Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 306: 122473, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38335719

RESUMO

Engineered matrices provide a valuable platform to understand the impact of biophysical factors on cellular behavior such as migration, proliferation, differentiation, and tissue remodeling, through mechanotransduction. While recent studies have identified some mechanisms of 3D mechanotransduction, there is still a critical knowledge gap in comprehending the interplay between 3D confinement, ECM properties, and cellular behavior. Specifically, the role of matrix stiffness in directing cellular fate in 3D microenvironment, independent of viscoelasticity, microstructure, and ligand density remains poorly understood. To address this gap, we designed a nanoparticle crosslinker to reinforce collagen-based hydrogels without altering their chemical composition, microstructure, viscoelasticity, and density of cell-adhesion ligand and utilized it to understand cellular dynamics. This crosslinking mechanism utilizes nanoparticles as crosslink epicenter, resulting in 10-fold increase in mechanical stiffness, without other changes. Human mesenchymal stem cells (hMSCs) encapsulated in 3D responded to mechanical stiffness by displaying circular morphology on soft hydrogels (5 kPa) and elongated morphology on stiff hydrogels (30 kPa). Stiff hydrogels facilitated the production and remodeling of nascent extracellular matrix (ECM) and activated mechanotransduction cascade. These changes were driven through intracellular PI3AKT signaling, regulation of epigenetic modifiers and activation of YAP/TAZ signaling. Overall, our study introduces a unique biomaterials platform to understand cell-ECM mechanotransduction in 3D for regenerative medicine as well as disease modelling.


Assuntos
Mecanotransdução Celular , Células-Tronco Mesenquimais , Humanos , Ligantes , Colágeno/química , Matriz Extracelular , Hidrogéis/química
2.
Front Cell Dev Biol ; 11: 1058727, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397244

RESUMO

Introduction: Nuclei have characteristic shapes dependent on cell type, which are critical for proper cell function, and nuclei lose their distinct shapes in multiple diseases including cancer, laminopathies, and progeria. Nuclear shapes result from deformations of the sub-nuclear components-nuclear lamina and chromatin. How these structures respond to cytoskeletal forces to form the nuclear shape remains unresolved. Although the mechanisms regulating nuclear shape in human tissues are not fully understood, it is known that different nuclear shapes arise from cumulative nuclear deformations post-mitosis, ranging from the rounded morphologies that develop immediately after mitosis to the various nuclear shapes that roughly correspond to cell shape (e.g., elongated nuclei in elongated cells, flat nuclei in flat cells). Methods: We formulated a mathematical model to predict nuclear shapes of cells in various contexts under the geometric constraints of fixed cell volume, nuclear volume and lamina surface area. Nuclear shapes were predicted and compared to experiments for cells in various geometries, including isolated on a flat surface, on patterned rectangles and lines, within a monolayer, isolated in a well, or when the nucleus is impinging against a slender obstacle. Results and Discussion: The close agreement between predicted and experimental shapes demonstrates a simple geometric principle of nuclear shaping: the excess surface area of the nuclear lamina (relative to that of a sphere of the same volume) permits a wide range of highly deformed nuclear shapes under the constraints of constant surface area and constant volume. When the lamina is smooth (tensed), the nuclear shape can be predicted entirely from these geometric constraints alone for a given cell shape. This principle explains why flattened nuclear shapes in fully spread cells are insensitive to the magnitude of the cytoskeletal forces. Also, the surface tension in the nuclear lamina and nuclear pressure can be estimated from the predicted cell and nuclear shapes when the cell cortical tension is known, and the predictions are consistent with measured forces. These results show that excess surface area of the nuclear lamina is the key determinant of nuclear shapes. When the lamina is smooth (tensed), the nuclear shape can be determined purely by the geometric constraints of constant (but excess) nuclear surface area, nuclear volume, and cell volume, for a given cell adhesion footprint, independent of the magnitude of the cytoskeletal forces involved.

3.
Soft Matter ; 19(4): 586-587, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36648177

Assuntos
Neoplasias , Humanos
4.
Biophys J ; 122(18): 3630-3645, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-36617192

RESUMO

Epithelial cells lining a gland and cells grown in a soft extracellular matrix polarize with apical proteins exposed to the lumen and basal proteins in contact with the extracellular matrix. Alterations to polarity, including an apical-out polarity, occur in human cancers. Although some aberrant polarity states may result from altered protein trafficking, recent observations of an extraordinary tissue-level inside-out unfolding suggest an alternative pathway for altered polarity. Because mechanical alterations are common in human cancer, including an upregulation of RhoA-mediated actomyosin tension in acinar epithelia, we explored whether perturbing mechanical homeostasis could cause apical-out eversion. Acinar eversion was robustly induced by direct activation of RhoA in normal and tumor epithelial acini, or indirect activation of RhoA through blockage of ß1-integrins, disruption of the LINC complex, oncogenic Ras activation, or Rac1 inhibition. Furthermore, laser ablation of a portion of the untreated acinus was sufficient to induce eversion. Analyses of acini revealed high curvature and low phosphorylated myosin in the apical cell surfaces relative to the basal surfaces. A vertex-based mathematical model that balances tension at cell-cell interfaces revealed a fivefold greater basal cell surface tension relative to the apical cell surface tension. The model suggests that the difference in surface energy between the apical and basal surfaces is the driving force for acinar eversion. Our findings raise the possibility that a loss of mechanical homeostasis may cause apical-out polarity states in human cancers.


Assuntos
Células Epiteliais , Matriz Extracelular , Humanos , Membrana Celular/metabolismo , Integrina beta1/metabolismo , Polaridade Celular/fisiologia
5.
J Biol Chem ; 299(3): 102935, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36693448

RESUMO

Although cancer is a genetic disease, physical changes such as stiffening of the extracellular matrix also commonly occur in cancer. Cancer cells sense and respond to extracellular matrix stiffening through the process of mechanotransduction. Cancer cell mechanotransduction can enhance cancer-promoting cell behaviors such as survival signaling, proliferation, and migration. Glycans, carbohydrate-based polymers, have recently emerged as important mediators and/or modulators of cancer cell mechanotransduction. Stiffer tumors are characterized by increased glycan content on cancer cells and their associated extracellular matrix. Here we review the role of cancer-associated glycans in coupled mechanical and biochemical alterations during cancer progression. We discuss the recent evidence on how increased expression of different glycans, in the form of glycoproteins and proteoglycans, contributes to both mechanical changes in tumors and corresponding cancer cell responses. We conclude with a summary of emerging tools that can be used to modify glycans for future studies in cancer mechanobiology.


Assuntos
Mecanotransdução Celular , Neoplasias , Polissacarídeos , Humanos , Biofísica , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Mecanotransdução Celular/fisiologia , Neoplasias/metabolismo , Neoplasias/fisiopatologia , Polissacarídeos/metabolismo
6.
Results Probl Cell Differ ; 70: 443-467, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36348118

RESUMO

Irregularities in nuclear shape and/or alterations to nuclear size are a hallmark of malignancy in a broad range of cancer types. Though these abnormalities are commonly used for diagnostic purposes and are often used to assess cancer progression in the clinic, the mechanisms through which they occur are not well understood. Nuclear size alterations in cancer could potentially arise from aneuploidy, changes in osmotic coupling with the cytoplasm, and perturbations to nucleocytoplasmic transport. Nuclear shape changes may occur due to alterations to cell-generated mechanical stresses and/or alterations to nuclear structural components, which balance those stresses, such as the nuclear lamina and chromatin. A better understanding of the mechanisms underlying abnormal nuclear morphology and size may allow the development of new therapeutics to target nuclear aberrations in cancer.


Assuntos
Núcleo Celular , Neoplasias , Humanos , Citoplasma/metabolismo , Transporte Ativo do Núcleo Celular , Cromatina/metabolismo , Neoplasias/metabolismo
7.
Mol Biol Cell ; 33(6): ar45, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35323046

RESUMO

Irregular nuclear shapes are a hallmark of human cancers. Recent studies suggest that alterations to chromatin regulators may cause irregular nuclear morphologies. Here we screened an epigenetic small molecule library consisting of 145 compounds against chromatin regulators for their ability to revert abnormal nuclear shapes that were induced by gene knockdown in noncancerous MCF10A human mammary breast epithelial cells. We leveraged a previously validated quantitative Fourier approach to quantify the elliptical Fourier coefficient (EFC ratio) as a measure of nuclear irregularities, which allowed us to perform rigorous statistical analyses of screening data. Top hit compounds fell into three major mode of action categories, targeting three separate epigenetic modulation routes: 1) histone deacetylase inhibitors, 2) bromodomain and extraterminal domain protein inhibitors, and 3) methyl-transferase inhibitors. Some of the top hit compounds were also efficacious in reverting nuclear irregularities in MDA-MB-231 triple negative breast cancer cells and in PANC-1 pancreatic cancer cells in a cell-type-dependent manner. Regularization of nuclear shapes was compound-specific, cell-type specific, and dependent on the specific molecular perturbation that induced nuclear irregularities. Our approach of targeting nuclear abnormalities may be potentially useful in screening new types of cancer therapies targeted toward chromatin structure.


Assuntos
Inibidores de Histona Desacetilases , Neoplasias de Mama Triplo Negativas , Linhagem Celular Tumoral , Cromatina , Epigênese Genética , Inibidores de Histona Desacetilases/farmacologia , Humanos , Neoplasias de Mama Triplo Negativas/metabolismo
8.
Cytoskeleton (Hoboken) ; 78(6): 312-322, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34291887

RESUMO

Alterations to the mechanical properties of the microenvironment are a hallmark of cancer. Elevated mechanical stresses exist in many solid tumors and elicit responses from cancer cells. Uncontrolled growth in confined environments gives rise to elevated solid compressive stress on cancer cells. Recruitment of leaky blood vessels and an absence of functioning lymphatic vessels causes a rise in the interstitial fluid pressure. Here we review the role of the cancer cell cytoskeleton and the nucleus in mediating both the initial and adaptive cancer cell response to these two types of mechanical stresses. We review how these mechanical stresses alter cancer cell functions such as proliferation, apoptosis, and migration.


Assuntos
Líquido Extracelular , Neoplasias , Humanos , Neoplasias/genética , Pressão , Estresse Mecânico , Microambiente Tumoral
9.
J Cell Physiol ; 236(8): 5715-5724, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33400284

RESUMO

Periodontal ligament fibroblasts (PdLFs) are an elongated cell type in the periodontium with matrix and bone regulatory functions which become abnormal in periodontal disease (PD). Here we found that the normally elongated and oriented PdLF nucleus becomes rounded and loses orientation in a mouse model of PD. Using in vitro micropatterning of cultured primary PdLF cell shape, we show that PdLF elongation correlates with nuclear elongation and the presence of thicker, contractile F-actin fibers. The rounded nuclei in mouse PD models in vivo are, therefore, indicative of reduced actomyosin tension. Inhibiting actomyosin contractility by inhibiting myosin light chain kinase, Rho kinase or myosin ATPase activity, in cultured PdLFs each consistently reduced messenger RNA levels of bone regulatory protein osteoprotegerin (OPG). Infection of cultured PdLFs with two different types of periodontal bacteria (Porphyromonas gingivalis and Fusobacterium nucleatum) failed to recapitulate the observed nuclear rounding in vivo, upregulated nonmuscle myosin II phosphorylation and downregulated OPG. Collectively, our results add support to the hypothesis that PdLF contractility becomes decreased and contributes to disease progression in PD.


Assuntos
Actomiosina/metabolismo , Fibroblastos/metabolismo , Osteoprotegerina/metabolismo , Ligamento Periodontal/efeitos dos fármacos , Animais , Citocinas/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ligamento Periodontal/metabolismo , Porphyromonas gingivalis/metabolismo
10.
Mol Biol Cell ; 31(13): 1392-1402, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32320319

RESUMO

Irregular nuclear shapes characterized by blebs, lobules, micronuclei, or invaginations are hallmarks of many cancers and human pathologies. Despite the correlation between abnormal nuclear shape and human pathologies, the mechanism by which the cancer nucleus becomes misshapen is not fully understood. Motivated by recent evidence that modifying chromatin condensation can change nuclear morphology, we conducted a high-throughput RNAi screen to identify epigenetic regulators that are required to maintain normal nuclear shape in human breast epithelial MCF-10A cells. We silenced 608 genes in parallel using an epigenetics siRNA library and used an unbiased Fourier analysis approach to quantify nuclear contour irregularity from fluorescent images captured on a high-content microscope. Using this quantitative approach, which we validated with confocal microscopy, we significantly expand the list of epigenetic regulators that impact nuclear morphology.


Assuntos
Núcleo Celular/patologia , Epigênese Genética , Neoplasias/genética , Neoplasias/patologia , Interferência de RNA , Mama , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular/genética , Células Epiteliais , Regulação Neoplásica da Expressão Gênica , Ensaios de Triagem em Larga Escala , Humanos , Microscopia Confocal
11.
Ann Biomed Eng ; 48(7): 2103-2112, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31745676

RESUMO

Studying a cell's ability to sense and respond to mechanical cues has emerged as a field unto itself over the last several decades, and this research area is now populated by engineers and biologists alike. As just one example of this cell mechanosensing, fibroblasts on soft substrates have slower growth rates, smaller spread areas, lower traction forces, and slower migration speeds compared to cells on stiff substrates. This phenomenon is not unique to fibroblasts, as these behaviors, and others, on soft substrates has been shown across a variety of cell types, and reproduced in many different labs. Thus far, the field has focused on discerning the mechanisms of cell mechanosensing through ion channels, focal adhesions and integrin-binding sites to the ECM, and the cell cytoskeleton. A relatively new concept in the field is that of mechanical memory, which refers to persistent effects of mechanical stimuli long after they have been removed from said stimulus. Here, we review this literature, provide an overview of emerging substrate fabrication approaches likely to be helpful for the field, and suggest the adaption of genetic tools for studying mechanical memory.


Assuntos
Matriz Extracelular , Mecanotransdução Celular , Animais , Materiais Biocompatíveis , Linhagem Celular Tumoral , Células Cultivadas , Citoesqueleto , Epigênese Genética , Humanos , Células-Tronco Mesenquimais/citologia
12.
Soft Matter ; 15(45): 9310-9317, 2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31674621

RESUMO

The mechanisms by which mammalian nuclear shape and size are established in cells, and become abnormal in disease states are not understood. Here, we tracked motile cells that underwent systematic changes in cell morphology as they moved from 1-D to 2-D micro-patterned adhesive domains. Motion of the cell boundaries during cell motility caused a dynamic and systematic change in nuclear volume. Short time scales (∼1 h) distinguished the dilation of the nucleus from the familiar increase that occurs during the cell cycle. Nuclear volume was systematically different between cells cultured in 3-D, 2-D and 1-D environments. Dilation of the nuclear volume was accompanied by dilation of chromatin, a decrease in the number of folds in the nuclear lamina, and an increase in nucleolar volume. Treatment of 2-D cells with non-muscle myosin-II inhibitors decreased cell volume, and proportionately caused a decrease in nuclear volume. These data suggest that nuclear size changes during cell migration may potentially impact gene expression through the modulation of intranuclear structure.


Assuntos
Movimento Celular , Tamanho do Núcleo Celular , Cromatina/metabolismo , Animais , Tamanho Celular , Camundongos , Miosinas/metabolismo , Células NIH 3T3
13.
Curr Biol ; 29(17): 2826-2839.e4, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31402305

RESUMO

The nucleoskeleton and cytoskeleton are important protein networks that govern cellular behavior and are connected together by the linker of nucleoskeleton and cytoskeleton (LINC) complex. Mutations in LINC complex components may be relevant to cancer, but how cell-level changes might translate into tissue-level malignancy is unclear. We used glandular epithelial cells in a three-dimensional culture model to investigate the effect of perturbations of the LINC complex on higher order cellular architecture. We show that inducible LINC complex disruption in human mammary epithelial MCF-10A cells and canine kidney epithelial MDCK II cells mechanically destabilizes the acinus. Lumenal collapse occurs because the acinus is unstable to increased mechanical tension that is caused by upregulation of Rho-kinase-dependent non-muscle myosin II motor activity. These findings provide a potential mechanistic explanation for how disruption of LINC complex may contribute to a loss of tissue structure in glandular epithelia.


Assuntos
Células Acinares/fisiologia , Citoesqueleto/fisiologia , Matriz Nuclear/fisiologia , Animais , Fenômenos Biomecânicos , Cães , Humanos , Células Madin Darby de Rim Canino
14.
Cancer Discov ; 9(10): 1438-1451, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31337617

RESUMO

By examination of the cancer genomics database, we identified a new set of mutations in core histones that frequently recur in cancer patient samples and are predicted to disrupt nucleosome stability. In support of this idea, we characterized a glutamate to lysine mutation of histone H2B at amino acid 76 (H2B-E76K), found particularly in bladder and head and neck cancers, that disrupts the interaction between H2B and H4. Although H2B-E76K forms dimers with H2A, it does not form stable histone octamers with H3 and H4 in vitro, and when reconstituted with DNA forms unstable nucleosomes with increased sensitivity to nuclease. Expression of the equivalent H2B mutant in yeast restricted growth at high temperature and led to defective nucleosome-mediated gene repression. Significantly, H2B-E76K expression in the normal mammary epithelial cell line MCF10A increased cellular proliferation, cooperated with mutant PIK3CA to promote colony formation, and caused a significant drift in gene expression and fundamental changes in chromatin accessibility, particularly at gene regulatory elements. Taken together, these data demonstrate that mutations in the globular domains of core histones may give rise to an oncogenic program due to nucleosome dysfunction and deregulation of gene expression. SIGNIFICANCE: Mutations in the core histones frequently occur in cancer and represent a new mechanism of epigenetic dysfunction that involves destabilization of the nucleosome, deregulation of chromatin accessibility, and alteration of gene expression to drive cellular transformation.See related commentary by Sarthy and Henikoff, p. 1346.This article is highlighted in the In This Issue feature, p. 1325.


Assuntos
Histonas/genética , Mutação , Neoplasias/genética , Oncogenes , Alelos , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Histonas/química , Histonas/metabolismo , Humanos , Mutação de Sentido Incorreto , Neoplasias/metabolismo , Nucleossomos/metabolismo , Multimerização Proteica , Leveduras/genética , Leveduras/metabolismo
15.
J Cell Physiol ; 234(11): 20675-20684, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31006858

RESUMO

Breast cancer nuclei have highly irregular shapes, which are diagnostic and prognostic markers of breast cancer progression. The mechanisms by which irregular cancer nuclear shapes develop are not well understood. Here we report the existence of vertical, apical cell protrusions in cultured MDA-MB-231 breast cancer cells. Once formed, these protrusions persist over time scales of hours and are associated with vertically upward nuclear deformations. They are absent in normal mammary epithelial cells (MCF-10A cells). Microtubule disruption enriched these protrusions preferentially in MDA-MB-231 cells compared with MCF-10A cells, whereas inhibition of nonmuscle myosin II (NMMII) abolished this enrichment. Dynamic confocal imaging of the vertical cell and nuclear shape revealed that the apical cell protrusions form first, and in response, the nucleus deforms and/or subsequently gets vertically extruded into the apical protrusion. Overexpression of lamin A/C in MDA-MB-231 cells reduced nuclear deformation in apical protrusions. These data highlight the role of mechanical stresses generated by moving boundaries, as well as abnormal nuclear mechanics in the development of abnormal nuclear shapes in breast cancer cells.


Assuntos
Neoplasias da Mama/patologia , Núcleo Celular/patologia , Estresse Mecânico , Linhagem Celular Tumoral , Citocalasina D/farmacologia , Citoesqueleto/efeitos dos fármacos , Feminino , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Nocodazol/farmacologia , Moduladores de Tubulina/farmacologia
16.
Mol Biol Cell ; 30(7): 899-906, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30566037

RESUMO

Cancer cell migration through narrow constrictions generates compressive stresses on the nucleus that deform it and cause rupture of nuclear membranes. Nuclear membrane rupture allows uncontrolled exchange between nuclear and cytoplasmic contents. Local tensile stresses can also cause nuclear deformations, but whether such deformations are accompanied by nuclear membrane rupture is unknown. Here we used a direct force probe to locally deform the nucleus by applying a transient tensile stress to the nuclear membrane. We found that a transient (∼0.2 s) deformation (∼1% projected area strain) in normal mammary epithelial cells (MCF-10A cells) was sufficient to cause rupture of the nuclear membrane. Nuclear membrane rupture scaled with the magnitude of nuclear deformation and the magnitude of applied tensile stress. Comparison of diffusive fluxes of nuclear probes between wild-type and lamin-depleted MCF-10A cells revealed that lamin A/C, but not lamin B2, protects the nuclear membranes against rupture from tensile stress. Our results suggest that transient nuclear deformations typically caused by local tensile stresses are sufficient to cause nuclear membrane rupture.


Assuntos
Lamina Tipo A/metabolismo , Lamina Tipo B/metabolismo , Membrana Nuclear/fisiologia , Animais , Linhagem Celular , Movimento Celular/fisiologia , Núcleo Celular/metabolismo , Citosol/metabolismo , Células Epiteliais/fisiologia , Estresse Mecânico , Resistência à Tração/fisiologia
17.
Open Biol ; 8(9)2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30209038

RESUMO

The periodontium is a structurally and functionally complex tissue that facilitates the anchorage of teeth in jaws. The periodontium consists of various cell types including stem cells, fibroblasts and epithelial cells. Cells of the periodontium are constantly exposed to mechanical stresses generated by biological processes such as the chewing motions of teeth, by flows generated by tongue motions and by forces generated by implants. Mechanical stresses modulate the function of cells in the periodontium, and may play a significant role in the development of periodontal disease. Here, we review the literature on the effect of mechanical forces on periodontal cells in health and disease with an emphasis on molecular and cellular mechanisms.


Assuntos
Mecanotransdução Celular , Periodonto/citologia , Proliferação de Células , Células Epiteliais/citologia , Fibroblastos/citologia , Humanos , Células-Tronco/citologia
18.
J Cell Physiol ; 233(2): 1446-1454, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28542912

RESUMO

Actomyosin stress fibers impinge on the nucleus and can exert compressive forces on it. These compressive forces have been proposed to elongate nuclei in fibroblasts, and lead to abnormally shaped nuclei in cancer cells. In these models, the elongated or flattened nuclear shape is proposed to store elastic energy. However, we found that deformed shapes of nuclei are unchanged even after removal of the cell with micro-dissection, both for smooth, elongated nuclei in fibroblasts and abnormally shaped nuclei in breast cancer cells. The lack of shape relaxation implies that the nuclear shape in spread cells does not store any elastic energy, and the cellular stresses that deform the nucleus are dissipative, not static. During cell spreading, the deviation of the nucleus from a convex shape increased in MDA-MB-231 cancer cells, but decreased in MCF-10A cells. Tracking changes of nuclear and cellular shape on micropatterned substrata revealed that fibroblast nuclei deform only during deformations in cell shape and only in the direction of nearby moving cell boundaries. We propose that motion of cell boundaries exert a stress on the nucleus, which allows the nucleus to mimic cell shape. The lack of elastic energy in the nuclear shape suggests that nuclear shape changes in cells occur at constant surface area and volume.


Assuntos
Neoplasias da Mama/patologia , Movimento Celular , Forma do Núcleo Celular , Núcleo Celular/patologia , Forma Celular , Fibroblastos/citologia , Fibras de Estresse/patologia , Animais , Linhagem Celular Tumoral , Transferência de Energia , Feminino , Humanos , Mecanotransdução Celular , Camundongos , Células NIH 3T3 , Estresse Mecânico , Fatores de Tempo
19.
PLoS One ; 11(3): e0151322, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26974838

RESUMO

Microtubules have a persistence length of the order of millimeters in vitro, but inside cells they bend over length scales of microns. It has been proposed that polymerization forces bend microtubules in the vicinity of the cell boundary or other obstacles, yet bends develop even when microtubules are polymerizing freely, unaffected by obstacles and cell boundaries. How these bends are formed remains unclear. By tracking the motions of microtubules marked by photobleaching, we found that in LLC-PK1 epithelial cells local bends develop primarily by plus-end directed transport of portions of the microtubule contour towards stationary locations (termed pinning points) along the length of the microtubule. The pinning points were transient in nature, and their eventual release allowed the bends to relax. The directionality of the transport as well as the overall incidence of local bends decreased when dynein was inhibited, while myosin inhibition had no observable effect. This suggests that dynein generates a tangential force that bends microtubules against stationary pinning points. Simulations of microtubule motion and polymerization accounting for filament mechanics and dynein forces predict the development of bends of size and shape similar to those observed in cells. Furthermore, simulations show that dynein-generated bends at a pinning point near the plus end can cause a persistent rotation of the tip consistent with the observation that bend formation near the tip can change the direction of microtubule growth. Collectively, these results suggest a simple physical mechanism for the bending of growing microtubules by dynein forces accumulating at pinning points.


Assuntos
Microtúbulos/metabolismo , Animais , Transporte Biológico , Fenômenos Biomecânicos , Núcleo Celular/metabolismo , Simulação por Computador , Dineínas/metabolismo , Células LLC-PK1 , Modelos Biológicos , Miosinas/metabolismo , Rotação , Suínos
20.
Sci Rep ; 6: 19689, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26795751

RESUMO

Morphological variability in cytoskeletal organization, organelle position and cell boundaries is a common feature of cultured cells. Remarkable uniformity and reproducibility in structure can be accomplished by providing cells with defined geometric cues. Cells in tissues can also self-organize in the absence of directing extracellular cues; however the mechanical principles for such self-organization are not understood. We report that unlike horizontal shapes, the vertical shapes of the cell and nucleus in the z-dimension are uniform in cells in cultured monolayers compared to isolated cells. Apical surfaces of cells and their nuclei in monolayers were flat and heights were uniform. In contrast, isolated cells, or cells with disrupted cell-cell adhesions had nuclei with curved apical surfaces and variable heights. Isolated cells cultured within micron-sized square wells displayed flat cell and nuclear shapes similar to cells in monolayers. Local disruption of nuclear-cytoskeletal linkages resulted in spatial variation in vertical uniformity. These results suggest that competition between cell-cell pulling forces that expand and shorten the vertical cell cross-section, thereby widening and flattening the nucleus, and the resistance of the nucleus to further flattening results in uniform cell and nuclear cross-sections. Our results reveal the mechanical principles of self-organized vertical uniformity in cell monolayers.


Assuntos
Forma do Núcleo Celular , Núcleo Celular/metabolismo , Forma Celular , Células Epiteliais/citologia , Mama/citologia , Caderinas/metabolismo , Adesão Celular , Movimento Celular , Separação Celular , Feminino , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA