cell deformability. The measured value depends on various factors, like the properties of substrates used for cell growth, force loading rate or indentation depth. Despite this, the results proved the AFM capability to recognize mechanically altered cells. This can significantly impact the development of methodological approaches toward the precise identification of pathological cells. This article is part of the theme issue 'Nanocracks in nature and industry'.


Assuntos
Fenômenos Mecânicos , Neoplasias , Proliferação de Células , Módulo de Elasticidade , Microscopia de Força Atômica/métodos
12.
J Med Chem ; 65(15): 10459-10470, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35895090

RESUMO

The effect of polypyridyl Ru(II) complexes on the ability of cancer cells to migrate and invade, two features important in the formation of metastases, is evaluated. In vitro studies are carried out on breast cancer cell lines, MDA-MB-231 and MCF-7, as well as melanoma cell lines A2058 and A375. Three Ru(II) complexes comprising two 4,7-diphenyl-1,10-phenanthroline (dip) ligands and as a third ligand 2,2'-bipyridine (bpy), or its derivative with either 4-[3-(2-nitro-1H-imidazol-1-yl)propyl] (bpy-NitroIm), or 5-(4-{4'-methyl-[2,2'-bipyridine]-4-yl}but-1-yn-1-yl)pyridine-2-carbaldehyde semicarbazone (bpy-SC) moiety attached are examined. The low sub-toxic doses of the studied compounds greatly affected the cancer cells by inhibiting cell detachment, migration, invasion, transmigration, and re-adhesion, as well as increasing cell elasticity. The molecular studies revealed that the Ru(II) polypyridyl complexes impact the activity of the selected integrins and upregulate the expression of focal adhesion components such as vinculin and paxillin, leading to an increased number of focal adhesion contacts.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Rutênio , 2,2'-Dipiridil , Antineoplásicos/farmacologia , Adesão Celular , Complexos de Coordenação/farmacologia , Humanos , Ligantes , Rutênio/farmacologia
13.
Int J Mol Sci ; 23(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35887054

RESUMO

The use of polypyridyl Ru complexes to inhibit metastasis is a novel approach, and recent studies have shown promising results. We have reported recently that Ru (II) complexes gathering two 4,7-diphenyl-1,10-phenanthroline (dip) ligands and the one being 2,2'-bipyridine (bpy) or its derivative with a 4-[3-(2-nitro-1H-imidazol-1-yl)propyl (bpy-NitroIm) or 5-(4-{4'-methyl-[2,2'-bipyridine]-4-yl}but-1-yn-1-yl)pyridine-2-carbaldehyde semicarbazone (bpy-SC) moieties can alter the metastatic cascade, among others, by modulating cell adhesion properties. In this work, we show further studies of this group of complexes by evaluating their effect on HMEC-1 endothelial cells. While all the tested complexes significantly inhibited the endothelial cell migration, Ru-bpy additionally interrupted the pseudovessels formation. Functional changes in endothelial cells might arise from the impact of the studied compounds on cell elasticity and expression of proteins (vinculin and paxillin) involved in focal adhesions. Furthermore, molecular studies showed that complexes modulate the expression of cell adhesion molecules, which has been suggested to be one of the factors that mediate the activation of angiogenesis. Based on the performed studies, we can conclude that the investigated polypyridyl Ru (II) complexes can deregulate the functionality of endothelial cells which may lead to the inhibition of angiogenesis.


Assuntos
Complexos de Coordenação , Neoplasias , Rutênio , 2,2'-Dipiridil , Complexos de Coordenação/farmacologia , Células Endoteliais , Humanos , Ligantes , Fenantrolinas , Rutênio/farmacologia
14.
J Cell Mol Med ; 26(14): 3913-3930, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35702951

RESUMO

Glioblastoma (GBM) is the most common malignant brain tumour. GBM cells have the ability to infiltrate into the surrounding brain tissue, which results in a significant decrease in the patient's survival rate. Infiltration is a consequence of the low adhesion and high migration of the tumour cells, two features being associated with the highly remodelled extracellular matrix (ECM). In this study, we report that ECM composition is partially regulated at the post-transcriptional level by miRNA. Particularly, we show that miR-218, a well-known miRNA suppressor, is involved in the direct regulation of ECM components, tenascin-C (TN-C) and syndecan-2 (SDC-2). We demonstrated that the overexpression of miR-218 reduces the mRNA and protein expression levels of TN-C and SDC-2, and subsequently influences biomechanical properties of GBM cells. Atomic force microscopy (AFM) and real-time migration analysis revealed that miR-218 overexpression impairs the migration potential and enhances the adhesive properties of cells. AFM analysis followed by F-actin staining demonstrated that the expression level of miR-218 has an impact on cell stiffness and cytoskeletal reorganization. Global gene expression analysis showed deregulation of a number of genes involved in tumour cell motility and adhesion or ECM remodelling upon miR-218 treatment, suggesting further indirect interactions between the cells and ECM. The results demonstrated a direct impact of miR-218 reduction in GBM tumours on the qualitative ECM content, leading to changes in the rigidity of the ECM and GBM cells being conducive to increased invasiveness of GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , MicroRNAs , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Tenascina/genética , Tenascina/metabolismo
15.
Int J Nanomedicine ; 16: 6537-6552, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34602817

RESUMO

PURPOSE: Epithelial-mesenchymal (EMT) transition plays an important role in metastasis and is accompanied by an upregulation of N-cadherin expression. A new nanoparticulate system (SPION/CCh/N-cad) based on superparamagnetic iron oxide nanoparticles, stabilized with a cationic derivative of chitosan and surface-modified with anti-N-cadherin antibody, was synthetized for the effective capture of N-cadherin expressing circulating tumor cells (CTC). METHODS: The morphology, physicochemical, and magnetic properties of the system were evaluated using dynamic light scattering (DLS), fluorescence spectroscopy, Mössbauer spectroscopy, magnetometry, and fluorescence spectroscopy. Atomic force microscopy (AFM), confocal microscopy and flow cytometry were used to study the interaction of our nanoparticulate system with N-cadherin expressed in prostate cancer cell lines (PC-3 and DU 145). A purpose-built cuvette was used in the cancer cell capture experiments. RESULTS: The obtained nanoparticles were a spherical, stable colloid, and exhibited excellent magnetic properties. Biological experiments confirmed that the novel SPION/CCh/N-cad system interacts specifically with N-cadherin present on the cell surface. Preliminary studies on the magnetic capture of PC-3 cells using the obtained nanoparticles were successful. Incubation times as short as 1 minute were sufficient for the synthesized system to effectively bind to the PC-3 cells. CONCLUSION: Results obtained for our system suggest a possibility of using it to capture CTC in the flow conditions.


Assuntos
Nanopartículas , Neoplasias da Próstata , Caderinas , Linhagem Celular Tumoral , Humanos , Nanopartículas Magnéticas de Óxido de Ferro , Magnetismo , Masculino
16.
Phys Rev E ; 104(2-1): 024409, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34525582

RESUMO

The syndecans represent an ongoing research field focused on their regulatory roles in normal and pathological conditions. The role of syndecans in cancer progression is well documented, implicating their importance in diagnosis and even proposing various potential cancer treatments. Thus, the characterization of the unbinding properties at the single-molecule level will appeal to their use as targets for therapeutics. In our study, syndecan-1 and syndecan-4 were measured during the interaction with the vitronectin HEP II binding site. Our findings show that syndecans are calcium ion dependent molecules that reveal distinct, unbinding properties indicating the alterations in the structure of heparan sulfate (HS) chains, possibly in the chain sequence or sulfation pattern. In this way, we suppose that HS chain affinity to extracellular matrix proteins may govern cancer invasion by altering the syndecans' ability to interact with cancer-related receptors present in the tumor microenvironment, thereby promoting the activation of various signaling cascades regulating tumor cell behavior.


Assuntos
Heparitina Sulfato , Vitronectina , Transdução de Sinais , Análise Espectral
17.
Nanoscale ; 13(12): 6212-6226, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33885607

RESUMO

The crucial role of microtubules in the mitotic-related segregation of chromosomes makes them an excellent target for anticancer microtubule targeting drugs (MTDs) such as vinflunine (VFL), colchicine (COL), and docetaxel (DTX). MTDs affect mitosis by directly perturbing the structural organisation of microtubules. By a direct assessment of the biomechanical properties of prostate cancer DU145 cells exposed to different MTDs using atomic force microscopy, we show that cell stiffening is a response to the application of all the studied MTDs (VFL, COL, DTX). Changes in cellular rigidity are typically attributed to remodelling of the actin filaments in the cytoskeleton. Here, we demonstrate that cell stiffening can be driven by crosstalk between actin filaments and microtubules in MTD-treated cells. Our findings improve the interpretation of biomechanical data obtained for living cells in studies of various physiological and pathological processes.


Assuntos
Preparações Farmacêuticas , Neoplasias da Próstata , Citoesqueleto de Actina , Actinas , Citoesqueleto , Humanos , Masculino , Microtúbulos , Neoplasias da Próstata/tratamento farmacológico
18.
Int J Mol Sci ; 21(22)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233645

RESUMO

Increasing attention is devoted to the use of nanomechanics as a marker of various pathologies. Atomic force microscopy (AFM) is one of the techniques that could be applied to quantify the nanomechanical properties of living cells with a high spatial resolution. Thus, AFM offers the possibility to trace changes in the reorganization of the cytoskeleton in living cells. Impairments in the structure, organization, and functioning of two main cytoskeletal components, namely, actin filaments and microtubules, cause severe effects, leading to cell death. That is why these cytoskeletal components are targets for antitumor therapy. This review intends to describe the gathered knowledge on the capability of AFM to trace the alterations in the nanomechanical properties of living cells induced by the action of antitumor drugs that could translate into their effectiveness.


Assuntos
Antineoplásicos/farmacologia , Citoesqueleto/efeitos dos fármacos , Microscopia de Força Atômica/métodos , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Citoesqueleto/patologia , Humanos , Neoplasias/tratamento farmacológico
19.
J Cell Mol Med ; 24(23): 13853-13862, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33124775

RESUMO

Cardiac fibroblasts are able to sense the rigidity of their environment. The present study examines whether the stiffness of the substrate in cardiac fibroblast culture can influence the release of interleukin-6 (IL-6), interleukin-11 (IL-11) and soluble receptor of IL-6 (sIL-6R). It also examines the roles of integrin α2ß1 activation and intracellular signalling in these processes. Cardiac fibroblasts were cultured on polyacrylamide gels and grafted to collagen, with an elasticity of E = 2.23 ± 0.8 kPa (soft gel) and E = 8.28 ± 1.06 kPa (stiff gel, measured by Atomic Force Microscope). Flow cytometry and ELISA demonstrated that the fibroblasts cultured on the soft gel demonstrated higher expression of the α2 integrin subunit and increased α2ß1 integrin count and released higher levels of IL-6 and sIL-6R than those on the stiff gel. Substrate elasticity did not modify fibroblast IL-11 content. The silencing of the α2 integrin subunit decreased the release of IL-6. Similar effects were induced by TC-I 15 (an α2ß1 integrin inhibitor). The IL-6 levels in the serum and heart were markedly lower in α2 integrin-deficient mice B6.Cg-Itga2tm1.1Tkun/tm1.1Tkun than wild type. Inhibition of Src kinase by AZM 475271 modifies the IL-6 level. sIL-6R secretion is not dependent on α2ß1 integrin. Conclusion: The elastic properties of the substrate influence the release of IL-6 by cardiac fibroblasts, and this effect is dependent on α2ß1 integrin and kinase Src activation.


Assuntos
Fibroblastos/metabolismo , Integrina alfa2beta1/metabolismo , Interleucina-6/biossíntese , Miocárdio/metabolismo , Miocárdio/patologia , Animais , Linhagem Celular , Células Cultivadas , Citocinas/metabolismo , Fibroblastos/ultraestrutura , Citometria de Fluxo , Expressão Gênica , Inativação Gênica , Humanos , Integrina alfa2beta1/genética , Masculino , Fenômenos Mecânicos , Camundongos , Camundongos Transgênicos , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
20.
Eur Biophys J ; 49(6): 485-495, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32803311

RESUMO

The identification of cancer-related changes in cells and tissues based on the measurements of elastic properties using atomic force microscopy (AFM) seems to be approaching clinical application. Several limiting aspects have already been discussed; however, still, no data have shown how specific AFM probe geometries are related to the biomechanical evaluation of cancer cells. Here, we analyze and compare the nanomechanical results of mechanically homogenous polyacrylamide gels and heterogeneous bladder cancer cells measured using AFM probes of various tip geometry, including symmetric and non-symmetric pyramids and a sphere. Our observations show large modulus variability aligned with both types of AFM probes used and with the internal structure of the cells. Altogether, these results demonstrate that it is possible to differentiate between compliant and rigid samples of kPa elasticity; however, simultaneously, they highlight the strong need for standardized protocols for AFM-based elasticity measurements if applied in clinical practice including the use of a single type of AFM cantilever.


Assuntos
Hidrogéis/química , Microscopia de Força Atômica/métodos , Linhagem Celular , Módulo de Elasticidade , Humanos , Fenômenos Mecânicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA