Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Science ; 378(6615): eabn5637, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36074822

RESUMO

Mammalian cells can generate amino acids through macropinocytosis and lysosomal breakdown of extracellular proteins, which is exploited by cancer cells to grow in nutrient-poor tumors. Through genetic screens in defined nutrient conditions, we characterized LYSET, a transmembrane protein (TMEM251) selectively required when cells consume extracellular proteins. LYSET was found to associate in the Golgi with GlcNAc-1-phosphotransferase, which targets catabolic enzymes to lysosomes through mannose-6-phosphate modification. Without LYSET, GlcNAc-1-phosphotransferase was unstable because of a hydrophilic transmembrane domain. Consequently, LYSET-deficient cells were depleted of lysosomal enzymes and impaired in turnover of macropinocytic and autophagic cargoes. Thus, LYSET represents a core component of the lysosomal enzyme trafficking pathway, underlies the pathomechanism for hereditary lysosomal storage disorders, and may represent a target to suppress metabolic adaptations in cancer.


Assuntos
Complexo de Golgi , Doenças por Armazenamento dos Lisossomos , Lisossomos , Proteínas , Animais , Complexo de Golgi/metabolismo , Humanos , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/metabolismo , Lisossomos/metabolismo , Camundongos , Transporte Proteico , Proteínas/genética , Proteínas/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
2.
J Biol Chem ; 298(9): 102321, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35921890

RESUMO

The intramembrane protease PARL acts as a crucial mitochondrial safeguard by cleaving the mitophagy regulators PINK1 and PGAM5. Depending on the stress level, PGAM5 can either stimulate cell survival or cell death. In contrast to PINK1, which is constantly cleaved in healthy mitochondria and only active when the inner mitochondrial membrane is depolarized, PGAM5 processing is inversely regulated. However, determinants of PGAM5 that indicate it as a conditional substrate for PARL have not been rigorously investigated, and it is unclear how uncoupling the mitochondrial membrane potential affects its processing compared to that of PINK1. Here, we show that several polar transmembrane residues in PGAM5 distant from the cleavage site serve as determinants for its PARL-catalyzed cleavage. Our NMR analysis indicates that a short N-terminal amphipathic helix, followed by a kink and a C-terminal transmembrane helix harboring the scissile peptide bond are key for a productive interaction with PARL. Furthermore, we also show that PGAM5 is stably inserted into the inner mitochondrial membrane until uncoupling the membrane potential triggers its disassembly into monomers, which are then cleaved by PARL. In conclusion, we propose a model in which PGAM5 is slowly processed by PARL-catalyzed cleavage that is influenced by multiple hierarchical substrate features, including a membrane potential-dependent oligomeric switch.


Assuntos
Homeostase , Metaloproteases , Mitocôndrias , Proteínas Mitocondriais , Fosfoproteínas Fosfatases , Proteólise , Células HeLa , Humanos , Metaloproteases/metabolismo , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Peptídeos/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas Quinases/metabolismo
3.
Biochim Biophys Acta Gen Subj ; 1865(3): 129829, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33340587

RESUMO

BACKGROUND: Iron export via the transport protein ferroportin (Fpn) plays a critical role in the regulation of dietary iron absorption and iron recycling in macrophages. Fpn plasma membrane expression is controlled by the hepatic iron-regulated hormone hepcidin in response to high iron availability and inflammation. Hepcidin binds to the central cavity of the Fpn transporter to block iron export either directly or by inducing Fpn internalization and lysosomal degradation. Here, we investigated whether iron deficiency affects Fpn protein turnover. METHODS: We ectopically expressed Fpn in HeLa cells and used cycloheximide chase experiments to study basal and hepcidin-induced Fpn degradation under extracellular and intracellular iron deficiency. CONCLUSIONS/GENERAL SIGNIFICANCE: We show that iron deficiency does not affect basal Fpn turnover but causes a significant delay in hepcidin-induced degradation when cytosolic iron levels are low. These data have important mechanistic implications supporting the hypothesis that iron export is required for efficient targeting of Fpn by hepcidin. Additionally, we show that Fpn degradation is not involved in protecting cells from intracellular iron deficiency.


Assuntos
Proteínas de Transporte de Cátions/genética , Hepcidinas/genética , Deficiências de Ferro , Proteínas de Transporte de Cátions/metabolismo , Cicloeximida/farmacologia , Desferroxamina/farmacologia , Regulação da Expressão Gênica , Células HeLa , Hepcidinas/metabolismo , Humanos , Transporte de Íons/efeitos dos fármacos , Quelantes de Ferro/farmacologia , Ligação Proteica/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Transporte Proteico/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Transdução de Sinais
4.
Elife ; 82019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31172943

RESUMO

Tail-anchored (TA) proteins insert post-translationally into the endoplasmic reticulum (ER), the outer mitochondrial membrane (OMM) and peroxisomes. Whereas the GET pathway controls ER-targeting, no dedicated factors are known for OMM insertion, posing the question of how accuracy is achieved. The mitochondrial AAA-ATPase Msp1 removes mislocalized TA proteins from the OMM, but it is unclear, how Msp1 clients are targeted for degradation. Here we screened for factors involved in degradation of TA proteins mislocalized to mitochondria. We show that the ER-associated degradation (ERAD) E3 ubiquitin ligase Doa10 controls cytoplasmic level of Msp1 clients. Furthermore, we identified the uncharacterized OMM protein Fmp32 and the ectopically expressed subunit of the ER-mitochondria encounter structure (ERMES) complex Gem1 as native clients for Msp1 and Doa10. We propose that productive localization of TA proteins to the OMM is ensured by complex assembly, while orphan subunits are extracted by Msp1 and eventually degraded by Doa10.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Transporte de Ânions/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
5.
Biochim Biophys Acta ; 1864(10): 1363-71, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27426920

RESUMO

We describe in detail the usage of leucine metabolic labelling in yeast in order to monitor quantitative proteome alterations, e.g. upon removal of a protease. Since laboratory yeast strains are typically leucine auxotroph, metabolic labelling with trideuterated leucine (d3-leucine) is a straightforward, cost-effective, and ubiquitously applicable strategy for quantitative proteomic studies, similar to the widely used arginine/lysine metabolic labelling method for mammalian cells. We showcase the usage of advanced peptide quantification using the FeatureFinderMultiplex algorithm (part of the OpenMS software package) for robust and reliable quantification. Furthermore, we present an OpenMS bioinformatics data analysis workflow that combines accurate quantification with high proteome coverage. In order to enable visualization, peptide-mapping, and sharing of quantitative proteomic data, especially for membrane-spanning and cell-surface proteins, we further developed the web-application Proteator (http://proteator.appspot.com). Due to its simplicity and robustness, we expect metabolic leucine labelling in yeast to be of great interest to the research community. As an exemplary application, we show the identification of the copper transporter Ctr1 as a putative substrate of the ER-intramembrane protease Ypf1 by yeast membrane proteomics using d3-leucine isotopic labelling.


Assuntos
Retículo Endoplasmático/metabolismo , Leucina/metabolismo , Proteínas de Membrana/metabolismo , Membranas/metabolismo , Peptídeo Hidrolases/metabolismo , Proteoma/metabolismo , Leveduras/metabolismo , Biologia Computacional/métodos , Proteínas Fúngicas/metabolismo , Marcação por Isótopo/métodos , Mapeamento de Peptídeos/métodos , Peptídeos/metabolismo , Proteômica/métodos
6.
Semin Cell Dev Biol ; 60: 29-37, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27378062

RESUMO

Rhomboids, proteases containing an unusual membrane-integral serine protease active site, were first identified in Drosophila, where they fulfill an essential role in epidermal growth factor receptor signaling, by cleaving membrane-tethered growth factor precursors. It has recently become apparent that eukaryotic genomes harbor conserved catalytically inactive rhomboid protease homologs, including derlins and iRhoms. Here we highlight how loss of proteolytic activity was followed in evolution by impressive functional diversification, enabling these pseudoproteases to fulfill crucial roles within the secretory pathway, including protein degradation, trafficking regulation, and inflammatory signaling. We distil the current understanding of the roles of rhomboid pseudoproteases in development and disease. Finally, we address mechanistically how versatile features of proteolytically active rhomboids have been elaborated to serve the sophisticated functions of their pseudoprotease cousins. By comparing functional and structural clues, we highlight common principles shared by the rhomboid superfamily, and make mechanistic predictions.


Assuntos
Doença , Saúde , Proteínas Mitocondriais/metabolismo , Animais , Humanos , Modelos Biológicos , Peptídeo Hidrolases/metabolismo , Transporte Proteico
7.
Trends Cell Biol ; 25(10): 611-622, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26410407

RESUMO

Protein degradation is a fundamentally important process that allows cells to recognize and remove damaged protein species and to regulate protein abundance according to functional need. A fundamental challenge is to understand how membrane proteins are recognized and removed from cellular organelles. While most of our understanding of this mechanism comes from studies on p97/Cdc48-mediated protein dislocation along the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway, recent studies have revealed intramembrane proteolysis to be an additional mechanism that can extract transmembrane segments. Here, we review these two principles in membrane protein degradation and discuss how intramembrane proteolysis, which introduces an irreversible step in protein dislocation, is used to drive regulated protein turnover.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Degradação Associada com o Retículo Endoplasmático/genética , Proteínas de Membrana/genética , Proteólise , Adenosina Trifosfatases/genética , Animais , Proteínas de Ciclo Celular/genética , Retículo Endoplasmático/genética , Humanos , Proteínas de Membrana/metabolismo , Complexo de Endopeptidases do Proteassoma , Ubiquitina/genética , Proteína com Valosina
8.
Biochim Biophys Acta ; 1828(12): 2840-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23562403

RESUMO

From proteases that cleave peptide bonds in the plane of the membrane, rhomboids have evolved into a heterogeneous superfamily with a wide range of different mechanistic properties. In mammals 14 family members have been annotated based on a shared conserved membrane-integral rhomboid core domain, including intramembrane serine proteases and diverse proteolytically inactive homologues. While the function of rhomboid proteases is the proteolytic release of membrane-tethered factors, rhomboid pseudoproteases including iRhoms and derlins interact with their clients without cleaving them. It has become evident that specific recognition of membrane protein substrates and clients by the rhomboid fold reflects a spectrum of cellular functions ranging from growth factor activation, trafficking control to membrane protein degradation. This review summarizes recent progress on rhomboid family proteins in the mammalian secretory pathway and raises the question whether they can be seen as new drug targets for inflammatory diseases and cancer. This article is part of a special issue entitled: Intramembrane Proteases.


Assuntos
Inflamação/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias/metabolismo , Serina Endopeptidases/metabolismo , Serina Proteases/metabolismo , Transdução de Sinais , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Proteína ADAM17 , Animais , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulação da Expressão Gênica , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Filogenia , Proteólise , Serina Endopeptidases/química , Serina Endopeptidases/genética , Serina Proteases/química , Serina Proteases/genética , Especificidade por Substrato
9.
Mol Cell ; 47(4): 558-69, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22795130

RESUMO

The ER-associated degradation (ERAD) pathway serves as an important cellular safeguard by directing incorrectly folded and unassembled proteins from the ER to the proteasome. Still, however, little is known about the components mediating ERAD of membrane proteins. Here we show that the evolutionary conserved rhomboid family protein RHBDL4 is a ubiquitin-dependent ER-resident intramembrane protease that is upregulated upon ER stress. RHBDL4 cleaves single-spanning and polytopic membrane proteins with unstable transmembrane helices, leading to their degradation by the canonical ERAD machinery. RHBDL4 specifically binds the AAA+-ATPase p97, suggesting that proteolytic processing and dislocation into the cytosol are functionally linked. The phylogenetic relationship between rhomboids and the ERAD factor derlin suggests that substrates for intramembrane proteolysis and protein dislocation are recruited by a shared mechanism.


Assuntos
Degradação Associada com o Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Peptídeo Hidrolases/metabolismo , Ubiquitina/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Células Cultivadas , Citosol/metabolismo , Retículo Endoplasmático/genética , Degradação Associada com o Retículo Endoplasmático/genética , Células HEK293 , Humanos , Proteínas de Membrana/genética , Dados de Sequência Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Peptídeo Hidrolases/genética , Filogenia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Proteólise , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia , Ubiquitina/genética
10.
EMBO Rep ; 12(5): 421-7, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21494248

RESUMO

The epidermal growth factor receptor (EGFR) has several functions in mammalian development and disease, particularly cancer. Most EGF ligands are synthesized as membrane-tethered precursors, and their proteolytic release activates signalling. In Drosophila, rhomboid intramembrane proteases catalyse the release of EGF-family ligands; however, in mammals this seems to be primarily achieved by ADAM-family metalloproteases. We report here that EGF is an efficient substrate of the mammalian rhomboid RHBDL2. RHBDL2 cleaves EGF just outside its transmembrane domain, thereby facilitating its secretion and triggering activation of the EGFR. We have identified endogenous RHBDL2 activity in several tumour cell lines.


Assuntos
Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Serina Proteases/metabolismo , Transdução de Sinais/fisiologia , Animais , Western Blotting , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Proteínas de Fluorescência Verde , Humanos , Lentivirus , Camundongos , Microscopia de Fluorescência , Fenilalanina/análogos & derivados , Serina Endopeptidases , Transdução de Sinais/genética , Especificidade por Substrato , Tiofenos , Transdução Genética
12.
J Biol Chem ; 278(36): 33747-52, 2003 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-12821659

RESUMO

The nonclassical major histocompatibility complex class I molecule HLA-E acts as a ligand for CD94/NKG2 receptors on the surface of natural killer cells and a subset of T cells. HLA-E presents closely related nonameric peptide epitopes derived from the highly conserved signal sequences of classical major histocompatibility complex class I molecules as well as HLA-G. Their generation requires cleavage of the signal sequence by signal peptidase followed by the intramembrane-cleaving aspartic protease, signal peptide peptidase. In this study, we have assessed the subsequent proteolytic requirements leading to generation of the nonameric HLA-E peptide epitopes. We show that proteasome activity is required for further processing of the peptide generated by signal peptide peptidase. This constitutes the first example of capture of a naturally derived short peptide by the proteasome, producing a class I peptide ligand.


Assuntos
Acetilcisteína/análogos & derivados , Cisteína Endopeptidases/química , Antígenos HLA/química , Antígenos de Histocompatibilidade Classe I/química , Proteínas de Membrana , Complexos Multienzimáticos/química , Acetilcisteína/farmacologia , Ácidos/farmacologia , Alelos , Sequência de Aminoácidos , Ácido Aspártico Endopeptidases/química , Linhagem Celular , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/fisiologia , Inibidores de Cisteína Proteinase/farmacologia , Citosol/metabolismo , Relação Dose-Resposta a Droga , Epitopos/química , Citometria de Fluxo , Antígenos HLA-G , Humanos , Ligantes , Dados de Sequência Molecular , Complexos Multienzimáticos/metabolismo , Complexos Multienzimáticos/fisiologia , Oligopeptídeos/farmacologia , Peptídeo Hidrolases/metabolismo , Peptídeos/química , Plasmídeos/metabolismo , Complexo de Endopeptidases do Proteassoma , Biossíntese de Proteínas , Estrutura Terciária de Proteína , Serina Endopeptidases/química , Transcrição Gênica , Transfecção , Antígenos HLA-E
13.
Mol Cell ; 10(4): 735-44, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12419218

RESUMO

The presenilin-type aspartic protease signal peptide peptidase (SPP) can cleave signal peptides within their transmembrane region. SPP is essential for generation of signal peptide-derived HLA-E epitopes in humans and is exploited by Hepatitis C virus for processing of the viral polyprotein. Here we analyzed requirements of substrates for intramembrane cleavage by SPP. Comparing signal peptides that are substrates with those that are not revealed that helix-breaking residues within the transmembrane region are required for cleavage, and flanking regions can affect processing. Furthermore, signal peptides have to be liberated from the precursor protein by cleavage with signal peptidase in order to become substrates for SPP. We propose that signal peptides require flexibility in the lipid bilayer to exhibit an accessible peptide bond for intramembrane proteolysis.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Membrana Celular/enzimologia , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Sinais Direcionadores de Proteínas/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Ácido Aspártico Endopeptidases/genética , Western Blotting , Linhagem Celular , Membrana Celular/metabolismo , Sequência Consenso , Cricetinae , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Especificidade por Substrato
14.
EMBO J ; 21(15): 3980-8, 2002 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12145199

RESUMO

Hepatitis C virus (HCV) is the major causative pathogen associated with liver cirrhosis and hepatocellular carcinoma. The virus has a positive-sense RNA genome encoding a single polyprotein with the virion components located in the N-terminal portion. During biosynthesis of the polyprotein, an internal signal sequence between the core protein and the envelope protein E1 targets the nascent polypeptide to the endoplasmic reticulum (ER) membrane for translocation of E1 into the ER. Following membrane insertion, the signal sequence is cleaved from E1 by signal peptidase. Here we provide evidence that after cleavage by signal peptidase, the signal peptide is further processed by the intramembrane-cleaving protease SPP that promotes the release of core protein from the ER membrane. Core protein is then free for subsequent trafficking to lipid droplets. This study represents an example of a potential role for intramembrane proteolysis in the maturation of a viral protein.


Assuntos
Hepacivirus/metabolismo , Proteínas de Membrana/metabolismo , Sinais Direcionadores de Proteínas/fisiologia , Proteínas do Core Viral/metabolismo , Proteínas do Envelope Viral/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Linhagem Celular/virologia , Cricetinae , Retículo Endoplasmático/metabolismo , Corpos de Inclusão/metabolismo , Rim , Metabolismo dos Lipídeos , Mesocricetus , Dados de Sequência Molecular , Sinais Direcionadores de Proteínas/genética , Transporte Proteico , Serina Endopeptidases/fisiologia , Proteínas do Envelope Viral/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA