Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Elife ; 122023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37551870

RESUMO

Anthracyclines, such as doxorubicin (Dox), are widely used chemotherapeutic agents for the treatment of solid tumors and hematologic malignancies. However, they frequently induce cardiotoxicity leading to dilated cardiomyopathy and heart failure. This study sought to investigate the role of the exchange protein directly activated by cAMP (EPAC) in Dox-induced cardiotoxicity and the potential cardioprotective effects of EPAC inhibition. We show that Dox induces DNA damage and cardiomyocyte cell death with apoptotic features. Dox also led to an increase in both cAMP concentration and EPAC1 activity. The pharmacological inhibition of EPAC1 (with CE3F4) but not EPAC2 alleviated the whole Dox-induced pattern of alterations. When administered in vivo, Dox-treated WT mice developed a dilated cardiomyopathy which was totally prevented in EPAC1 knock-out (KO) mice. Moreover, EPAC1 inhibition potentiated Dox-induced cell death in several human cancer cell lines. Thus, EPAC1 inhibition appears as a potential therapeutic strategy to limit Dox-induced cardiomyopathy without interfering with its antitumoral activity.


Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Camundongos , Humanos , Animais , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Cardiotoxicidade , Cardiomiopatia Dilatada/patologia , Doxorrubicina/metabolismo , Cardiomiopatias/metabolismo , Miócitos Cardíacos/metabolismo , Camundongos Knockout , Apoptose
2.
Mycopathologia ; 186(6): 889-892, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34570289

RESUMO

Today, the genus Scedosporium comprises at least ten species with four of them, Scedosporium apiospermum, Scedosporium boydii, Scedosporium aurantiacum and Scedosporium minutisporum capable of colonizing the lungs of patients with cystic fibrosis. Scedosporium dehoogii, which is also common in the soil, has never been reported as causing human pulmonary infections. Here we report the first genome sequence for S. dehoogii, an invaluable resource to understand the genetic bases of pathogenesis in the genus Scedosporium.


Assuntos
Genoma , Scedosporium , Humanos , Scedosporium/genética
3.
Mol Metab ; 40: 101027, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32480041

RESUMO

OBJECTIVES: Apoptosis-Inducing Factor (AIF) is a protein involved in mitochondrial electron transport chain assembly/stability and programmed cell death. The relevant role of this protein is underlined because mutations altering mitochondrial AIF properties result in acute pediatric mitochondriopathies and tumor metastasis. By generating an original AIF-deficient mouse strain, this study attempted to analyze, in a single paradigm, the cellular and developmental metabolic consequences of AIF loss and the subsequent oxidative phosphorylation (OXPHOS) dysfunction. METHODS: We developed a novel AIF-deficient mouse strain and assessed, using molecular and cell biology approaches, the cellular, embryonic, and adult mice phenotypic alterations. Additionally, we conducted ex vivo assays with primary and immortalized AIF knockout mouse embryonic fibroblasts (MEFs) to establish the cell death characteristics and the metabolic adaptive responses provoked by the mitochondrial electron transport chain (ETC) breakdown. RESULTS: AIF deficiency destabilized mitochondrial ETC and provoked supercomplex disorganization, mitochondrial transmembrane potential loss, and high generation of mitochondrial reactive oxygen species (ROS). AIF-/Y MEFs counterbalanced these OXPHOS alterations by mitochondrial network reorganization and a metabolic reprogramming toward anaerobic glycolysis illustrated by the AMPK phosphorylation at Thr172, the overexpression of the glucose transporter GLUT-4, the subsequent enhancement of glucose uptake, and the anaerobic lactate generation. A late phenotype was characterized by the activation of P53/P21-mediated senescence. Notably, approximately 2% of AIF-/Y MEFs diminished both mitochondrial mass and ROS levels and spontaneously proliferated. These cycling AIF-/Y MEFs were resistant to caspase-independent cell death inducers. The AIF-deficient mouse strain was embryonic lethal between E11.5 and E13.5 with energy loss, proliferation arrest, and increased apoptotic levels. Contrary to AIF-/Y MEFs, the AIF KO embryos were unable to reprogram their metabolism toward anaerobic glycolysis. Heterozygous AIF+/- females displayed progressive bone marrow, thymus, and spleen cellular loss. In addition, approximately 10% of AIF+/- females developed perinatal hydrocephaly characterized by brain development impairment, meningeal fibrosis, and medullar hemorrhages; those mice died 5 weeks after birth. AIF+/- with hydrocephaly exhibited loss of ciliated epithelium in the ependymal layer. This phenotype was triggered by the ROS excess. Accordingly, it was possible to diminish the occurrence of hydrocephalus AIF+/- females by supplying dams and newborns with an antioxidant in drinking water. CONCLUSIONS: In a single knockout model and at 3 different levels (cell, embryo, and adult mice) we demonstrated that by controlling the mitochondrial OXPHOS/metabolism, AIF is a key factor regulating cell differentiation and fate. Additionally, by providing new insights into the pathological consequences of mitochondrial OXPHOS dysfunction, our new findings pave the way for novel pharmacological strategies.


Assuntos
Fator de Indução de Apoptose/genética , Fator de Indução de Apoptose/metabolismo , Animais , Apoptose/fisiologia , Caspases/metabolismo , Respiração Celular , Feminino , Fibroblastos/metabolismo , Engenharia Genética/métodos , Glicólise/genética , Hidrocefalia/metabolismo , Masculino , Potencial da Membrana Mitocondrial/genética , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos/genética , Mitocôndrias/metabolismo , Modelos Animais , Fosforilação Oxidativa , Espécies Reativas de Oxigênio/metabolismo
4.
Ann Rheum Dis ; 79(7): 891-900, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32381568

RESUMO

OBJECTIVES: To decipher the phenotype of endothelial cells (ECs) derived from circulating progenitors issued from patients with rheumatoid arthritis (RA). METHODS: RA and control ECs were compared according to their proliferative capacities, apoptotic profile, response to tumour necrosis factor (TNF)-α stimulation and angiogenic properties. Microarray experiments were performed to identify gene candidates relevant to pathological angiogenesis. Identified candidates were detected by RT-PCR and western blot analysis in ECs and by immunohistochemistry in the synovium. Their functional relevance was then evaluated in vitro after gene invalidation by small interfering RNA and adenoviral gene overexpression, and in vivo in the mouse model of methyl-bovine serum albumin-(mBSA)-induced arthritis. RESULTS: RA ECs displayed higher proliferation rate, greater sensitisation to TNF-α and enhanced in vitro and in vivo angiogenic capacities. Microarray analyses identified the NAD-dependent protein deacetylase sirtuin-1 (SIRT1) as a relevant gene candidate. Decreased SIRT1 expression was detected in RA ECs and synovial vessels. Deficient endothelial SIRT1 expression promoted a proliferative, proapoptotic and activated state of ECs through the acetylation of p53 and p65, and lead the development of proangiogenic capacities through the upregulation of the matricellular protein cysteine-rich angiogenic protein-61. Conditional deletion of SIRT1 in ECs delayed the resolution of experimental methyl-bovine serum albumin-(mBSA)-induced arthritis. Conversely, SIRT1 activation reversed the pathological phenotype of RA ECs and alleviates signs of experimental mBSA-induced arthritis. CONCLUSIONS: These results support a role of SIRT1 in RA and may have therapeutic implications, since targeting angiogenesis, and especially SIRT1, might be used as a complementary therapeutic approach in RA.


Assuntos
Artrite Reumatoide/genética , Neovascularização Patológica/genética , Sirtuína 1/metabolismo , Membrana Sinovial/irrigação sanguínea , Adulto , Animais , Apoptose/genética , Artrite Experimental , Artrite Reumatoide/patologia , Proliferação de Células/genética , Células Endoteliais/metabolismo , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Neovascularização Patológica/patologia , Transdução de Sinais/genética , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/genética
5.
Diabetes ; 68(10): 1924-1933, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31391173

RESUMO

Chronic heart failure is a common complication in patients with type 2 diabetes mellitus (T2DM). T2DM is associated with disturbed metabolism of fat, which can result in excessive accumulation of lipids in cardiac muscle. In the current study, we assessed mitochondrial oxidation of carbohydrates and fatty acids, lipid accumulation, endoplasmic reticulum (ER) stress, and apoptosis in diabetic left ventricle. Left ventricular myocardium from 37 patients (a group of patients with diabetes and a group of patients without diabetes [ejection fraction >50%]) undergoing coronary artery bypass graft surgery was obtained by subepicardial needle biopsy. The group with diabetes had a significantly decreased rate of mitochondrial respiration fueled by palmitoyl-carnitine that correlated with blood glucose dysregulation, while there was no difference in oxidation of pyruvate. Diabetic myocardium also had significantly decreased activity of hydroxyacyl-CoA dehydrogenase (HADHA) and accumulated more lipid droplets and ceramide. Also, markers of ER stress response (GRP78 and CHOP) and apoptosis (cleaved caspase-3) were elevated in diabetic myocardium. These results show that, even in the absence of contractile failure, diabetic heart exhibits a decreased mitochondrial capacity for ß-oxidation, increased accumulation of intracellular lipids, ER stress, and greater degree of apoptosis. Lower efficiency of mitochondrial fatty acid oxidation may represent a potential target in combating negative effects of diabetes on the heart.


Assuntos
Apoptose/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Ácidos Graxos/metabolismo , Ventrículos do Coração/metabolismo , Idoso , Ponte de Artéria Coronária , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/cirurgia , Diabetes Mellitus Tipo 2/complicações , Cardiomiopatias Diabéticas/cirurgia , Chaperona BiP do Retículo Endoplasmático , Feminino , Proteínas de Choque Térmico/metabolismo , Humanos , Metabolismo dos Lipídeos/fisiologia , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Oxirredução , Fator de Transcrição CHOP/metabolismo
6.
J Hypertens ; 36(5): 1164-1177, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29369849

RESUMO

OBJECTIVE: Energy metabolism shift from oxidative phosphorylation toward glycolysis in pulmonary artery smooth muscle cells (PASMCs) is suggested to be involved in their hyperproliferation in pulmonary arterial hypertension (PAH). Here, we studied the role of the deacetylase sirtuin1 (SIRT1) in energy metabolism regulation in PASMCs via various pathways including activation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), master regulator of mitochondrial biogenesis. APPROACH AND RESULTS: Contents of PGC-1α and its downstream targets as well as markers of mitochondrial mass (voltage-dependent anion channel and citrate synthase) were diminished in human PAH PASMCs. These cells and platelet-derived growth factor-stimulated rat PASMCs demonstrated a shift in cellular acetylated/deacetylated state, as evidenced by the increase of the acetylated forms of SIRT1 targets: histone H1 and Forkhead box protein O1. Rat and human PASMC proliferation was potentiated by SIRT1 pharmacological inhibition or specific downregulation via short-interfering RNA. Moreover, after chronic hypoxia exposure, SIRT1 inducible knock out mice displayed a more intense vascular remodeling compared with their control littermates, which was associated with an increase in right ventricle pressure and hypertrophy. SIRT1 activator Stac-3 decreased the acetylation of histone H1 and Forkhead box protein O1 and strongly inhibited rat and human PASMC proliferation without affecting cell mortality. This effect was associated with the activation of mitochondrial biogenesis evidenced by higher expression of mitochondrial markers and downstream targets of PGC-1α. CONCLUSION: Altered acetylation/deacetylation balance as the result of SIRT1 inactivation is involved in the pathogenesis of PAH, and this enzyme could be a promising therapeutic target for PAH treatment.


Assuntos
Proliferação de Células , Metabolismo Energético , Miócitos de Músculo Liso/fisiologia , Artéria Pulmonar/citologia , Sirtuína 1/metabolismo , Acetilação/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Citrato (si)-Sintase/metabolismo , Feminino , Proteína Forkhead Box O1 , Histonas/metabolismo , Humanos , Hipertensão Pulmonar/metabolismo , Hipóxia/metabolismo , Masculino , Camundongos Knockout , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ratos , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/genética , Remodelação Vascular , Canais de Ânion Dependentes de Voltagem/metabolismo
7.
J Toxicol Environ Health A ; 80(23-24): 1230-1241, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29165056

RESUMO

The mycotoxin citrinin (CTN) is a natural contaminant of various human foods that may produce serious adverse health problems. Several studies demonstrated that citrinin exerts cytotoxic and genotoxic effects in both in vivo and in vitro systems. However, the precise mechanisms of action (MOA), particularly in intestinal cells remain unclear. The aim of the present study was to examine the precise MOA of citrinin in vitro. Data demonstrated that CTN significantly decreased the number of viable human intestinal HCT116 cells and induced apoptotic events including (1) decrease in ΔÑ°m indicative of mitochondrial membrane permeabilization, (2) activation of caspase 3, (3) elevated production of reactive oxygen species (ROS) and (4) relative persistence of plasma membrane integrity. Further, the genetic deficiency of the pro-apoptotic protein Bax protected cells against CTN-induced apoptosis, indicating that Bax is required for CTN-mediated toxicity. It was also found that CTN triggered endoplasmic reticulum (ER) stress and activated different arms of the unfolded protein response (UPR) as demonstrated by increase in expression of GRP78 (glucose-regulated protein-78), GRP94 (glucose-regulated protein-94), GADD34 (growth arrest and DNA damage-inducible protein-34), the protein disulfide isomerase associated 6 (PDIA6), CHOP (C/EBP-homologous protein) and the splicing of XBP1 (X-Box Binding Protein 1). Pretreatment of cells with the chemical chaperone 4-phenylbutyrate (PBA), known to alleviate ER stress, prevented significantly the apoptotic process triggered by CTN. Taken together, these results suggest that CTN exerts its cytotoxic effects in HCT116 cells by inducing apoptosis, at least in part, through induction of ER stress.


Assuntos
Apoptose/efeitos dos fármacos , Citrinina/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Células HCT116 , Humanos
8.
PLoS One ; 12(4): e0174651, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28394908

RESUMO

BACKGROUND: The emergence of new strains in RNA viruses is mainly due to mutations or intra and inter-genotype homologous recombination. Non-homologous recombinations may be deleterious and are rarely detected. In previous studies, we identified HCV-1b strains bearing two tandemly repeated V3 regions in the NS5A gene without ORF disruption. This polymorphism may be associated with an unfavorable course of liver disease and possibly involved in liver carcinogenesis. Here we aimed at characterizing the origin of these mutant strains and identifying the evolutionary mechanism on which the V3 duplication relies. METHODS: Direct sequencing of the entire NS5A and E1 genes was performed on 27 mutant strains. Quasispecies analyses in consecutive samples were also performed by cloning and sequencing the NS5A gene for all mutant and wild strains. We analyzed the mutant and wild-type sequence polymorphisms using Bayesian methods to infer the evolutionary history of and the molecular mechanism leading to the duplication-like event. RESULTS: Quasispecies were entirely composed of exclusively mutant or wild-type strains respectively. Mutant quasispecies were found to have been present since contamination and had persisted for at least 10 years. This V3 duplication-like event appears to have resulted from non-homologous recombination between HCV-1b wild-type strains around 100 years ago. The association between increased liver disease severity and these HCV-1b mutants may explain their persistence in chronically infected patients. CONCLUSIONS: These results emphasize the possible consequences of non-homologous recombination in the emergence and severity of new viral diseases.


Assuntos
Evolução Molecular , Duplicação Gênica , Hepacivirus/genética , Recombinação Genética , Proteínas não Estruturais Virais/genética , Teorema de Bayes , Carcinoma Hepatocelular/virologia , Estudos de Coortes , Loci Gênicos , Hepatite C/virologia , Interações Hospedeiro-Patógeno , Humanos/virologia , Neoplasias Hepáticas/virologia , Mutação , Filogenia , Polimorfismo Genético , Proteínas do Envelope Viral/genética
9.
Clin Sci (Lond) ; 131(9): 803-822, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28424375

RESUMO

It is increasingly acknowledged that a sex and gender specificity affects the occurrence, development, and consequence of a plethora of pathologies. Mitochondria are considered as the powerhouse of the cell because they produce the majority of energy-rich phosphate bonds in the form of adenosine tri-phosphate (ATP) but they also participate in many other functions like steroid hormone synthesis, reactive oxygen species (ROS) production, ionic regulation, and cell death. Adequate cellular energy supply and survival depend on mitochondrial life cycle, a process involving mitochondrial biogenesis, dynamics, and quality control via mitophagy. It appears that mitochondria are the place of marked sexual dimorphism involving mainly oxidative capacities, calcium handling, and resistance to oxidative stress. In turn, sex hormones regulate mitochondrial function and biogenesis. Mutations in genes encoding mitochondrial proteins are the origin of serious mitochondrial genetic diseases. Mitochondrial dysfunction is also an important parameter for a large panel of pathologies including neuromuscular disorders, encephalopathies, cardiovascular diseases (CVDs), metabolic disorders, neuropathies, renal dysfunction etc. Many of these pathologies present sex/gender specificity. Here we review the sexual dimorphism of mitochondria from different tissues and how this dimorphism takes part in the sex specificity of important pathologies mainly CVDs and neurological disorders.


Assuntos
Trifosfato de Adenosina/biossíntese , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores Sexuais , Apoptose , Feminino , Humanos , Masculino , Mitocôndrias/fisiologia , Doenças Mitocondriais/fisiopatologia , Modelos Biológicos
10.
Neurotoxicology ; 53: 334-342, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26584763

RESUMO

Zearalenone (ZEN) and its metabolites are found in many food products and are known to induce many toxic effects. The major ZEN metabolites are α-zearalenol (α-ZOL) and ß-zearalenol (ß-ZOL). The mechanisms by which they mediate their cytotoxic effects are not well known and seem to differ depending on the type of cells. We investigated the possible underlying mechanism in α-ZOL and ß-ZOL-induced toxicity in HCT116 cells. We showed that cell treatment with α-ZOL/ß-ZOL generated endoplasmic reticulum (ER) stress and activated the Unfolded Protein Response (UPR) as evidenced by XBP1 mRNA splicing and up-regulation of GADD34, GRP78, ATF4 and CHOP. Apoptosis was triggered by ZEN metabolites-induced ER stress, and executed through a mitochondria-dependent pathway, characterized by a loss of mitochondrial transmembrane potential (ΔΨm), a downstream generation of O2•(-) and caspase 3 activation. Cellular deficiency of the pro-apoptotic proteins Bax and Bak protected cells against α/ß-ZOL-induced toxicity. However, treatment with α-ZOL or ß-ZOL combined with Quercetin (QUER), a common dietary flavonoid with well-known antioxidant activity, significantly reduced damage induced by α and ß-ZOL in all tested markers. We concluded that QUER protects against the cellular toxicity of α and ß-ZOL.×.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Quercetina/farmacologia , Zearalenona/farmacologia , Zeranol/análogos & derivados , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Análise de Variância , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Chaperona BiP do Retículo Endoplasmático , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Proteína Fosfatase 1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo , Zeranol/farmacologia
11.
Environ Toxicol ; 31(12): 1851-1858, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26314699

RESUMO

Patulin (PAT) is a secondary metabolite produced by several species of the genera of Penicillium, Aspergillus, and Byssochlamys that can be found in rotting fruits, especially in apples and apple-based products. Exposure to this mycotoxin has been reported to induce intestinal and kidney injuries. The mechanism underlying such toxicity has been linked to the induction of apoptosis which occurred with reactive oxygen species production and endoplasmic reticulum (ER) stress induction. This study aimed to evaluate the effect of the two common dietary compounds Quercetin (QUER), a natural flavonoid, and Crocin (CRO), a natural carotenoid, on PAT-induced toxicity in human colon carcinoma (HCT116) and embryonic kidney cells (HEK293). We showed that antioxidant properties of QUER and CRO help to prevent ER stress activation and lipid peroxidation as evidenced by the reduction in GRP78 and GADD34 expressions and the decrease in malondialdehyde production. Furthermore, we demonstrated their ability to re-establish the loss of the mitochondrial membrane potential to inhibit caspase 3 activation and DNA fragmentation. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1851-1858, 2016.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Carotenoides/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Patulina/toxicidade , Quercetina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Caspase 3/metabolismo , Fragmentação do DNA/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Ativação Enzimática , Células HCT116 , Células HEK293 , Proteínas de Choque Térmico/metabolismo , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Malondialdeído/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteína Fosfatase 1/metabolismo
12.
Evol Appl ; 8(7): 650-61, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26240603

RESUMO

Unraveling the genomic processes at play during variety diversification is of fundamental interest for understanding evolution, but also of applied interest in crop science. It can indeed provide knowledge on the genetic bases of traits for crop improvement and germplasm diversity management. Apple is one of the most important fruit crops in temperate regions, having both great economic and cultural values. Sweet dessert apples are used for direct consumption, while bitter cider apples are used to produce cider. Several important traits are known to differentiate the two variety types, in particular fruit size, biennial versus annual fruit bearing, and bitterness, caused by a higher content in polyphenols. Here, we used an Illumina 8k SNP chip on two core collections, of 48 dessert and 48 cider apples, respectively, for identifying genomic regions responsible for the differences between cider and dessert apples. The genome-wide level of genetic differentiation between cider and dessert apples was low, although 17 candidate regions showed signatures of divergent selection, displaying either outlier F ST values or significant association with phenotypic traits (bitter versus sweet fruits). These candidate regions encompassed 420 genes involved in a variety of functions and metabolic pathways, including several colocalizations with QTLs for polyphenol compounds.

13.
Toxicol Sci ; 144(2): 328-37, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25577197

RESUMO

Patulin (PAT) is a toxic metabolite produced by several filamentous fungi of the genera of Penicillium, Aspergillus, and Byssochlamys. PAT is the most common mycotoxin found in apples and apple-based products including juice, compotes, cider, and baby food. Exposure to this mycotoxin has been reported to induce intestinal and kidney injuries. This study investigated the mechanism of PAT-induced toxicity in human colon carcinoma (HCT116) and embryonic kidney cells (HEK293). We demonstrated that PAT activated endoplasmic reticulum (ER) and unfolded protein response as evidenced by up-regulation of GRP78 and GADD34, splicing of XBP1 mRNA, and expression of the proapoptotic factor CHOP. This ER stress response was accompanied by the induction of the mitochondrial apoptotic pathway. Apoptosis occurred with ROS production, drop in mitochondrial membrane potential and caspase activation. Further, we showed that deficiency of the proapoptotic protein Bax or Bak protected cells against PAT-induced apoptosis. The treatment of cells with the ROS scavenger N-acetyl cysteine inhibits the ER stress response and prevents mitochondrial apoptosis. Collectively, our data provide new mechanistic insights in the signaling pathways of the cell death induced by PAT and demonstrate that PAT induces cytotoxicity through a ROS-dependent mechanism involving ER stress and activation of mitochondrial apoptotic pathway in human intestinal and kidney cells.


Assuntos
Apoptose/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Patulina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Acetilcisteína/farmacologia , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Humanos
14.
Toxicol Mech Methods ; 25(1): 56-62, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25496143

RESUMO

Mycotoxins are naturally occurring contaminants encountered at high levels in a wide variety of agricultural products intended for human and animal consumptions. Various Alternaria mycotoxins may occur simultaneously in small grain cereals. Considering the concomitant production of alternariol (AOH) and alternariol monomethyl ether (AME), it is expected that humans and animals are exposed to the mixture rather than to individual compounds. Therefore, we studied the interactive effects of binary mixture of alternariols (AOH and AME) on the human intestinal cell line, HCT116 cells. Exposure of HCT116 cells to low cytotoxic alternariols doses, resulted in a moderate cytotoxicity manifested by a loss in the cell viability mediated by an activation of the mitochondrial apoptotic process, associated with the opening of mitochondrial permeability transition pore (PTP) and the loss of the mitochondrial transmembrane potential (ΔΨm). However, when combined, they exert a significant increase in their toxic potential. Altogether, our study showed that AOH and AME combination is obviously additive.


Assuntos
Neoplasias do Colo/patologia , Lactonas/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Relação Dose-Resposta a Droga , Células HCT116 , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas de Transporte da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Medição de Risco , Fatores de Tempo
15.
Toxicon ; 84: 1-6, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24680766

RESUMO

It is expected that humans are exposed to combined mycotoxins, which occur simultaneously in the food items, than to individual compounds and that can increase their potential toxicity. Considering this coincident production, deoxynivalenol (DON) and zearalenone (ZEN) as they are produced by several Fusarium species, can interfere at a cellular level. Therefore, these two toxins were chosen to study their interactive effects on human colon carcinoma cells (HCT116), using the endpoints including cell viability, cell cycle analysis, mitochondrial transmembrane potential (ΔΨm) determination and permeability transition pore (PTP) opening. Our results showed that DON and ZEN caused a marked decrease of cell viability in a dose-dependent manner, mediated by an activation of the mitochondrial apoptotic process; characterized by PTP opening and the loss of ΔΨm. Nevertheless, combined DON and ZEN reduced all the toxicities observed with the mycotoxins separately. Therefore, the combination of the two mycotoxins appears as a sub-additive response.


Assuntos
Micotoxinas/toxicidade , Tricotecenos/toxicidade , Zearalenona/toxicidade , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células HCT116 , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/efeitos dos fármacos , Poro de Transição de Permeabilidade Mitocondrial
16.
Biochim Biophys Acta ; 1833(6): 1356-66, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23485394

RESUMO

Heat shock protein 90 (Hsp90) has recently emerged as an attractive therapeutic target in cancer treatment because of its role in stabilizing the active form of a wide range of client oncoproteins. This study investigated the mechanism of apoptosis induced by the purine-scaffold Hsp90 inhibitor PU-H71 in different human cancer cell lines and examined the role of Bcl-2 and Bax in this process. We demonstrated that Hsp90 inhibition by PU-H71 generated endoplasmic reticulum (ER) stress and activated the Unfolded Protein Response (UPR) as evidenced by XBP1 mRNA splicing and up-regulation of Grp94, Grp78, ATF4 and CHOP. In response to PU-H71-induced ER stress, apoptosis was triggered in melanoma, cervix, colon, liver and lung cancer cells, but not in normal human fibroblasts. Apoptosis was executed through the mitochondrial pathway as shown by down-regulation of Bcl-2, up-regulation and activation of Bax, permeabilization of mitochondrial membranes, release of cytochrome c and activation of caspases. We also found that, in contrast to the ER stressor thapsigargin, PU-H71 induced apoptosis in cells overexpressing Bcl-2 and thus overcame the resistance conferred by this anti-apoptotic protein. In addition, although Bax deficiency rendered cells resistant to PU-H71, combined treatment with the anticancer drugs cisplatin or melphalan greatly sensitized these cells to PU-H71. Taken together, these data suggest that inhibition of Hsp90 by PU-H71 is a promising strategy for cancer treatment, particularly in the case of tumors resistant to conventional chemotherapy.


Assuntos
Apoptose/efeitos dos fármacos , Benzodioxóis/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Purinas/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos Alquilantes/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica , Western Blotting , Caspases/metabolismo , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Chaperona BiP do Retículo Endoplasmático , Inibidores Enzimáticos/farmacologia , Citometria de Fluxo , Imunofluorescência , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Melfalan/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tapsigargina/farmacologia , Células Tumorais Cultivadas , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo
17.
Toxicol In Vitro ; 26(6): 915-23, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22542754

RESUMO

Mycotoxins are unavoidable contaminants of most foods and feeds, and some are known to be detrimental to human health. It is thus worthwhile to understand how cells of the intestinal system, one of the primary targets of these toxins, respond to their toxic effects. In this study, human colon carcinoma cells were used to elucidate the cell death mode and the pathways triggered by Alternariol (AOH), the most important mycotoxin produced by Alternaria species, which are the most common mycoflora infecting small grain cereals worldwide. Treatment of cells with AOH resulted in a loss of cell viability by inducing apoptosis. AOH-induced apoptosis was mediated through a mitochondria-dependent pathway, characterized by a p53 activation, an opening of the mitochondrial permeability transition pore (PTP), a loss of mitochondrial transmembrane potential (ΔΨm), a downstream generation of O(2)(*-) and caspase 9 and 3 activation. Besides, deficiency of the pro-apoptotic protein Bax partially protected cells against AOH-induced mitochondrial alterations. In addition, experiments performed on purified mitochondria indicated that AOH does not directly target this organelle to induce cell death. Our results demonstrate for the first time that AOH-induced cytotoxicity is mediated by activation of the mitochondrial pathway of apoptosis in human colon carcinoma cells.


Assuntos
Alternaria , Lactonas/toxicidade , Micotoxinas/toxicidade , Caspase 3/metabolismo , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fragmentação do DNA , Células HCT116 , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/metabolismo
18.
Biochem Pharmacol ; 83(9): 1172-82, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22285227

RESUMO

A major clinical problem regarding antitumoral treatment with DNA cross-linking agents such as cisplatin (Cisp), mechlorethamine (HN2) or its derivative melphalan (MLP) is intrinsic or acquired resistance to therapy, which frequently results from a resistance to apoptosis induction. In this study, aimed to identify novel sensitizing targets to DNA cross-linker-induced cell death, we demonstrated that MLP, Cisp and HN2 induce mitochondrial permeability transition pore (PTP)-mediated apoptosis in cervical and colon carcinoma cells. This apoptotic pathway is characterized by dissipation of the mitochondrial membrane potential, production of ROS, mitochondrial translocation of Bax, release of apoptogenic factors, caspase activation and nuclear alterations. The opening of PTP and subsequent apoptosis was reduced in Bax deficient cells and in cells with elevated Bcl-2 level, but not in cells invalidated for Bak. We further showed that, among the pro-apoptotic PTP regulators tested (VDAC1, creatine kinase, ANT1 and ANT3), exogenous overexpression of VDAC1 was the most effective in enhancing Cisp- and MLP-induced apoptosis. In addition, pharmacologically induced up-regulation of VDAC1 by the chemotherapeutic agent arsenic trioxide (As(2)O(3)) greatly sensitized HeLa cells to Cisp and MLP treatment. These data indicate that increased expression of VDAC1 appears as a promising strategy to improve DNA cross-linker-induced chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Reagentes de Ligações Cruzadas/farmacologia , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Linhagem Celular Tumoral , Cisplatino/farmacologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Reagentes de Ligações Cruzadas/química , DNA/química , Feminino , Células HeLa , Humanos , Mecloretamina/farmacologia , Melfalan/farmacologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Canal de Ânion 1 Dependente de Voltagem/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo
19.
Food Chem Toxicol ; 50(5): 1680-9, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22281158

RESUMO

Deoxynivalenol (DON) is a widespread trichothecene mycotoxin which contaminates cereal crops and harmfully affects the gastrointestinal tract. Since it is well known that mitochondria play a central role in apoptosis triggered by many stimuli, an effort was made to examine whether DON-induced cytotoxicity occurs through mitochondria-mediated apoptotic pathway. The intestinal system being one of the primary targets of mycotoxins, the human colon carcinoma cell line HCT116 was used in this study. Using flow cytometric analyses and immunofluorescence, we showed that DON at 100 µM induced a mitochondria-dependent apoptotic pathway associated with opening of the mitochondrial permeability transition pore (PTP), loss of the mitochondrial transmembrane potential (ΔΨm), downstream generation of O2·â» and cytochrome c release. The DON-induced apoptosis was accompanied by an activation of caspase 9 and 3, as demonstrated by Western blot and caspase activity assay. In addition, by taking advantage of HCT116 cells invalidated for Bax, we showed that this pro-apoptotic protein favored mitochondrial alterations induced by the mycotoxin. Besides, incubation of purified mitochondria with DON indicated that this mycotoxin does not directly target mitochondria to induce PTP-dependent permeabilization of mitochondrial membranes. Altogether, our results indicate that mitochondria-related caspase-dependent apoptotic pathway is involved in this in vitro model of DON induced-cytotoxicity.


Assuntos
Apoptose/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Tricotecenos/toxicidade , Caspases/metabolismo , Linhagem Celular Tumoral , Citocromos c/metabolismo , Ativação Enzimática , Humanos , Metaloproteinases da Matriz/metabolismo , Potenciais da Membrana/efeitos dos fármacos
20.
Toxicology ; 290(2-3): 230-40, 2011 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-22001388

RESUMO

Alternariol monomethyl ether (AME) is a major mycotoxin produced by fungi of the genus Alternaria and a common contaminant of food products such as fruits and cereals worldwide. AME can cause serious health problems for animals as well as for humans. In this study, human colon carcinoma cells (HCT116) were used to explore the mechanisms of cell death induced by AME. Exposure of HCT116 cells to AME resulted in significant cytotoxicity manifested by a loss in cell viability mainly mediated by activation of apoptotic process. AME activated the mitochondrial apoptotic pathway evidenced by the opening of the mitochondrial permeability transition pore (PTP), loss of the mitochondrial transmembrane potential (ΔΨm) downstream generation of O(2)(-), cytochrome c release and caspase 9 and 3 activation. Experiments conducted on isolated organelles indicated that AME does not directly target mitochondria to induce PTP-dependent permeabilization of mitochondrial membranes. Moreover, no difference was observed in Bax-KO cells in comparison to parental cells, suggesting that the pro-apoptotic protein Bax is not involved in AME-induced mitochondrial apoptosis. Our findings demonstrate for the first time that AME induces cell death in human colon carcinoma cells by activating the mitochondrial pathway of apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Lactonas/farmacologia , Mitocôndrias/efeitos dos fármacos , Micotoxinas/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Permeabilidade , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA